Research article Special Issues

Congruences involving generalized Catalan numbers and Bernoulli numbers

  • Received: 14 June 2023 Revised: 26 July 2023 Accepted: 30 July 2023 Published: 14 August 2023
  • MSC : 11B50, 11A07, 11B65

  • In this paper, we establish some congruences mod $ p^3 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l} $, where $ p > 3 $ is a prime number and $ B_{p, k} $ are generalized Catalan numbers. We also establish some congruences mod $ p^2 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l_1}B_{p, k-d}^{2l_2} $, where $ m, l_1, l_2, d $ are positive integers and $ 1\leq d\leq p-1 $.

    Citation: Jizhen Yang, Yunpeng Wang. Congruences involving generalized Catalan numbers and Bernoulli numbers[J]. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240

    Related Papers:

  • In this paper, we establish some congruences mod $ p^3 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l} $, where $ p > 3 $ is a prime number and $ B_{p, k} $ are generalized Catalan numbers. We also establish some congruences mod $ p^2 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l_1}B_{p, k-d}^{2l_2} $, where $ m, l_1, l_2, d $ are positive integers and $ 1\leq d\leq p-1 $.



    加载中


    [1] E. Deutsch, L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241–265. http://dx.doi.org/10.1016/S0012-365X(01)00121-2 doi: 10.1016/S0012-365X(01)00121-2
    [2] L. Elkhiri, S. Koparal, N. Ömür, New congruences with the generalized Catalan numbers and harmonic numbers, Bull. Korean Math. Soc., 58 (2021), 1079–1095. http://dx.doi.org/10.4134/BKMS.b200359 doi: 10.4134/BKMS.b200359
    [3] J. W. L. Glaisher, On the residues of the sums of products of the first $p-1$ numbers and their powers, to modulus $p^2$ or $p^3$, Quarterly J. Math., 31 (1900), 321–353.
    [4] H. W. Gould, Combinatorial Identity, New York: Morgantown Printing and Binding Co., 1972.
    [5] J. W. Guo, J. Zeng, Factors of binomial sums from the Catalan triangle, J. Number Theory, 130 (2010), 172–186. http://dx.doi.org/10.1016/j.jnt.2009.07.005 doi: 10.1016/j.jnt.2009.07.005
    [6] P. Hilton, J. Pedersen, Catalan numbers, their generalization, and their uses, Math. Intell., 13 (1991), 64–75. http://dx.doi.org/10.1007/BF03024089 doi: 10.1007/BF03024089
    [7] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory (Graduate Texts in Math., 84), $2^{ed}$, New York: Springer-Verlag, 1990. http://dx.doi.org/10.1007/978-1-4757-1779-2
    [8] D. S. Kim, T. Kim, A new approach to Catalan numbers using differential equations, Russ. J. Math. Phys., 24 (2017), 465–475. http://dx.doi.org/10.1134/S1061920817040057 doi: 10.1134/S1061920817040057
    [9] T. Kim, D. S. Kim, Some identities of Catalan-Daehee polynomials arising from umbral calculus, Appl. Comput. Math., 16 (2017), 177–189.
    [10] S. Koparal, N. Ömür, On congruences involving the generalized Catalan numbers and harmonic numbers, Bull. Korean Math. Soc., 56 (2019), 649–658. http://dx.doi.org/10.4134/BKMS.b180454 doi: 10.4134/BKMS.b180454
    [11] G. Mao, On sums of binomial coefficients involving Catalan and Delannoy numbers modulo $p^2$, Ramanujan J., 45 (2017), 319–330. http://dx.doi.org/10.1007/s11139-016-9853-6 doi: 10.1007/s11139-016-9853-6
    [12] Y. Matiyasevich, Identities with Bernoulli numbers, 1997. Available from: https://logic.pdmi.ras.ru/yumat/Journal/Bernoulli/bernulli.htm.
    [13] R. Meštrović, Proof of a congruence for harmonic numbers conjectured by Z.-W. Sun, Int. J. Number Theory, 8 (2012), 1081–1085. http://dx.doi.org/10.1142/S1793042112500649 doi: 10.1142/S1793042112500649
    [14] N. Ömür, S. Koparal, Some congruences involving numbers $B(p, k-d)$, Util. Math., 95 (2014), 307–317.
    [15] L. W. Shapiro, A Catalan triangle, Discrete Math., 14 (1976), 83–90. http://dx.doi.org/10.1016/0012-365X(76)90009-1 doi: 10.1016/0012-365X(76)90009-1
    [16] Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140 (2012), 415–428. http://dx.doi.org/10.1090/S0002-9939-2011-10925-0 doi: 10.1090/S0002-9939-2011-10925-0
    [17] Z. W. Sun, L. Zhao, Arithmetic theory of harmonic numbers (Ⅱ), Colloq. Math., 130 (2013), 67–78. http://dx.doi.org/10.4064/cm130-1-7 doi: 10.4064/cm130-1-7
    [18] Y. Wang, J. Yang, Modulo $p^2$ congruences involving harmonic numbers, Ann. Polon. Math., 121 (2018), 263–278. http://dx.doi.org/10.4064/ap180401-12-9 doi: 10.4064/ap180401-12-9
    [19] Y. Wang, J. Yang, Modulo $p^2$ congruences involving generalized harmonic numbers, Bull. Malays. Math. Sci. Soc., 44 (2021), 1799–1812. http://dx.doi.org/10.1007/s40840-020-01032-4 doi: 10.1007/s40840-020-01032-4
    [20] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Math., 5 (1862), 35–39.
    [21] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4 (2008), 73–106. http://dx.doi.org/10.1142/S1793042108001146 doi: 10.1142/S1793042108001146
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1071) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog