In this paper, we will introduce the idea of grand variable weighted Herz spaces ˙Kα(⋅),ϵ),θq(⋅)(τ) in which α is also a variable. Our main purpose in this paper is to prove the boundedness of Hardy operators on grand variable weighted Herz spaces.
Citation: Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki. Boundedness of Hardy operators on grand variable weighted Herz spaces[J]. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
[1] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[2] | Babar Sultan, Mehvish Sultan, Mazhar Mehmood, Fatima Azmi, Maryam Ali Alghafli, Nabil Mlaiki . Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(1): 752-764. doi: 10.3934/math.2023036 |
[3] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[4] | Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293 |
[5] | Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad . A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(9): 22178-22191. doi: 10.3934/math.20231130 |
[6] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[7] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
[8] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[9] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[10] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
In this paper, we will introduce the idea of grand variable weighted Herz spaces ˙Kα(⋅),ϵ),θq(⋅)(τ) in which α is also a variable. Our main purpose in this paper is to prove the boundedness of Hardy operators on grand variable weighted Herz spaces.
The notion of Herz spaces were introduced by C. Herz in [1]. Let α∈R, 1≤p<∞ and 1≤q<∞. The classical versions of non-homogeneous and homogeneous Herz spaces are defined by the norms
‖f‖Kαp,q(Rn):=‖f‖Lu(B(0,1))+{∑k∈N2kαq(∫2k<|x|<2k+1|f(x)|pdx)qp}1q, | (1.1) |
‖f‖˙Kαp,q(Rn):={∑k∈Z2kαq(∫2k−1<|x|<2k|f(x)|pdx)qp}1q, | (1.2) |
respectively.
Variable exponent function spaces have been widely studied and have many important applications. Some examples of works in this area are [5,6]. These variable exponent function spaces are important for studying problems in partial differential equations and applied mathematics. In particular, Herz spaces with variable exponent generalize classical Herz spaces, see [7]. The Herz-Morrey spaces M˙Kα,λq(⋅),p(Rn) generalize the idea of Herz spaces with variable exponent ˙Kα,pq(⋅)(Rn). These function spaces were initially defined in [8]. Lu and Zhu [9] further studied the Morrey-Herz spaces M˙Kα(⋅),λq,p(⋅)(Rn) and established the boundedness of integral operators on these spaces.
Let g is a locally integrable function on Rn. The n-dimensional Hardy operators can be defined as
Hg(z):=1|z|n∫|x|<|z|g(x)dx,H∗g(z):=∫|x|≥|z|g(x)|x|ndx,z∈Rn∖{0}. |
They were studied in many papers, see for instance [2,3,4].
Izuki and Noi introduced the concept of weighted variable Herz spaces ˙Kα,rs(⋅)(w) in their papers [10,11]. The concept of grand Morrey spaces introduced in [12], has attracted significant attention from researchers. In [13], the idea of grand variable Herz spaces ˙Kα(⋅),p),θq(⋅)(Rn) was introduced, and boundedness of sublinear operators were obtained. Boundedness of other integral operators on grand variable Herz spaces can be seen in [14,15,16,17,18]. In [19], the definition of grand variable Herz-Morrey spaces introduced and obtained the boundedness of Riesz potential operator in these spaces. In [20], authors obtained the boundedness of variable Marcinkiewicz integral operator on grand variable Herz-Morrey spaces. Recently, in [21], the authors proved the boundedness of fractional integral operator on grand weighted Herz spaces ˙Kα,p),θq(⋅)(w) spaces. Grand weighted Herz-Morrey spaces are the generalization of grand weighted Herz spaces. In [22], Sultan et al. established the boundedness of fractional integral operator on grand weighted Herz-Morrey spaces.
Motivated by the study on grand weighted Herz spaces, our main purpose is to define grand variable weighted Herz spaces, which is the generalization of weighted Herz spaces with variable exponents. Our main purpose is to establish some boundedness results for the Hardy operators on grand variable weighted Herz spaces ˙Kα(⋅),ϵ),θq(⋅)(τ).
Suppose that G is a measurable set in Rn with Lebesgue measure |G|>0. The characteristic function of G is denoted by χG. It is important to note that in this paper, the symbol C represents a positive constant, which may vary in value at different occurrences.
For this section we refer to [6,24,25,26].
We first recall some necessary definitions and notations.
Definition 2.1. Let G be a measurable set in Rn and r(⋅): G→[1,∞) be a measurable function. We suppose that
1≤r−(G)≤r(g)≤r+(G)<∞, | (2.1) |
where r−:=essinfg∈Gr(g),r+:=esssupg∈Gr(g).
(a) Variable Lebesgue space Lr(⋅)(G) can be defined as
Lr(⋅)(G)={fmeasurable:∫G(|f(x)|τ)r(x)dx<∞,whereτisaconstant}. |
Norm in Lr(⋅)(G) can be defined as
‖h‖Lr(⋅)(G)=inf{γ>0:∫G(|f(x)|τ)r(x)dx≤1}. |
(b) The space Lr(⋅)loc(G) can be defined as
Lr(⋅)loc(G):={f:f∈Lr(⋅)(K)forallcompactsubsetsK⊂G}. |
The log-conditions may be stated as follows:
|r(x)−r(y)|≤C(r)−ln|x−y|,|x−y|≤12,x,y∈G, | (2.2) |
where C(r)>0.
Additionally, the decay condition: There exists a number r∞∈(1,∞), such that
|r(x)−r∞|≤Cln(e+|x|), | (2.3) |
and also decay condition
|r(x)−r0|≤Cln|x|,|x|≤12, | (2.4) |
holds for some r0∈(1,∞).
We use these notations in this article:
(ⅰ) The set P(G) consists of all measuable functions r(⋅) satisfying r−>1 and r+<∞.
(ⅱ) Plog=Plog(G) consists of all functions r∈P(G) satisfying (2.1) and (2.2).
(ⅲ) P∞(G) and P0,∞(G) are the subsets of P(G) and values of these subsets lies in [1,∞) which satisfy the condition (2.3) and both conditions (2.3) and (2.4) respectively.
(ⅳ) χk=χRk, Rk=Dk∖Dk−1 and Dk=D(0,2k)={x∈Rn:|x|<2k} for all k∈Z.
We define the Hardy-Littlewood maximal operator M as
Mf(z):=supx>0x−n∫D(z,x)|f(z)|dz, |
where f∈L1loc(G).
Definition 2.2. The weighted Lr(⋅) space is defined as the set of all measurable functions f on Rn such that fτ1r(⋅)∈Lr(⋅)(Rn), where r(⋅)∈P(Rn) and τ is a weight. The norm of the Banach space Lr(⋅)(τ) is denoted by
‖f‖Lr(⋅)(τ):=‖fτ1r(⋅)‖Lr(⋅), |
where r′(⋅) is the conjugate exponent of r(⋅).
Definition 2.3. If u∈[1,∞), α∈R, q(⋅)∈P(Rn), then the homogeneous Herz spaces ˙Kα,uq(⋅)(Rn) and non-homogeneous Kα,uq(⋅)(Rn) Herz spaces are defined respectively as
˙Kα,uq(⋅)(Rn)={g∈Lq(⋅)loc(Rn∖{0}):‖g‖˙Kα,uq(⋅)(Rn)<∞}, | (2.5) |
where
‖g‖˙Kα,uq(⋅)(Rn)=(k=∞∑k=−∞‖2kαgχk‖uLq(⋅))1u. |
Kα,uq(⋅)(Rn)={g∈Lq(⋅)loc(Rn∖{0}):‖g‖˙Kα,uq(⋅)(Rn)<∞}, | (2.6) |
where
‖g‖Kα,uq(⋅)(Rn)=(k=∞∑k=−∞‖2kαgχk‖uLq(⋅))1u+‖g‖Lq(⋅)(D(0,1)). |
Next, we define grand weighted variable M˙Kα,ϵ),θλ,q(⋅)(τ) spaces.
Definition 2.4. If q(⋅)∈P(Rn), 0≤λ<∞, 0<u<∞, θ>0, then the homogeneous grand weighted variable Herz-Morrey spaces denoted by M˙Kα,ϵ),θλ,q(⋅)(τ) consist of locally integrable functions f∈Lq(⋅)loc(Rn∖0,τ) satisfying:
M˙Kα,ϵ),θλ,q(⋅)(τ):={Lq(⋅)loc(Rn∖{0}):‖f‖M˙Kα,ϵ),θλ,q(⋅)(τ)<∞}, | (2.7) |
where
‖f‖M˙Kα,ϵ),θλ,q(⋅)(τ)=supδ>0supko∈Z2−k0λ(δθk0∑k=−∞2kαu(1+δ)‖fχk‖u(1+δ)Lq(⋅)(τ))1u(1+δ). |
We can define non-homogeneous grand weighted Herz-Morrey spaces in a similar manner.
Definition 2.5. If s(⋅)∈P(Rn), 0<ϵ<∞, θ>0, then the homogeneous grand variable weighted Herz spaces denoted by ˙Kα(⋅),ϵ),θs(⋅)(τ) consist of locally integrable functions f∈Ls(⋅)loc(Rn/0,τ) satisfying:
˙Kα(⋅),ϵ),θs(⋅)(τ):={Ls(⋅)loc(Rn/{0}):‖f‖˙Kα(⋅),ϵ),θs(⋅)(τ)<∞}, | (2.8) |
where
‖f‖˙Kα(⋅),ϵ),θs(⋅)(τ)=supΔ>0(Δθ∞∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)‖fχℓ‖ϵ(1+Δ)Ls(⋅)(τ))1ϵ(1+Δ). |
We can define non-homogeneous grand variable weighted Herz spaces in a similar manner.
Next, we will define the weight Muckenhoupt Ar.
Definition 2.6. For 1<r<∞, r′=rr−1 and any weight τ, we define τ∈Ar if there exists a constant C>0 such that for every cube G
(1|Q|∫Gτ(z)dz)(1|Q|∫Gτ(z)1−r′dz)r−1≤C<∞. |
We say that τ∈A1 if there exists a constant C>0 such that Mτ(z)≤Cτ(z) for every z∈Rn. We define A∞=⋃1≤r≤∞Ar.
Definition 2.7. Let r(⋅)∈P(Rn). A weight τ is called an Ar(⋅) weight if
supD:ball1|D|‖τ1r(⋅)χD‖Lr(⋅)‖τ−1r(⋅)χD‖Lr′(⋅)<∞. | (2.9) |
Definition 2.8. If r(⋅)∈P(Rn), then a weight τ is said to be an A′r(⋅) weight if
supD:ball|D|−PD‖τχD‖L1‖τ−1χD‖Lr′(⋅)/r(⋅)<∞. | (2.10) |
The set A′r(⋅) is defined to be the collection of all A′r(⋅) weights.
Definition 2.9. Let r1(⋅),r2(⋅)∈P(Rn) and 1/r1(⋅)−1/r2(⋅)=α/n. Then τ∈A(r1(⋅),r2(⋅)) if
‖τχD‖Lr2(⋅)‖τ−1χD‖Lr′1(⋅)≤|D|1−αn. |
We require the following preliminary results to prove our main theorems.
Lemma 2.10. [23,Generalized Hölder's inequality] If f∈Lp(⋅)(G), g∈Lq(⋅)(G) and 1/r(⋅)=1/p(⋅)+1/q(⋅), then
‖fg‖Lr(⋅)(G)≤C‖f‖Lp(⋅)(G)‖g‖Lq(⋅)(G). |
Lemma 2.11. Let decay conditions at origin and infinity be fulfilled. Then
1t02knp(0)≤‖χD(0,2k+1)∖D(0,2k)‖Lp(⋅)(τ)≤t02knp(0),for0<k≤1 | (2.11) |
and
1t∞2knp∞≤‖χD(0,2k+1)∖D(0,2k)‖Lp(⋅)(τ)≤t∞2knp∞,fork≥1, | (2.12) |
respectively, where t0≥1 and t∞≥1 independent of k.
Proof. We will prove (2.12) and other inequality can be estimated similarly. As we can see from [23] that
τ(D(0,2k+1)∖D(0,2k))≤2knp∞. |
Now right hand side inequality of (2.12) is given as
∫Rnχ(D(0,2k+1)∖D(0,2k))τ(x)dx[t02knp∞]p(x)≤1. | (2.13) |
Using the decay condition we see that
∫Rnχ(D(0,2k+1)∖D(0,2k))τ(x)dx[t02knp∞]p(x)≤1tp−0∫Rnχ(D(0,2k+1)∖D(0,2k))τ(x)dx[2knp∞]p(x)≤2knp∞−kn, | (2.14) |
which determines the choice of tp−0=2knp∞−kn we will get our desired result.
In this section, we will prove the main results of this paper.
Theorem 3.1. Let 1<ϵ<∞, θ>0, α,q∈P0,∞(Rn). Let α satisfies −nq∞<α∞<nq′∞ and −nq(0) <α(0)<nq′(0). Then the Hardy operator H will be bounded on ˙Kα(⋅),ϵ),θq(⋅)(τ).
Proof. Let f∈˙Kα(⋅),ϵ),θq(⋅)(τ), fj:=fχj for any j∈Z, then f=∞∑j=−∞fj, we have
|H(f)(z).χℓ(z)|≤1|z|n∫Dℓ|f(x)|dx.χℓ(z)≤C2−ℓnℓ∑j=−∞‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z). |
For E1, we use the facts that, for each ℓ∈Z, z∈Rℓ with j≤ℓ. Then Hölder's inequality and size condition imply
‖(Hfj)χℓ‖Lq(⋅)(τ)≤supΔ>0(Δθ∞∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(ℓ∑j=−∞‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)2−ℓn‖χℓ‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ). |
Splitting by using Minkowski's inequality we have
‖(Hfj)χℓ‖Lq(⋅)(τ)≤supΔ>0(Δθ∞∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(ℓ∑j=−∞‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)2−ℓn‖χℓ‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤supΔ>0(Δθ−1∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(ℓ∑j=−∞‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)2−ℓn‖χℓ‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)+supΔ>0(Δθ∞∑ℓ=02ℓα(⋅)ϵ(1+Δ)(ℓ∑j=−∞‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)2−ℓn‖χℓ‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ):=E11+E12. |
For E11, by virtue of Lemma 2.11 we get
2−ℓn‖χℓ‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)≤C2−ℓn2ℓnq(0)2jnq′(0)≤C2(j−ℓ)nq′(0). | (3.1) |
Applying to E11 we can get
E11≤supΔ>0(Δθ−1∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(ℓ∑j=−∞‖χℓT(fj)‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0[Δθ−1∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(ℓ∑j=−∞‖χℓ‖Lq(⋅)(τ)2−ℓn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ))ϵ(1+Δ)]1ϵ(1+Δ). |
Let b=nq′(0)−α(0),
E11≤CsupΔ>0[Δθ−1∑ℓ=−∞(ℓ∑j=−∞2α(0)j‖fj‖Lq(⋅)(τ)2b(j−ℓ))ϵ(1+Δ)]1ϵ(1+Δ). | (3.2) |
Applying the fact 2−ϵ(1+Δ)<2−ϵ, Fubini's theorem for series and Hölder's inequality we get,
E11≤CsupΔ>0[Δθ−1∑ℓ=−∞(ℓ∑j=−∞2α(0)ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ)2bϵ(1+Δ)(j−ℓ)/2×ℓ∑j=−∞2b(ϵ(1+Δ))′(j−ℓ)/2)ϵ(1+Δ)(ϵ(1+Δ))′]1ϵ(1+Δ)=CsupΔ>0(Δθ−1∑ℓ=−∞ℓ∑j=−∞2α(0)ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ)2bϵ(1+Δ)(j−ℓ)/2)1ϵ(1+Δ)=CsupΔ>0(Δθ−1∑j=−∞2α(0)ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ)−1∑ℓ=j+22bϵ(1+Δ)(j−ℓ)/2)1ϵ(1+Δ)≤CsupΔ>0(Δθ−1∑j=−∞2α(0)ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ)−1∑ℓ=j+22bϵ(j−ℓ)/2)1ϵ(1+Δ)≤CsupΔ>0(Δθ−1∑j=−∞2α(0)ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ))1ϵ(1+Δ)=CsupΔ>0(Δθ∞∑j=−∞2a(⋅)ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ))1ϵ(1+Δ)≤C‖f‖˙Kα(⋅),ϵ),θq(⋅)(τ). |
Now for E12 using Minkowski's inequality we have
E12≤supΔ>0(Δθ∞∑ℓ=02ℓα(⋅)ϵ(1+Δ)(−1∑j=−∞‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)2−ℓn‖χℓ‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)+supΔ>0(Δθ∞∑ℓ=02ℓα(⋅)ϵ(1+Δ)(ℓ∑j=0‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)2−ℓn‖χℓ‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ):=A1+A2. |
The estimate for A2 can be followed in a similar manner to E11 with replacing q′(0) by q′∞ and using nq′∞−α∞>0. For A1 by virtue of Lemma 2.11 we obtain
2−ℓn‖χℓ‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)≤C2−ℓn2ℓnq∞2jnq′(0)≤C2−ℓnq′∞2jnq′(0). | (3.3) |
As α∞−nq′∞<0 we have
A1≤supΔ>0(Δθ∞∑ℓ=02ℓα(⋅)ϵ(1+Δ)(−1∑j=−∞‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)2−ℓn‖χℓ‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0[Δθ∞∑ℓ=02ℓa∞ϵ(1+Δ)×(−1∑j=−∞2−ℓnq′∞2jnq′(0)‖fj‖Lq(⋅)(τ))ϵ(1+Δ)]1ϵ(1+Δ)≤CsupΔ>0[Δθ∞∑ℓ=02ℓα−ℓnq′∞ϵ(1+Δ)×(−1∑j=−∞2jnq′(0)‖fj‖Lq(⋅)(τ))ϵ(1+Δ)]1ϵ(1+Δ)≤CsupΔ>0(Δθ(−1∑j=−∞2jnq′(0)‖fj‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0(Δθ(−1∑j=−∞2jnq′(0)−α(0)j‖fj‖Lq(⋅)(τ)2α(0)j)ϵ(1+Δ))1ϵ(1+Δ). |
By using nq′(0)−α(0)>0 and Hölder's inequality we have
A1≤CsupΔ>0(Δθ(−1∑j=−∞2jnq′(0)−α(0)j‖fj‖Lq(⋅)(τ)2α(0)j)ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0[Δθ−1∑j=−∞2α(0)jϵ(1+Δ)‖fj‖ϵ(1+Δ)Lq(⋅)(τ)(−1∑j=−∞2(jnq′(0)−α(0)j)(ϵ(1+Δ))′)ϵ(1+Δ)(ϵ(1+Δ))′]1ϵ(1+Δ)≤CsupΔ>0 (Δθ(∞∑j=−∞2a(⋅)jϵ(1+Δ)‖fj‖ϵ(1+Δ)Lq(⋅)(τ)))1ϵ(1+Δ)≤C‖f‖˙Kα(⋅),ϵ),θq(⋅)(τ), |
which completes our desired results.
Theorem 3.2. Let 1<ϵ<∞, θ>0, α,q∈P0,∞(Rn). Let α satisfies −nq∞<α∞<nq′∞ and −nq(0) <α(0)<nq′(0). Then the Hardy operator H∗ will be bounded on ˙Kα(⋅),ϵ),θq(⋅)(τ).
Proof. Let f∈˙Kα(⋅),ϵ),θq(⋅)(τ)), fj:=fχj for any j∈Z, then f=∞∑j=−∞fj, we have
|H∗(f)(z).χℓ(z)|≤∫Rn∖Dℓ|f(x)||z|ndx.χℓ(z)≤C∞∑j=ℓ+12−jn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z). |
‖(H∗fj)χℓ‖Lq(⋅)(τ)=supΔ>0(Δθ∞∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(∞∑j=ℓ+12−jn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z))ϵ(1+Δ))1ϵ(1+Δ)≤supΔ>0(Δθ−1∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(∞∑j=ℓ+12−jn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z))ϵ(1+Δ))1ϵ(1+Δ)+supΔ>0(Δθ∞∑ℓ=02ℓα(⋅)ϵ(1+Δ)(∞∑j=ℓ+12−jn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z))ϵ(1+Δ))1ϵ(1+Δ):=E1+E2. |
For estimating E2, now by using the fact that for each ℓ∈Z and j≥ℓ+1 with z∈Rℓ to get
2−jn‖χℓ‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)‖≤C2−jn2ℓnq∞2jnq′∞≤C2(ℓ−j)nq∞. | (3.4) |
E2≤supΔ>0(Δθ∞∑ℓ=02ℓα(⋅)ϵ(1+Δ)(∞∑j=ℓ+12−jn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0(Δθ∞∑ℓ=0(∞∑j≥ℓ+12α∞j‖fj‖Lq(⋅)(τ)2d(ℓ−j))ϵ(1+Δ))1ϵ(1+Δ), |
where d=nq∞+α∞>0. Then we use Hölder's theorem for series and 2−ϵ(1+Δ)<2−ϵ to obtain
E2≤CsupΔ>0[Δθ∞∑ℓ=0(∞∑j≥ℓ+12α∞ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ)2dϵ(1+Δ)(ℓ−j)/2)×(∞∑j≥ℓ+12d(ϵ(1+Δ))′(ℓ−j)/2)ϵ(1+Δ)(ϵ(1+Δ))′]1ϵ(1+Δ)≤CsupΔ>0[Δθ∞∑ℓ=0∞∑j≥ℓ+12α∞ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ)2dϵ(1+Δ)(ℓ−j)/2]1ϵ(1+Δ)≤CsupΔ>0(Δθ∞∑j=02α∞ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ)l−2∑ℓ=02dϵ(1+Δ)(ℓ−j)/2)1ϵ(1+Δ)≤CsupΔ>0(Δθ∑j∈Z2α∞ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ)l−2∑k=−∞2dϵ(1+Δ)(ℓ−j)/2)1ϵ(1+Δ)=CsupΔ>0(Δθ∑j∈Z2a(⋅)ϵ(1+Δ)j‖fj‖ϵ(1+Δ)Lq(⋅)(τ))1ϵ(1+Δ)≤C‖f‖˙Kα(⋅),ϵ),θq(⋅)(τ). |
For E1 by using Minkowski's inequality
E1≤supΔ>0(Δθ−1∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(∞∑j=ℓ+12−jn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z))ϵ(1+Δ))1ϵ(1+Δ)≤supΔ>0(Δθ−1∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(−1∑j=ℓ+12−jn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z))ϵ(1+Δ))1ϵ(1+Δ)+supΔ>0(Δθ−1∑ℓ=−∞2ℓα(⋅)ϵ(1+Δ)(∞∑j=02−jn‖fj‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ).χℓ(z))ϵ(1+Δ))1ϵ(1+Δ):=D1+D2. |
The estimate for D1 can be obtained by similar way to E2 by replacing q∞ with q(0) and using the fact that nq(0)+α(0)>0. For D2 using Lemma 2.11 we have
2−jn‖χℓ‖Lq(⋅)(τ)‖χj‖Lq′(⋅)(τ)≤C2−jn2knq(0)2jnq′∞≤C2ℓnq(0)2−jnq∞ | (3.5) |
D2≤supΔ>0(Δθ−1∑ℓ=−∞2ℓα(0)ϵ(1+Δ)(∞∑j=0‖χℓT(fj)‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0(Δθ−1∑ℓ=−∞2ℓα(0)ϵ(1+Δ)×(∞∑j=02−jn2ℓnq(0)2jnq′∞‖fj‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0(Δθ−1∑ℓ=−∞2ℓα(0)ϵ(1+Δ)×(∞∑j=02ℓnq(0)2−jnq∞‖fj‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0(Δθ−1∑ℓ=−∞2ℓ(α(0)+n)/q(0)ϵ(1+Δ)×(∞∑j=02−jnq∞‖fχj‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0(Δθ(∞∑j=02−jnq∞‖fχj‖Lq(⋅)(τ))ϵ(1+Δ))1ϵ(1+Δ)≤CsupΔ>0(Δθ(∞∑j=02jα∞‖fχj‖Lq(⋅)(τ)2j(nq∞+α∞))ϵ(1+Δ))1ϵ(1+Δ). |
Now by applying Hölder's inequality and using the fact that nq∞+α∞>0 we have
D2≤CsupΔ>0(Δθ(∞∑j=02jα∞ϵ(1+Δ)‖fj‖ϵ(1+Δ)Lq(⋅)(τ))ϵ(1+Δ)×(∞∑j=02j(nq∞+α∞)ϵ(1+Δ))ϵ(1+Δ)(ϵ(1+Δ))′)1ϵ(1+Δ)≤CsupΔ>0(Δθ(∑l∈Z2α∞jϵ(1+Δ)‖fj‖ϵ(1+Δ)Lq(⋅)(τ)))1ϵ(1+Δ)≤C‖f‖˙Kα(⋅),ϵ),θq(⋅)(τ), |
which completes our desired results.
In this paper, we defined the idea of grand variable weighted Herz spaces. We proved the boundedness of Hardy operators on grand variable weighted Herz spaces by using the properties of exponents. These results hold for weighted Herz spaces with variable exponent.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The author, N. Mlaiki, would like to thank Prince Sultan University for their support of this work.
This work is funded by Natural Science Basic Research Plan in Shaanxi Province of China (no. 2022JQ-040).
The authors declare no conflict of interest.
[1] | C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18 (1968), 283–323. |
[2] |
S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 1 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239
![]() |
[3] |
Z. Fu, S. Lu, S. Shi, Two characterizations of central BMO space via the commutators of Hardy operators, Forum Math., 33 (2021), 505–529. https://doi.org/10.1515/forum-2020-0243 doi: 10.1515/forum-2020-0243
![]() |
[4] | S. Lu, Z. Fu, F. Zhao, S. Shi, Hardy operators on Euclidean spaces and ralated topics, Singapore: World Scientific Publishing, 2022. |
[5] | D. C. Uribe, A. Fiorenza, Variable Lebesgue space: Foundations and harmonic analysis, Basel: Birkhauser, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[6] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Springer, 2 (2016). |
[7] |
M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
![]() |
[8] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253. |
[9] |
Y. Lu, Y. P. Zhu, Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents, ACTA Math. Sin., 30 (2014), 1180–1194. https://doi.org/10.1007/s10114-014-3410-2 doi: 10.1007/s10114-014-3410-2
![]() |
[10] |
M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 199 (2016), 1–15. https://doi.org/10.1186/s13660-016-1142-9 doi: 10.1186/s13660-016-1142-9
![]() |
[11] |
M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponents, J. Math. Inequal., 11 (2017), 799–816. https://doi.org/10.48550/arXiv.1606.01019 doi: 10.48550/arXiv.1606.01019
![]() |
[12] |
A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic, 2010, 1007–1186. https://doi.org/10.1080/17476933.2010.534793 doi: 10.1080/17476933.2010.534793
![]() |
[13] |
H. Nafis, H. Rafeiro, M. A. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020 (2020), 1–13. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
![]() |
[14] |
H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of the Marcinkiewicz integral on grand Herz spaces, J. Math. Inequal., 15 (2021), 739–753. https://doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52
![]() |
[15] | H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of multilinear Calderón-Zygmund operators on grand variable Herz spaces, J. Funct. Space., 2022 (2022). |
[16] |
M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653 doi: 10.3934/math.2023653
![]() |
[17] |
S. Bashir, B. Sultan, A. Hussain, A. Khan, T. Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 22178–22191. https://doi.org/10.3934/math.20231130 doi: 10.3934/math.20231130
![]() |
[18] |
L. Wang, Parametrized Littlewood-Paley operators on grand variable Herz spaces, Ann. Funct. Anal., 13 (2022). https://doi.org/10.1007/s43034-022-00218-0 doi: 10.1007/s43034-022-00218-0
![]() |
[19] | B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. |
[20] |
M. Sultan, B. Sultan, A. Khan, T. Abdeljawad, Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces, AIMS Math., 8 (2023), 22338–22353. https://doi.org/10.3934/math.20231139 doi: 10.3934/math.20231139
![]() |
[21] |
B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
![]() |
[22] |
B. Sultan, F. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Fractal Fract., 6 (2022), 660–670. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
![]() |
[23] | L. Diening, A. Peter, Muckenhoupt weights in variable exponent spaces, Mathematik, 2008. |
[24] |
A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Space., 2021 (2021), 10. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
![]() |
[25] |
A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175
![]() |
[26] |
A. Hussain, A. Ajaib, Some results for the commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.48550/arXiv.1804.05309 doi: 10.48550/arXiv.1804.05309
![]() |
1. | Babar Sultan, Mehvish Sultan, Ilyas Khan, On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces, 2023, 126, 10075704, 107464, 10.1016/j.cnsns.2023.107464 | |
2. | Babar Sultan, Mehvish Sultan, Boundedness of higher order commutators of Hardy operators on grand Herz-Morrey spaces, 2024, 190, 00074497, 103373, 10.1016/j.bulsci.2023.103373 | |
3. | Babar SULTAN, Mehvish SULTAN, Ferit GÜRBÜZ, BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand Herz-Morrey spaces, 2023, 72, 1303-5991, 1000, 10.31801/cfsuasmas.1328691 | |
4. | Mehvish Sultan, Babar Sultan, Estimate for the Intrinsic Square Function on $$p$$-Adic Herz Spaces with Variable Exponent, 2024, 16, 2070-0466, 82, 10.1134/S2070046624010072 | |
5. | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, 2024, 2024, 1029-242X, 10.1186/s13660-024-03169-3 | |
6. | M. Sultan, B. Sultan, A. Hussain, Grand Herz–Morrey Spaces with Variable Exponent, 2023, 114, 0001-4346, 957, 10.1134/S0001434623110305 |