Stability theory has significant applications in technology, especially in control systems. On the other hand, the newly defined generalized mean-square stochastic fractional (GMSF) operators are particularly interesting in control theory and systems due to their various controllable parameters. Thus, the combined study of stability theory and GMSF operators becomes crucial. In this research work, we construct a new class of GMSF differential equations and provide a rigorous proof of the existence of their solutions. Furthermore, we investigate the stability of these solutions using the generalized Ulam-Hyers-Rassias stability criterion. Some examples are also provided to demonstrate the effectiveness of the proposed approach in solving fractional differential equations (FDEs) and evaluating their stability. The paper concludes by discussing potential applications of the proposed results in technology and outlining avenues for future research.
Citation: Tahir Ullah Khan, Christine Markarian, Claude Fachkha. Stability analysis of new generalized mean-square stochastic fractional differential equations and their applications in technology[J]. AIMS Mathematics, 2023, 8(11): 27840-27856. doi: 10.3934/math.20231424
Stability theory has significant applications in technology, especially in control systems. On the other hand, the newly defined generalized mean-square stochastic fractional (GMSF) operators are particularly interesting in control theory and systems due to their various controllable parameters. Thus, the combined study of stability theory and GMSF operators becomes crucial. In this research work, we construct a new class of GMSF differential equations and provide a rigorous proof of the existence of their solutions. Furthermore, we investigate the stability of these solutions using the generalized Ulam-Hyers-Rassias stability criterion. Some examples are also provided to demonstrate the effectiveness of the proposed approach in solving fractional differential equations (FDEs) and evaluating their stability. The paper concludes by discussing potential applications of the proposed results in technology and outlining avenues for future research.
[1] | D. Weihua, L. Changpin, L. Jinhu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 48 (2007), 409–416. https://doi.org/10.1007/s11071-006-9094-0 doi: 10.1007/s11071-006-9094-0 |
[2] | J. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, A Lyapunov approach to the stability of fractional differential equations, Signal Process., 91 (2011), 437–445. https://doi.org/10.1016/j.sigpro.2010.04.024 doi: 10.1016/j.sigpro.2010.04.024 |
[3] | Z. Ali, A. Zada, K. Shah, On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations, Bull. Malays. Math. Sci. Soc., 42 (2019), 2681–2699. https://doi.org/10.1007/s40840-018-0625-x doi: 10.1007/s40840-018-0625-x |
[4] | D. Baleanu, H. Mohammadi, S. Rezapour, A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative, Adv. Differ. Equ., 2020 (2020), 1–27. https://doi.org/10.1186/s13662-020-02762-2 doi: 10.1186/s13662-020-02762-2 |
[5] | J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Advances in fractional calculus, Switzerland, Springer, 4 (2007). Available from: https://download.e-bookshelf.de/download/0000/0042/78/L-G-0000004278-0002336543.pdf. |
[6] | T. U. Khan, M. Adil. Khan, New generalized mean square stochastic fractional operators with applications, Chaos Soliton. Fract., 142 (2021), 110452. http://dx.doi.org/10.1016/j.chaos.2020.110452 doi: 10.1016/j.chaos.2020.110452 |
[7] | W. Rudin, Principles of mathematical analysis, 3, McGraw-hill, New York, 1976. |
[8] | T. U. Khan, M. Adil Khan, Y. M. Chu, A new generalized Hilfer-type fractional derivative with applications to space-time diffusion equation, Results Phys., 22 (2021), 103953. https://doi.org/10.1016/j.rinp.2021.103953 doi: 10.1016/j.rinp.2021.103953 |
[9] | M. Palaniappan, Hyers-Ulam-Rassias stability of nonlinear fractional differential equation with three point integral boundary conditions, Int. J. Eng. Res. Technol., 13 (2020), 4679–4685. Available from: http://www.irphouse.com. |
[10] | A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, et al., Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two Caputo derivatives using fractional Fourier transform, AIMS Math., 10 (2022), 403. https://doi.org/10.3934/math.2022103 doi: 10.3934/math.2022103 |
[11] | R. Subashmoorthy, P. Balasubramaniam, Hyers-Ulam-Rassias stability results for some nonlinear fractional integral equations using the Bielecki metric, Math. Method. Appl. Sci., 2020. http://dx.doi.org/10.1002/mma.6910 doi: 10.1002/mma.6910 |
[12] | M. Xia, L. Liu, J. Fang, Y. Zhang, Stability analysis for a class of stochastic differential equations with impulses, Mathematics, 11 (2023), 1541. https://doi.org/10.3390/math11061541 doi: 10.3390/math11061541 |
[13] | F. Haq, K. Shah, G. U. Rahman, M. Shahzad, Hyers-Ulam stability to a class of fractional differential equations with boundary conditions, Int. J. Appl. Comput. Math., 3 (2017), 1135–1147. Available from: https://link.springer.com/article/10.1007/s40819-017-0406-5. |
[14] | C. Wang, Y. Song, F. Zhang, Y. Zhao, Exponential stability of a class of neutral inertial neural networks with multi-proportional delays and leakage delays, Mathematics, 11 (2023), 2596. https://doi.org/10.3390/math11122596 doi: 10.3390/math11122596 |
[15] | J. F. Gómez‐Aguilar, G. U. Rahman, M. Javed, Stability analysis for fractional order implicit $\psi$‐Hilfer differential equations, Math. Method. Appl. Sci., 45 (2022), 2701–2712. http://dx.doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948 |
[16] | Z. Yang, W. Ren, T. Xu, Ulam-Hyers stability for matrix-valued fractional differential equations, J. Math. Inequal., 12 (2018), 665–675. https://doi.org/10.1515/ms-2017-0427 doi: 10.1515/ms-2017-0427 |
[17] | Z. Jia, C. Li, Almost sure exponential stability of uncertain stochastic Hopfield neural networks based on subadditive measures, Mathematics, 11 (2023), 3110. https://doi.org/10.3390/math11143110 doi: 10.3390/math11143110 |
[18] | Z. Ali, A. Zada, K. Shah, Ulam stability results for the solutions of nonlinear implicit fractional order differential equations, Hacet. J. Math. Stat., 48 (2018), 1092–1109. http://dx.doi.org/10.15672/HJMS.2018.575 doi: 10.15672/HJMS.2018.575 |
[19] | S. Abbas, M. Benchohra, A. Petruşel, Ulam stabilities for partial fractional differential inclusions via Picard operators theory, Electron. J. Qual. Theo., 2014 (2014), 1–13. http://dx.doi.org/10.14232/ejqtde.2014.1.51 doi: 10.14232/ejqtde.2014.1.51 |
[20] | S. Abbas, S. M. Benchohra, A. Petruşel, Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory, Fract. Calc. Appl. Anal., 20 (2017), 384–398. http://dx.doi.org/10.1515/fca-2017-0020 doi: 10.1515/fca-2017-0020 |
[21] | G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023). https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303 |
[22] | S. O. Shah, A. Zada, A. E. Hamza, Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qual. Theory Dyn. Syst., 18 (2019), 825–840. https://link.springer.com/article/10.1007/s12346-019-00315-x |
[23] | S. O. Shah, A. Zada, Hyers-Ulam stability of non-linear Volterra integro-delay dynamic system with fractional integrable impulses on time scales, Iran. J. Math. Sci. Inf., 17 (2022), 85–97. http://dx.doi.org/10.52547/ijmsi.17.1.85 doi: 10.52547/ijmsi.17.1.85 |
[24] | D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073%2Fpnas.27.4.222 |
[25] | R. Agarwal, S. Hristova, D. O'Regan, Stability of generalized proportional Caputo fractional differential equations by Lyapunov functions, Fractal Fract., 6 (2022), 1–34. https://doi.org/10.3390/fractalfract6010034 doi: 10.3390/fractalfract6010034 |
[26] | A. Al-khateeb, H. Zureigat, O. Ala'yed, S. Bawaneh, Ulam-Hyers stability and uniqueness for nonlinear sequential fractional differential equations involving integral boundary conditions, Fractal Fract., 5 (2021), 235. https://doi.org/10.3390/fractalfract5040235 doi: 10.3390/fractalfract5040235 |
[27] | B. Wang, Q. Zhu, S. Li, Stability analysis of discrete-time semi-Markov jump linear systems with time delay, IEEE T. Automat. Contr., 2023. http://dx.doi.org/10.1109/TAC.2023.3240926 doi: 10.1109/TAC.2023.3240926 |
[28] | C. E. Garcia, D. M. Prett, M. Morari, Model predictive control: Theory and practice—A survey, Automatica, 25 (1989), 335–348. https://doi.org/10.1016/0005-1098(89)90002-2 doi: 10.1016/0005-1098(89)90002-2 |
[29] | J. C. Doyle, B. A. Francis, A. R. Tannenbaum, Feedback control theory, Courier Corporation, North Chelmsford, Massachusetts, 2013. |
[30] | H. O. Wang, K. Tanaka, M. F. Griffin, An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE T. Fuzzy Syst., 4 (1996), 14–23. https://doi.org/10.1109/91.481841 doi: 10.1109/91.481841 |
[31] | R. Olfati-Saber, Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles, Massachusetts Institute of Technology, 2001. |
[32] | M. Ghafarian, B. Shirinzadeh, A. Al-Jodah, T. K. Das, Adaptive fuzzy sliding mode control for high-precision motion tracking of a multi-DOF micro/nano manipulator, IEEE Robot. Autom. Let., 5 (2020), 4313–4320. https://doi.org/10.1109/LRA.2020.2996065 doi: 10.1109/LRA.2020.2996065 |
[33] | A. V. Oppenheim, G. C. Verghese, Signals, systems & inference, Pearson London: Cambridge, 2017. Available from: https://www.pearsonhighered.com/assets/samplechapter/0/1/3/3/0133943283.pdf. |
[34] | S. V. Vaseghi, Advanced digital signal processing and noise reduction, John Wiley & Sons, West Sussex, 2008. http://dx.doi.org/10.1007/978-3-322-92773-6 |