In this paper, we study the shape of the bifurcation curves of positive solutions for the one-dimensional Minkowski-curvature problem. By developing some new time mapping techniques, we find that the bifurcation curve is $ \subset $-shaped/monotone increasing/$ S $-like shaped on the $ (\lambda, ||u||_\infty) $ plane when the nonlinearity satisfies different assumptions. Finally, two examples are given to illustrate our result.
Citation: Zhiqian He, Man Xu, Yanzhong Zhao, Xiaobin Yao. Bifurcation curves of positive solutions for one-dimensional Minkowski curvature problem[J]. AIMS Mathematics, 2022, 7(9): 17001-17018. doi: 10.3934/math.2022934
In this paper, we study the shape of the bifurcation curves of positive solutions for the one-dimensional Minkowski-curvature problem. By developing some new time mapping techniques, we find that the bifurcation curve is $ \subset $-shaped/monotone increasing/$ S $-like shaped on the $ (\lambda, ||u||_\infty) $ plane when the nonlinearity satisfies different assumptions. Finally, two examples are given to illustrate our result.
[1] | A. Ambrosetti, P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl., 73 (1980), 411–422. https://doi.org/10.1016/0022-247X(80)90287-5 doi: 10.1016/0022-247X(80)90287-5 |
[2] | C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities, Calc. Var. Partial Differ. Equ., 46 (2013), 113–122. https://doi.org/10.1007/s00526-011-0476-x doi: 10.1007/s00526-011-0476-x |
[3] | A. Boscaggin, G. Feltrin, Positive periodic solutions to an indefinite Minkowski-curvature equation, J. Differ. Equ., 269 (2020), 5595–5645. https://doi.org/10.1016/j.jde.2020.04.009 doi: 10.1016/j.jde.2020.04.009 |
[4] | A. Boscaggin, G. Feltrin, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal., 196 (2020), 1–14. https://doi.org/10.1016/j.na.2020.111807 doi: 10.1016/j.na.2020.111807 |
[5] | K. J. Brown, H. Budin, Multiple positive solutions for a class of nonlinear boundary value problems, J. Math. Anal. Appl., 60 (1977), 329–338. https://doi.org/10.1016/0022-247X(77)90023-3 doi: 10.1016/0022-247X(77)90023-3 |
[6] | K. J. Brown, H. Budin, On the existence of positive solutions for a class of semilinear elliptic boundary value problems, SIAM J. Math. Anal., 10 (1979), 875–883. https://doi.org/10.1137/0510082 doi: 10.1137/0510082 |
[7] | S. Y. Cheng, S. T. Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. Math., 104 (1976), 407–419. https://doi.org/10.2307/1970963 doi: 10.2307/1970963 |
[8] | I. Coelho, C. Corsato, F. Obersnel, P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012), 621–638. https://doi.org/10.1515/ans-2012-0310 doi: 10.1515/ans-2012-0310 |
[9] | C. Corsato, F. Obersnel, P. Omari, S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 405 (2013), 227–239. https://doi.org/10.1016/j.jmaa.2013.04.003 doi: 10.1016/j.jmaa.2013.04.003 |
[10] | G. W. Dai, Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space, Calc. Var. Partial Differ. Equ., 55 (2016), 1–17. https://doi.org/10.1007/s00526-016-1012-9 doi: 10.1007/s00526-016-1012-9 |
[11] | H. L. Gao, J. Xu, Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation, Bound. Value Probl., 81 (2021), 1–10. https://doi.org/10.1186/s13661-021-01558-x doi: 10.1186/s13661-021-01558-x |
[12] | Z. Q. He, L. Y. Miao, Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space, AIMS Math., 5 (2020), 3840–3850. https://doi.org/10.3934/math.2020249 doi: 10.3934/math.2020249 |
[13] | Z. Q. He, L. Y. Miao, Existence and multiplicity of positive radial solutions for a Minkowski-curvature Dirichlet problem, Mediterr. J. Math., 19 (2022), 1–11. https://doi.org/10.1007/s00009-022-02040-3 doi: 10.1007/s00009-022-02040-3 |
[14] | Z. Q. He, L. Y. Miao, $S$-shaped connected component of positive solutions for a Minkowski-curvature Dirichlet problem with indefinite weight, Bull. Iran. Math. Soc., 48 (2022), 213–225. https://doi.org/10.1007/s41980-020-00512-4 doi: 10.1007/s41980-020-00512-4 |
[15] | S. Y. Huang, Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differ. Equ., 264 (2018), 5977–6011. https://doi.org/10.1016/j.jde.2018.01.021 doi: 10.1016/j.jde.2018.01.021 |
[16] | S. Y. Huang, Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application, Commun. Pure Appl. Anal., 17 (2018), 1271–1294. https://doi.org/10.3934/cpaa.2018061 doi: 10.3934/cpaa.2018061 |
[17] | S. Y. Huang, Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications, Discrete Cont. Dyn. Syst., 39 (2019), 3443–3462. https://doi.org/10.3934/dcds.2019142 doi: 10.3934/dcds.2019142 |
[18] | S. Y. Huang, M. S. Hwang, Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity, Electron. J. Qual. Theory Differ. Equ., 41 (2021), 1–29. https://doi.org/10.14232/ejqtde.2021.1.41 doi: 10.14232/ejqtde.2021.1.41 |
[19] | T. Laetsch, J. B. Keller, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. https://doi.org/10.1512/iumj.1970.20.20001 doi: 10.1512/iumj.1970.20.20001 |
[20] | R. Y. Ma, Y. Q. Lu, Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud., 15 (2015), 789–803. https://doi.org/10.1515/ans-2015-0403 doi: 10.1515/ans-2015-0403 |
[21] | R. Y. Ma, H. L. Gao, Y. Q. Lu, Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal., 270 (2016), 2430–2455. https://doi.org/10.1016/j.jfa.2016.01.020 doi: 10.1016/j.jfa.2016.01.020 |
[22] | R. Y. Ma, M. Xu, $S$-shaped connected component for a nonlinear Dirichlet problem involving mean curvature operator in one-dimension Minkowski space, Bull. Korean Math. Soc., 55 (2018), 1891–1908. https://doi.org/10.4134/BKMS.b180011 doi: 10.4134/BKMS.b180011 |
[23] | A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 66 (1982), 39–56. https://doi.org/10.1007/BF01404755 doi: 10.1007/BF01404755 |
[24] | X. M. Zhang, M. Q. Feng, Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space, Commun. Contemp. Math., 21 (2019), 1–17. https://doi.org/10.1142/S0219199718500037 doi: 10.1142/S0219199718500037 |