This paper studies a semilinear fractional stochastic differential equation with multiple constant point delays in control. We transform the controllability problem into a fixed point problem. We obtain sufficient condition for the controllability by using Schauder's fixed point theorem. In addition, we discuss the optimal controllability of the problem. Some examples are given to illustrate the main result.
Citation: Abdur Raheem, Maryam G. Alshehri, Asma Afreen, Areefa Khatoon, Musaad S. Aldhabani. Study on a semilinear fractional stochastic system with multiple delays in control[J]. AIMS Mathematics, 2022, 7(7): 12374-12389. doi: 10.3934/math.2022687
This paper studies a semilinear fractional stochastic differential equation with multiple constant point delays in control. We transform the controllability problem into a fixed point problem. We obtain sufficient condition for the controllability by using Schauder's fixed point theorem. In addition, we discuss the optimal controllability of the problem. Some examples are given to illustrate the main result.
[1] | A. Afreen, A. Raheem, A. Khatoon, Controllability of a second-order non-autonomous stochastic semilinear system with several delays in control, Chaos Soliton. Fract., 155 (2022), 111763. http://dx.doi.org/10.1016/j.chaos.2021.111763 doi: 10.1016/j.chaos.2021.111763 |
[2] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[3] | A. Haq, N. Sukavanam, Controllability of second-order nonlocal retarded semilinear systems with delay in control, Appl. Anal., 99 (20), 2741-2754. http://dx.doi.org/10.1080/00036811.2019.1582031 |
[4] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer-Verlag, 1983. http://dx.doi.org/10.1007/978-1-4612-5561-1 |
[5] | A. Raheem, M. Kumar, On controllability for a nondensely defined fractional differential equation with a deviated argument, Math. Sci., 13 (2019), 407-413. http://dx.doi.org/10.1007/s40096-019-00309-5 doi: 10.1007/s40096-019-00309-5 |
[6] | A. Shukla, U. Arora, N. Sukavanam, Approximate controllability of semilinear stochastic system with multiple delays in control, Cogent Mathematics, 3 (2016), 1234183. http://dx.doi.org/10.1080/23311835.2016.1234183 doi: 10.1080/23311835.2016.1234183 |
[7] | A. Shukla, N. Sukavanam, D. Pandey, Approximate controllability of semilinear fractional control systems of order $\alpha \in (1, 2]$, Proceedings of the Conference on Control and its Applications, 2015,175-180. http://dx.doi.org/10.1137/1.9781611974072.25 doi: 10.1137/1.9781611974072.25 |
[8] | A. Shukla, N. Sukavanam, D. Pandey, Approximate controllability of semilinear fractional control systems of order $\alpha \in (1, 2]$ with infinite delay, Mediterr. J. Math., 13 (2016), 2539-2550. http://dx.doi.org/10.1007/s00009-015-0638-8 doi: 10.1007/s00009-015-0638-8 |
[9] | A. Shukla, N. Sukavanam, D. Pandey, Approximate controllability of fractional semilinear stochastic system of order $\alpha \in (1, 2], $ J. Dyn. Control Syst., 23 (2017), 679-691. http://dx.doi.org/10.1007/s10883-016-9350-7 doi: 10.1007/s10883-016-9350-7 |
[10] | A. Shukla, R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861-875. http://dx.doi.org/10.1007/s12190-020-01418-4 doi: 10.1007/s12190-020-01418-4 |
[11] | E. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional, Nonlinear Anal.-Theor., 11 (1987), 1399-1404. http://dx.doi.org/10.1016/0362-546X(87)90092-7 doi: 10.1016/0362-546X(87)90092-7 |
[12] | E. Bajlekova, Fractional evolution equations in Banach spaces, Ph. D Thesis, Eindhoven University of Technology, 2001. |
[13] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[14] | J. Klamka, Stochastic controllability of systems with multiple delays in control, Int. J. Appl. Math. Comput. Sci., 19 (2009), 39-48. http://dx.doi.org/10.2478/v10006-009-0003-9 doi: 10.2478/v10006-009-0003-9 |
[15] | J. Klamka, Controllability of semilinear systems with multiple variable delays in control, Mathematics, 8 (2020), 1955. http://dx.doi.org/10.3390/math8111955 doi: 10.3390/math8111955 |
[16] | J. Dauer, Nonlinear perturbations of quasi-linear control systems, J. Math. Anal. Appl., 54 (1976), 717-725. http://dx.doi.org/10.1016/0022-247X(76)90191-8 doi: 10.1016/0022-247X(76)90191-8 |
[17] | K. Balachandran, J. Kokila, J. Trujillo, Relative controllability of fractional dynamical systems with multiple delays in control, Comput. Math. Appl., 64 (2012), 3037-3045. http://dx.doi.org/10.1016/j.camwa.2012.01.071 doi: 10.1016/j.camwa.2012.01.071 |
[18] | K. Li, J. Peng, J. Gao, Controllability of nonlocal fractional differential systems of order $\alpha \in (1, 2]$ in Banach spaces, Rep. Math. Phys., 71 (2013), 33-43. http://dx.doi.org/10.1016/S0034-4877(13)60020-8 doi: 10.1016/S0034-4877(13)60020-8 |
[19] | K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley-Interscience, 1993. |
[20] | L. Evans, An introduction to stochastic differential equations, Providence: American Mathematical Society, 2013. |
[21] | L. Mahto, S. Abbas, Approximate controllability and optimal control of impulsive fractional functional differential equations, J. Abstr. Differ. Equ. Appl., 4 (2013), 44-59. |
[22] | N. Mahmudov, A. Denker, On controllability of linear stochastic systems, Int. J. Control, 73 (2000), 144-151. http://dx.doi.org/10.1080/002071700219849 doi: 10.1080/002071700219849 |
[23] | P. Balasubramaniam, S. Ntouyas, Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space, J. Math. Anal. Appl., 324 (2006), 161-176. http://dx.doi.org/10.1016/j.jmaa.2005.12.005 doi: 10.1016/j.jmaa.2005.12.005 |
[24] | R. Dhayal, M. Malik, Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses, Chaos Soliton. Fract., 151 (2021), 111292. http://dx.doi.org/10.1016/j.chaos.2021.111292 doi: 10.1016/j.chaos.2021.111292 |
[25] | R. Dhayal, M. Malik, S. Abbas, A. Debbouche, Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Math. Method. Appl. Sci., 43 (2020), 4107-4124. http://dx.doi.org/10.1002/mma.6177 doi: 10.1002/mma.6177 |
[26] | R. Curtain, H. Zwart, An introduction to infinite dimensional linear systems theory, New York: Springer-Verlag, 1995. http://dx.doi.org/10.1007/978-1-4612-4224-6 |
[27] | R. Haloi, Approximate controllability of non-autonomous nonlocal delay differential equations with deviating arguments, Electron. J. Differ. Eq., 2017 (2017), 1-12. |
[28] | S. Barnett, R. Cameron, Introduction to mathematical control theory, Oxford: Clarendon Press, 1975. |
[29] | T. Sathiyaraj, J. Wang, P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Optim., 84 (2020), 2527-2554. http://dx.doi.org/10.1007/s00245-020-09716-w doi: 10.1007/s00245-020-09716-w |
[30] | U. Arora, N. Sukavanam, Controllability of fractional system of order $\rho \in (1, 2]$ with nonlinear term having integral contractor, IMA J. Math. Control I., 36 (2019), 271-283. http://dx.doi.org/10.1093/imamci/dnx044 doi: 10.1093/imamci/dnx044 |
[31] | V. Singh, R. Chaudhary, D. Pandey, Approximate controllability of second-order non-autonomous stochastic impulsive differential systems, Stoch. Anal. Appl., 39 (2021), 339-356. http://dx.doi.org/10.1080/07362994.2020.1798251 doi: 10.1080/07362994.2020.1798251 |
[32] | Y. Yamamoto, Controllability of nonlinear systems, J. Optim. Theory Appl., 22 (1977), 41-49. |
[33] | Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, Hackensack: World Scientific, 2016. |
[34] | Y. Zhou, J. He, New results on controllability of fractional evolution systems with order $\alpha \in (1, 2), $ Evol. Equ. Control The., 10 (2021), 491-509. http://dx.doi.org/10.3934/eect.2020077 doi: 10.3934/eect.2020077 |