We prove the weighted boundedness for the multilinear operators associated to some integral operators for the endpoint cases. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.
Citation: Ancheng Chang. Weighted boundedness of multilinear integral operators for the endpoint cases[J]. AIMS Mathematics, 2022, 7(4): 5690-5711. doi: 10.3934/math.2022315
[1] | Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293 |
[2] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[3] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[4] | Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on p-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121 |
[5] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[6] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
[7] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[8] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
[9] | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250 |
[10] | Tianyang He, Zhiwen Liu, Ting Yu . The Weighted Lp estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041 |
We prove the weighted boundedness for the multilinear operators associated to some integral operators for the endpoint cases. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.
As the development of singular integral operators, their commutators and multilinear operators have been well studied (see [1,3,4,5,6]. Let T be the Calderón-Zygmund singular integral operator and b∈BMO(Rn), a classical result of Coifman, Rochberg and Weiss stated that the commutator [b,T]f=T(bf)−bTf is bounded on Lp(Rn) for 1<p<∞. In [10], authors obtain the boundedness properties of the commutators for the extreme values of p. And note that [b,T] is not bounded for the end point cases (that is p=1 and p=∞). In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,10,11]). The purpose of this paper is to introduce some multilinear operators associated to certain non-convolution type integral operators and prove the weighted boundedness properties of the multilinear operators for the endpoint cases (p=1 and p=∞). In fact, we prove the endpoint boundedness of the multilinear operators only under the boundedness of the operators on Lebesgue spaces, that is the boundedness of the operators on Lp(Rn) for 1<p≤∞ implies the boundedness of the multilinear operators from L∞(Rn) to BMO(Rn) for p=∞ and from H1(Rn) to L1(Rn) for p=1. Then, we apply the boundedness of the integral operator to some concrete including Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.
First, let us introduce some preliminaries (see [7,8,14,15,16]). Throughout this paper, we denote by Ap the class of the Muckenhoupt weights for 1≤p<∞ (see [9]). In this paper Q always stand for a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function b and a weight function w, let w(Q)=∫Qw(x)dx, bQ=|Q|−1∫Qb(x)dx and b#w(x)=supQ∋xw(Q)−1∫Q|b(y)−bQ|w(y)dy. b is said to belong to BMO(w) if b#w∈L∞(w) and define ||b||BMO(w)=||b#||L∞(w), if w=1, we denote BMO(w)=BMO(Rn). We also define the weighted central BMO space by CMO(w), which is the space of those functions b∈Lloc(Rn) such that
||b||CMO(w)=supr>1w(Q(0,r))−1∫Q|b(x)−bQ|w(x)dx<∞. |
It is well-known that (see [8,9]
||b||CMO(w)≈supr>1infc∈Cw(Q(0,r))−1∫Q|b(x)−c|w(x)dx. |
Also, we give the concepts of the atom and weighted Hardy spaces H1(w). A function a is called an H1 atom if there exists a cube Q such that a is supported on Q, ||a||L2(w)≤w(Q)−1/2 and ∫Rna(x)dx=0. It is well known that the weighted Hardy space H1(w) has the atomic decomposition characterization (see [2,9,16,17]).
For k∈Z, define Bk={x∈Rn:|x|≤2k} and Ck=Bk∖Bk−1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k≥1 and ˜χ0 the characteristic function of B0.
Definition 1. Let 1<p<∞ and w1, w2 be two non-negative weight functions on Rn.
(1) The homogeneous weighted Herz space is defined by
˙Kp(w1,w2;Rn)={f∈Lploc(Rn∖{0}):||f||˙Kp(w1,w2)<∞}, |
where
||f||˙Kp(w1,w2)=∞∑k=−∞[w1(Bk)]1−1/p||fχk||Lp(w2); |
(2) The nonhomogeneous weighted Herz space is defined by
Kp(w1,w2;Rn)={f∈Lploc(Rn):||f||Kp(w1,w2)<∞}, |
where
||f||Kp(w1,w2)=∞∑k=0[w1(Bk)]1−1/p||f˜χk||Lp(w2); |
(3) The homogeneous weighted Herz type Hardy space is defined by
H˙Kp(w1,w2;Rn)={f∈S′(Rn):G(f)∈˙Kp(w1,w2;Rn)}, |
where
||f||H˙Kp(w1,w2)=||G(f)||˙Kp(w1,w2); |
(4) The nonhomogeneous weighted Herz type Hardy space is defined by
HKp(w1,w2;Rn)={f∈S′(Rn):G(f)∈Kp(w1,w2;Rn)}, |
where
||f||HKp(w1,w2)=||G(f)||Kp(w1,w2); |
where G(f) is the grand maximal function of f, that is
G(f)(x)=supφ∈Kmsup|x−y|<t|f∗φt(y)|, |
where Km={φ∈S(Rn):supx∈Rn,|α|≤m(1+|u|)m+n|Dαφ(u)|≤1}, φt(x)=t−nφ(x/t) for t>0, m is a positive integer and S(Rn) is the Schwartz class (see [18], p.88).
The Herz type Hardy spaces have the atomic decomposition characterization.
Definition 2. Let 1<p<∞ and w1,w2∈A1. A function a(x) on Rn is called a central (n(1−1/p),p;w1,w2)-atom (or a central (n(1−1/p),p;w1,w2)-atom of restrict type), if
1) suppa⊂B(0,r) for some r>0 (or for some r≥1);
2) ||a||Lp(w2)≤[w1(B(0,r))]1/p−1;
3) ∫Rna(x)dx=0.
Lemma 1. (see [7,16]). Let w1,w2∈A1 and 1<p<∞. A tempered distribution f belongs to H˙Kp(w1,w2;Rn)(or HKp(w1,w2;Rn)) if and only if there exist central (n(1−1/p),p;w1,w2)-atoms (or central (n(1−1/p),p;w1,w2)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, ∑j|λj|<∞ such that f=∑∞j=−∞λjaj(or f=∑∞j=0λjaj) in the S′(Rn) sense, and
||f||H˙Kp(w1,w2)( or ||f||HKp(w1,w2))≈∑j|λj|. |
Definition 3. Let 1<p<∞ and w be a non-negative weight functions on Rn. We shall call Bp(w) the space of those functions f on Rn such that
||f||Bp(w)=supr>1[w(Q(0,r))]−1/p||fχQ(0,r)||Lp(w)<∞. |
In this paper, we will consider a class of multilinear operators associated to some non-convolution type integral operators as following.
Let mj be the positive integers(j=1,⋅⋅⋅,l), m1+⋅⋅⋅+ml=m and bj be the locally integrable functions on Rn (j=1,⋅⋅⋅,l). Set
Rmj+1(bj;x,y)=bj(x)−∑|α|≤mj1α!Dαbj(y)(x−y)α, |
and
Qmj+1(bj;x,y)=Rmj(bj;x,y)−∑|α|=mj1α!Dαbj(x)(x−y)α. |
Let Ft(x,y) define on Rn×Rn×[0,+∞). Set
Ft(f)(x)=∫RnFt(x,y)f(y)dy, |
and
Fbt(f)(x)=∫Rn∏lj=1Rmj+1(bj;x,y)|x−y|mFt(x,y)f(y)dy, |
for every bounded and compactly supported function f. Let H be the Banach space H={h:||h||<∞} such that, for each fixed x∈Rn, Ft(f)(x) and Fbt(f)(x) may be viewed as a mapping from [0,+∞) to H. Then, the multilinear operator associated to Ft is defined by
Tb(f)(x)=||Fbt(f)(x)||, |
where Ft satisfies: for fixed 0<ε≤1,
||Ft(x,y)||≤C|x−y|−n, |
and
||Ft(y,x)−Ft(z,x)||≤C|y−z|ε|x−z|−n−ε, |
if 2|y−z|≤|x−z|. Let T(f)(x)=||Ft(f)(x)||. We also consider the variant of Tb, which is defined by
˜Tb(f)(x)=||˜Fbt(f)(x)||, |
where
˜Fbt(f)(x)=∫Rn∏lj=1Qmj+1(bj;x,y)|x−y|mFt(x,y)f(y)dy. |
Note that when m=0, Tb is just the higher order commutators of T and b (see [1,12,13,20]). The operator ˜Tb is a variant of Tb, and it has not any form in the commutator, thus, it is a non-trivial variant of the commutator. It is well-known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5,6]). In [3], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the weighted boundedness properties of the multilinear operators TA and ˜TA for the extreme cases. In Section 4, some examples of theorems in this paper are given.
We shall prove the following theorems in Section 3.
Theorem 1. Let w∈A1 and Dαbj∈BMO(Rn) for all α with |α|=mj and j=1,⋅⋅⋅,l. Suppose that T is bounded on Lq(u) for any 1<q≤∞ and u∈A1. Then Tb is bounded from L∞(w) to BMO(w).
Theorem 2. Let w∈A1 and Dαbj∈BMO(Rn) for all α with |α|=mj and j=1,⋅⋅⋅,l. Suppose that ˜Tb is bounded on Lq(u) for any 1<q≤∞ and u∈A1. Then ˜Tb is bounded from H1(w) to L1(w).
Theorem 3. Let 1<p<∞, w∈A1 and Dαbj∈BMO(Rn) for all α with |α|=mj and j=1,⋅⋅⋅,l. Suppose that T is bounded on Lq(u) for any 1<q≤∞ and u∈A1. Then Tb is bounded from Bp(w) to CMO(w).
Theorem 4. Let 1<p<∞, w1,w2∈A1 and Dαbj∈BMO(Rn) for all α with |α|=mj and j=1,⋅⋅⋅,l. Suppose that ˜Tb is bounded on Lq(u) for any 1<q≤∞ and u∈A1. Then ˜Tb is bounded from ˙HKp(w1,w2;Rn) (or HKp(w1,w2;Rn)) to ˙Kp(w1,w2;Rn) (or HKp(w1,w2;Rn)).
To prove the theorem, we need the following lemma.
Lemma 2. (see [5]). Let b be a function on Rn and Dαb∈Lq(Rn) for |α|=m and some q>n. Then
|Rm(b;x,y)|≤C|x−y|m∑|α|=m(1|˜Q(x,y)|∫˜Q(x,y)|Dαb(z)|qdz)1/q, |
where ˜Q(x,y) is the cube centered at x and having side length 5√n|x−y|.
Proof of Theorem 1. It is only to prove that there exists a constant CQ such that
1w(Q)∫Q|Tb(f)(x)−CQ|w(x)dx≤C||f||L∞(w) |
holds for any cube Q. Without loss of generality, we may assume l=2. Fix a cube Q=Q(x0,d). Let ˜Q=5√nQ and ˜bj(x)=bj(x)−∑|α|=m1α!(Dαbj)˜Qxα, then Rm(bj;x,y)=Rm(˜bj;x,y) and Dα˜bj=Dαbj−(Dαbj)˜Q for |α|=mj. We write, for f1=fχ˜Q and f2=fχRn∖˜Q,
Fbt(f)(x)=∫Rn∏2j=1Rmj+1(˜bj;x,y)|x−y|mFt(x,y)f(y)dy=∫Rn∏2j=1Rmj+1(˜bj;x,y)|x−y|mFt(x,y)f2(y)dy+∫Rn∏2j=1Rmj(˜bj;x,y)|x−y|mFt(x,y)f1(y)dy−∑|α1|=m11α1!∫RnRm2(˜b2;x,y)(x−y)α1|x−y|mDα1˜b1(y)Ft(x,y)f1(y)dy−∑|α2|=m21α2!∫RnRm1(˜b1;x,y)(x−y)α2|x−y|mDα2˜b2(y)Ft(x,y)f1(y)dy+∑|α1|=m1, |α2|=m21α1!α2!∫Rn(x−y)α1+α2Dα1˜b1(y)Dα2˜b2(y)|x−y|mFt(x,y)f1(y)dy, | (3.1) |
then
|Tb(f)(x)−T˜b(f2)(x0)|=|||Fbt(f)(x)||−||F˜bt(f2)(x0)|||≤||Fbt(f)(x)−F˜bt(f2)(x0)||≤||∫Rn∏2j=1Rmj(˜bj;x,y)|x−y|mFt(x,y)f1(y)dy||+||∑|α1|=m11α1!∫RnRm2(˜b2;x,y)(x−y)α1|x−y|mDα1˜b1(y)Ft(x,y)f1(y)dy||+||∑|α2|=m21α2!∫RnRm1(˜b1;x,y)(x−y)α2|x−y|mDα2˜b2(y)Ft(x,y)f1(y)dy||+||∑|α1|=m1, |α2|=m21α1!α2!∫Rn(x−y)α1+α2Dα1˜b1(y)Dα2˜b2(y)|x−y|mFt(x,y)f1(y)dy||+|T˜b(f2)(x)−T˜b(f2)(x0)|:=I1(x)+I2(x)+I3(x)+I4(x)+I5(x), | (3.2) |
thus,
1w(Q)∫Q|Tb(f)(x)−T˜b(f2)(x0)|w(x)dx≤1w(Q)∫QI1(x)w(x)dx+1w(Q)∫QI2(x)w(x)dx+1w(Q)∫QI3(x)w(x)dx+1w(Q)∫QI4(x)w(x)dx+1w(Q)∫QI5(x)w(x)dx:=I1+I2+I3+I4+I5. | (3.3) |
Now, let us estimate I1, I2, I3, I4 and I5, respectively. First, for x∈Q and y∈˜Q, by Lemma 2, we get
Rmj(˜bj;x,y)≤C|x−y|mj∑|αj|=mj||Dαjbj||BMO, |
thus, by the L∞(w)-boundedness of T, we get
I1≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)1w(Q)∫Q|T(f1)(x)|w(x)dx≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||T(f1)||L∞(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). | (3.4) |
For I2, since w∈A1, w satisfies the reverse of Hölder's inequality:
(1|Q|∫Qw(x)qdx)1/q≤C|Q|∫Qw(x)dx |
for all cube Q and some 1<q<∞ (see [9]). Thus, by the Lp(w)-boundedness of T for p>1 and Hölder'inequality, we get
I2≤C∑|α2|=m2||Dα2b2||BMO∑|α1|=m11w(Q)∫Q|T(Dα1˜b1f1)(x)|w(x)dx≤C∑|α2|=m2||Dα2b2||BMO∑|α1|=m1(1w(Q)∫Rn|T(Dα1˜b1f1)(x)|pw(x)dx)1/p≤C∑|α2|=m2||Dα2b2||BMO∑|α1|=m1(1w(Q)∫Rn|Dα1˜b1(x)f1(x)|pw(x)dx)1/p≤C∑|α2|=m2||Dα2b2||BMO∑|α1|=m1(1|Q|∫˜Q|Dα1b1(x)−(Dα1b1)˜Q|pq′dx)1/pq′×w(Q)−1/p|Q|1/p(1|Q|∫˜Qw(x)qdx)1/pq||f||L∞(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). | (3.5) |
For I3, similar to the proof of I2, we get
I3≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). |
Similarly, for I4, choose 1<r1,r2<∞ such that 1/r1+1/r2+1/q=1, we obtain, by Hölder'inequality,
I4≤C∑|α1|=m1,|α2|=m2(1w(Q)∫Rn|T(Dα1˜b1Dα2˜b2f1)(x)|pw(x)dx)1/p≤C∑|α1|=m1,|α2|=m2w(Q)−1/p(∫Rn|Dα1˜b1(x)Dα2˜b2(x)f1(x)|pw(x)dx)1/p≤C∑|α1|=m1,|α2|=m2(1|Q|∫˜Q|Dα1˜b1(x)|pr1dx)1/pr1(1|Q|∫˜Q|Dα2˜b2(x)|pr2dx)1/pr2×w(Q)−1/p|Q|1/p(1|Q|∫˜Qw(x)qdx)1/pq||f||L∞(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). | (3.6) |
For I5, we write
F˜bt(f2)(x)−F˜bt(f2)(x0)=∫Rn(Ft(x,y)|x−y|m−Ft(x0,y)|x0−y|m)2∏j=1Rmj(˜bj;x,y)f2(y)dy+∫Rn(Rm1(˜b1;x,y)−Rm1(˜b1;x0,y))Rm2(˜b2;x,y)|x0−y|mFt(x0,y)f2(y)dy+∫Rn(Rm2(˜b2;x,y)−Rm2(˜b2;x0,y))Rm1(˜b1;x0,y)|x0−y|mFt(x0,y)f2(y)dy−∑|α1|=m11α1!∫Rn[Rm2(˜b2;x,y)(x−y)α1|x−y|mFt(x,y)−Rm2(˜b2;x0,y)(x0−y)α1|x0−y|mFt(x0,y)]×Dα1˜b1(y)f2(y)dy−∑|α2|=m21α2!∫Rn[Rm1(˜b1;x,y)(x−y)α2|x−y|mFt(x,y)−Rm1(˜b1;x0,y)(x0−y)α2|x0−y|mFt(x0,y)]×Dα2˜b2(y)f2(y)dy+∑|α1|=m1, |α2|=m21α1!α2!∫Rn[(x−y)α1+α2|x−y|mFt(x,y)−(x0−y)α1+α2|x0−y|mFt(x0,y)]×Dα1˜b1(y)Dα2˜b2(y)f2(y)dy=I(1)5+I(2)5+I(3)5+I(4)5+I(5)5+I(6)5. | (3.7) |
By Lemma 2 and the following inequality (see [18])
|bQ1−bQ2|≤Clog(|Q2|/|Q1|)||b||BMO for Q1⊂Q2, |
we know that, for x∈Q and y∈2k+1˜Q∖2k˜Q,
|Rmj(˜bj;x,y)|≤C|x−y|mj∑|α|=mj(||Dαbj||BMO+|(Dαbj)˜Q(x,y)−(Dαbj)˜Q|)≤Ck|x−y|mj∑|α|=mj||Dαbj||BMO. | (3.8) |
Note that |x−y|∼|x0−y| for x∈Q and y∈Rn∖˜Q, we obtain, by the condition on Ft,
||I(1)5||≤C∫Rn(|x−x0||x0−y|m+n+1+|x−x0|ε|x0−y|m+n+ε)2∏j=1|Rmj(˜bj;x,y)||f2(y)|dy≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=0∫2k+1˜Q∖2k˜Qk2(|x−x0||x0−y|n+1+|x−x0|ε|x0−y|n+ε)|f(y)|dy≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=1k2(2−k+2−εk)||f||L∞(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). | (3.9) |
For I(2)5, by the formula (see [5]):
Rmj(˜bj;x,y)−Rmj(˜bj;x0,y)=∑|β|<m1β!Rm−|β|(Dβ˜bj;x,x0)(x−y)β, |
and Lemma 2, we have
|Rmj(˜bj;x,y)−Rmj(˜bj;x0,y)|≤C∑|β|<mj∑|α|=mj|x−x0|mj−|β||x−y||β|||Dαbj||BMO, |
thus
||I(2)5||≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=0∫2k+1˜Q∖2k˜Qk|x−x0||x0−y|n+1|f(y)|dy≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). | (3.10) |
Similarly,
||I(3)5||≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). |
For I(4)5, similar to the proof of I(1)5 and I(2)5, we get
||I(4)5||≤C∑|α1|=m1∫Rn||(x−y)α1Ft(x,y)|x−y|m−(x0−y)α1Ft(x0,y)|x0−y|m|||Rm2(˜b2;x,y)||Dα1˜b1(y)||f2(y)|dy+C∑|α1|=m1∫Rn|Rm2(˜b2;x,y)−Rm2(˜b2;x0,y)|||(x0−y)α1Ft(x0,y)|||x0−y|m|Dα1˜b1(y)||f2(y)|dy≤C∑|α2|=m2||Dα2b2||BMO∑|α1|=m1∞∑k=1k(2−k+2−εk)(1|2k˜Q|∫2k˜Q|Dα1˜b1(y)|dy)||f||L∞(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). | (3.11) |
Similarly,
||I(5)5||≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). |
For I(6)5, taking 1<r1,r2<∞ such that 1/r1+1/r2=1, then
||I(6)5||≤C∑|α1|=m1,|α2|=m2∫Rn||(x−y)α1+α2Ft(x,y)|x−y|m−(x0−y)α1+α2Ft(x0,y)|x0−y|m||×|Dα1˜b1(y)||Dα2˜b2(y)||f2(y)|dy≤C∑|α1|=m1,|α2|=m2∞∑k=1(2−k+2−εk)||f||L∞(w)×(1|2k˜Q|∫2k˜Q|Dα1˜b1(y)|r1dy)1/r1(1|2k˜Q|∫2k˜Q|Dα2˜b2(y)|r2dy)1/r2≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). | (3.12) |
Thus
I5≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||L∞(w). |
This completes the proof of Theorem 1.
Proof of Theorem 2. First, we prove that there exists a constant C>0 such that for every H1(w)-atom a (that is that a satisfy: supp a⊂Q=Q(x0,r), ||a||L2(w)≤w(Q)−1/2 and ∫Rna(y)dy=0 (see [7])), the following inequality holds:
||˜Tb(a)||L1(w)≤C. |
Without loss of generality, we may assume l=2. Write
∫Rn˜Tb(a)(x)w(x)dx=[∫2Q+∫(2Q)c]˜Tb(a)(x)w(x)dx:=J1+J2. |
For J1, by the L2(w)-boundedness of ˜Tb, we get
J1≤C||˜Tb(a)||L2(w)w(2Q)1/2≤C||a||L2(w)w(Q)≤C. |
To obtain the estimate of J2, we denote that ˜bj(x)=bj(x)−∑|αj|=mj1α!(Dαbj)2Qxα. Then Qmj(bj;x,y)=Qmj(˜bj;x,y). We write, by the vanishing moment of a,
˜Fbt(a)(x)=∫Rn[Ft(x,y)|x−y|m−Ft(x,x0)|x−x0|m]Rm1(˜b1;x,y)Rm2(˜b2;x,y)a(y)dy+∫RnFt(x,x0)|x−x0|m[Rm1(˜b1;x,y)Rm2(˜b2;x,y)−Rm1(˜b1;x,x0)Rm2(˜b2;x,x0)]a(y)dy−∑|α2|=m2∫Rn[Ft(x,y)(x−y)α2|x−y|m−Ft(x,x0)(x−x0)α2|x−x0|m]Rm1(˜b1;x,y)Dα2˜b2(x)a(y)dy−∑|α2|=m2∫RnFt(x,x0)(x−x0)α2|x−x0|m[Rm1(˜b1;x,y)−Rm1(˜b1;x,x0)]Dα2˜b2(x)a(y)dy−∑|α1|=m1∫Rn[Ft(x,y)(x−y)α1|x−y|m−Ft(x,x0)(x−x0)α1|x−x0|m]Rm2(˜b2;x,y)Dα1˜b1(x)a(y)dy−∑|α1|=m1∫RnFt(x,x0)(x−x0)α1|x−x0|m[Rm2(˜b2;x,y)−Rm2(˜b2;x,x0)]Dα1˜b1(x)a(y)dy+∑|α1|=m1,|α2|=m2∫Rn[Ft(x,y)(x−y)α1+α2|x−y|m−Ft(x,x0)(x−x0)α1+α2|x−x0|m]×Dα1˜b1(x)Dα2˜b2(x)a(y)dy, | (3.13) |
notice that if w∈A1, then w(Q2)|Q2||Q1|w(Q1)≤C for all cubes Q1,Q2 with Q1⊂Q2. Thus, by Hölder's inequality and the reverse of Hölder's inequality for w∈A1 and 1<q<∞, we obtain, similar to the proof of Theorem 1,
J2≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=1k2(2−k+2−εk)(|Q|w(Q)w(2k+1Q)|2k+1Q|)+C∑|α1|=m1||Dα1b1||BMO∞∑k=1k(2−k+2−εk)∑|α2|=m2(1|2k+1Q|∫2k+1Q|Dα2˜b2(x)|q′dx)1/q′×|Q|w(Q)(1|2k+1Q|∫2k+1Qw(x)qdx)1/q+C∑|α2|=m2||Dα2b2||BMO∞∑k=1k(2−k+2−εk)∑|α1|=m1(1|2k+1Q|∫2k+1Q|Dα1˜b1(x)|q′dx)1/q′×|Q|w(Q)(1|2k+1Q|∫2k+1Qw(x)qdx)1/q+C∞∑k=1(2−k+2−εk)|Q|w(Q)(1|2k+1Q|∫2k+1Qw(x)qdx)1/q×∑|α1|=m1(1|2k+1Q|∫2k+1Q|Dα1˜b1(x)|r1dx)1/r1∑|α2|=m2(1|2k+1Q|∫2k+1Q|Dα2˜b2(x)|r2dx)1/r2≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=1k2(2−k+2−εk)(w(2k+1Q)|2k+1Q||Q|w(Q))≤C. | (3.14) |
Now, for f∈H1(w) with f=∑∞j=1λjaj, where a′js are the H1(w)-atom and ∑j|λj|≤C||f||H1(w). From above, we get
∞∑j=1|λj|||˜Tb(aj)||L1(w)≤C∞∑j=1|λj|≤C||f||H1(w), |
that is ∑∞j=1|λj|||˜Tb(aj)|∈L1(w), and
||˜Tb(f)||L1(w)≤∞∑j=1|λj|||˜TA(aj)||L1(w)≤C∞∑j=1|λj|≤C||f||H1(w). |
This completes the proof of Theorem 2.
Proof of Theorem 3. It is only to prove that there exists a constant CQ such that
1w(Q)∫Q|Tb(f)(x)−CQ|w(x)dx≤C||f||Bp(w) |
holds for any cube Q=Q(0,d) with d>1. Without loss of generality, we may assume l=2. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5√nQ and ˜bj(x)=bj(x)−∑|α|=mj1α!(Dαbj)˜Qxα, then Rmj(bj;x,y)=Rmj(˜bj;x,y) and Dα˜bj=Dαbj−(Dαbj)˜Q for |α|=mj. Similar to the proof of Theorem 1, we write, for f1=fχ˜Q and f2=fχRn∖˜Q,
1w(Q)∫Q|Tb(f)(x)−T˜b(f2)(0)|w(x)dx≤1w(Q)∫Q||∫Rn2∏j=1Rmj(˜bj;x,y)|x−y|mFt(x,y)f1(y)dy||w(x)dx+1w(Q)∫Q||∑|α1|=m11α1!∫RnRm2(˜b2;x,y)(x−y)α1|x−y|mDα1˜b1(y)Ft(x,y)f1(y)dy||w(x)dx+1w(Q)∫Q||∑|α2|=m21α2!∫RnRm1(˜b1;x,y)(x−y)α2|x−y|mDα2˜b2(y)Ft(x,y)f1(y)dy||w(x)dx+1w(Q)∫Q||∑|α1|=m1, |α2|=m21α1!α2!∫Rn(x−y)α1+α2Dα1˜b1(y)Dα2˜b2(y)|x−y|mFt(x,y)f1(y)dy||w(x)dx+1w(Q)∫Q|T˜b(f2)(x)−T˜b(f2)(0)|w(x)dx:=L1+L2+L3+L4+L5. | (3.15) |
Similar to the proof of Theorem 1, we get
L1≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)(1w(Q)∫Q|T(f1)(x)|pw(x)dx)1/p≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)w(˜Q)−1/p||fχ˜Q||Lp(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w). | (3.16) |
For L2, taking r,s>1 such that rs<p and q=(ps−rs)/(p−rs), then, by the reverse of Hölder's inequality,
L2≤C∑|α2|=m2||Dα2b2||BMO∑|α1|=m1(1w(Q)∫Rn|T(Dα1˜b1f1)(x)|rw(x)dx)1/r≤C∑|α2|=m2||Dα2b2||BMO∑|α1|=m1w(Q)−1/r||Dα1˜b1f1||Lr(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)|Q|1/rs′w(Q)−1/r(∫˜Q|f(x)|pw(x)dx)1/p(∫˜Qw(x)qdx)(p−r)/pqr≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)w(˜Q)−1/p||fχ˜Q||Lp(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w).L3≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w). | (3.17) |
For L4, taking r,t1,t2,t3>1 such that 1/t1+1/t2+1/t3=1, rt3<p and q=(pt3−rt3)/(p−rt3), then, by the reverse of Hölder's inequality,
L4≤C∑|α1|=m1,|α2|=m2(1w(Q)∫Rn|T(Dα1˜b1Dα2˜b2f1)(x)|rw(x)dx)1/r≤C∑|α1|=m1,|α2|=m2w(Q)−1/r(∫Rn|Dα1˜b1(x)Dα2˜b2(x)f1(x)|rw(x)dx)1/r≤C∑|α1|=m1(∫˜Q|Dα1˜b1(x)|rt1dx)1/rt1∑|α2|=m2(∫˜Q|Dα2˜b2(x)|rt2dx)1/rt2×w(Q)−1/r(∫˜Q|f(x)|rt3w(x)t3dx)1/rt3≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)|Q|1/rt1+1/rt2w(Q)−1/r||fχ˜Q||Lp(w)(∫˜Qw(x)qdx)(p−rt3)/prt3≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)w(˜Q)−1/p||fχ˜Q||Lp(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w). | (3.18) |
For L5, we write, for x∈Q,
F˜bt(f2)(x)−F˜bt(f2)(0)=∫Rn(Ft(x,y)|x−y|m−Ft(0,y)|y|m)2∏j=1Rmj(˜bj;x,y)f2(y)dy+∫Rn(Rm1(˜b1;x,y)−Rm1(˜b1;0,y))Rm2(˜b2;x,y)|y|mFt(0,y)f2(y)dy+∫Rn(Rm2(˜b2;x,y)−Rm2(˜b2;0,y))Rm1(˜b1;0,y)|y|mFt(0,y)f2(y)dy−∑|α1|=m11α1!∫Rn[Rm2(˜b2;x,y)(x−y)α1|x−y|mFt(x,y)−Rm2(˜b2;0,y)(−y)α1|y|mFt(0,y)]Dα1˜b1(y)f2(y)dy−∑|α2|=m21α2!∫Rn[Rm1(˜b1;x,y)(x−y)α2|x−y|mFt(x,y)−Rm1(˜b1;0,y)(−y)α2|y|mFt(0,y)]Dα2˜b2(y)f2(y)dy+∑|α1|=m1, |α2|=m21α1!α2!∫Rn[(x−y)α1+α2|x−y|mFt(x,y)−(−y)α1+α2|y|mFt(0,y)]×Dα1˜b1(y)Dα2˜b2(y)f2(y)dy=L(1)5+L(2)5+L(3)5+L(4)5+L(5)5+L(6)5. | (3.19) |
Similar to the proof of Theorem 1 and notice that w∈A1⊂Ap, we get
||L(1)5||≤C∫Rn(|x||y|m+n+1+|x|ε|y|m+n+ε)2∏j=1|Rmj(˜bj;x,y)||f2(y)|dy≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=0∫2k+1˜Q∖2k˜Qk2(|x||y|n+1+|x|ε|y|n+ε)|f(y)|dy≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=1k2(2−k+2−εk)w(2k˜Q)−1/p(∫2k˜Q|f(y)|pw(y)dy)1/p×(1|2k˜Q|∫2k˜Qw(y)dy)1/p(1|2k˜Q|∫2k˜Qw(y)−1/(p−1)dy)(p−1)/p≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=1k2(2−k+2−εk)||f||Bp(w)≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w).||L(2)5||≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=0∫2k+1˜Q∖2k˜Qk|x||y|n+1|f(y)|dy≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w).||L(3)5||≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w). | (3.20) |
For L(4)5, choose 1<r<p, notice that w∈A1⊂Ap/r, we get
||L(4)5||≤C∑|α2|=m2||Dα2b2||BMO∞∑k=0∫2k+1˜Q∖2k˜Qk(|x||y|n+1+|x|ε|y|n+ε)|Dα1˜b1(y)||f(y)|dy≤C∑|α2|=m2||Dα2b2||BMO∞∑k=0(d(2kd)n+1+dε(2kd)n+ε)(∫2k+1˜Q|f(y)|rdy)1/rdy×(∫2k+1˜Q|Dα1˜b1(y)|r′dy)1/r′≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=1k(2−k+2−εk)w(2k˜Q)−1/p(∫2k˜Q|f(y)|pw(y)dy)1/p×(1|2k˜Q|∫2k˜Qw(y)dy)1/p(1|2k˜Q|∫2k˜Qw(y)−r/(p−r)dy)(p−r)/pr≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w).||L(5)5||≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w). | (3.21) |
For L(6)5, choose 1<r1,r2,r3<∞ such that r3<p and 1/r1+1/r2+1/r3=1, notice that w∈A1⊂Ap/r3, we get
||L(6)5||≤C∞∑k=0(d(2kd)n+1+dε(2kd)n+ε)(∫2k+1˜Q|f(y)|r3dy)1/r3dy×∑|α1|=m1(∫2k+1˜Q|Dα1˜b1(y)|r1dy)1/r1∑|α2|=m2(∫2k+1˜Q|Dα2˜b2(y)|r2dy)1/r2≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=1(2−k+2−εk)w(2k˜Q)−1/p(∫2k˜Q|f(y)|pw(y)dy)1/p×(1|2k˜Q|∫2k˜Qw(y)dy)1/p(1|2k˜Q|∫2k˜Qw(y)−r3/(p−r3)dy)(p−r3)/pr3≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)||f||Bp(w). | (3.22) |
Thus
L5≤C2∏j=1(∑αj|=mj||Dαjbj||BMO)||f||Bp(w). |
This finishes the proof of Theorem 3.
Proof of Theorem 4. We only give the proof of homogeneous Herz type Hardy spaces. Without loss of generality, we may assume l=2. Let f∈H˙Kp(w1,w2;Rn), by Lemma 1, f=∑∞j=−∞λjaj, where a′js are the central (n(1−1/p),p;w1,w2)-atom with suppaj⊂Bj=B(0,2j) and ||f||H˙Kp(w1,w2)∼∑j|λj|. Write
||˜Tb(f)||˙Kp(w1,w2)=∞∑k=−∞[w1(Bk)]1−1/p||χk˜Tb(f)||Lp(w2)≤∞∑k=−∞[w1(Bk)]1−1/pk−1∑j=−∞|λj|||χk˜Tb(aj)||Lp(w2)+∞∑k=−∞[w1(Bk)]1−1/p∞∑j=k|λj|||χk˜Tb(aj)||Lp(w2)=M1+M2. | (3.23) |
For M2, by the Lp(w)-boundedness of ˜Tb for 1<p<∞ and w∈A1, we get
M2≤C∞∑k=−∞[w1(Bk)]1−1/p∞∑j=k|λj|||aj||Lp(w2)≤C∞∑k=−∞[w1(Bk)]1−1/p∞∑j=k|λj|[w1(Bj)]−(1−1/p)≤C∞∑j=−∞|λj|j∑k=−∞[w1(Bk)w1(Bj)]1−1/p≤C∞∑j=−∞|λj|≤C||f||H˙Kp(w1,w2). | (3.24) |
To estimate M1, we denote that ˜bj(x)=bj(x)−∑|αj|=mj1α!(Dαbj)2Qxα. Then Qmj(bj;x,y)=Qmj(˜bj;x,y). We write, by the moment condition of aj,
˜Fbt(aj)(x)=∫Rn[Ft(x,y)|x−y|m−Ft(x,0)|x|m]Rm1(˜b1;x,y)Rm2(˜b2;x,y)aj(y)dy+∫RnFt(x,0)|x|m[Rm1(˜b1;x,y)Rm2(˜b2;x,y)−Rm1(˜b1;x,0)Rm2(˜b2;x,0)]aj(y)dy−∑|α2|=m2∫Rn[Ft(x,y)(x−y)α2|x−y|m−Ft(x,0)xα2|x|m]Rm1(˜b1;x,y)Dα2˜b2(x)aj(y)dy−∑|α2|=m2∫RnFt(x,0)xα2|x|m[Rm1(˜b1;x,y)−Rm1(˜b1;x,0)]Dα2˜b2(x)aj(y)dy−∑|α1|=m1∫Rn[Ft(x,y)(x−y)α1|x−y|m−Ft(x,0)xα1|x|m]Rm2(˜b2;x,y)Dα1˜b1(x)aj(y)dy−∑|α1|=m1∫RnFt(x,0)xα1|x|m[Rm2(˜b2;x,y)−Rm2(˜b2;x,0)]Dα1˜b1(x)aj(y)dy+∑|α1|=m1,|α2|=m2∫Rn[Ft(x,y)(x−y)α1+α2|x−y|m−Ft(x,0)xα1+α2|x|m]Dα1˜b1(x)Dα2˜b2(x)aj(y)dy. | (3.25) |
Going through a similar argument to Theorem 2, we obtain
|˜Tb(aj)(x)|≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)[2j2k(n+1)+2jε2k(n+ε)]||aj||Lp(w2)(∫Bjw2(y)−1/(p−1)dy)(p−1)/p+C∑|α1|=m1||Dα1b1||BMO∑|α2|=m2[2j2k(n+1)+2jε2k(n+ε)]|Dα2˜b2(x)|||aj||Lp(w2)×(∫Bjw2(y)−1/(p−1)dy)(p−1)/p+C∑|α2|=m2||Dα2b2||BMO∑|α1|=m1[2j2k(n+1)+2jε2k(n+ε)]|Dα1˜b1(x)|||aj||Lp(w2)×(∫Bjw2(y)−1/(p−1)dy)(p−1)/p+C∑|α1|=m1,|α2|=m1[2j2k(n+1)+2jε2k(n+ε)]|Dα1˜b1(x)||Dα2˜b2(x)|||aj||Lp(w2)×(∫Bjw2(y)−1/(p−1)dy)(p−1)/p≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)[2j2k(n+1)+2jε2k(n+ε)][w1(Bj)]1/p−1(∫Bjw2(y)−1/(p−1)dy)(p−1)/p+C∑|α1|=m1||Dα1b1||BMO∑|α2|=m2[2j2k(n+1)+2jε2k(n+ε)]|Dα2˜b2(x)|[w1(Bj)]1/p−1×(∫Bjw2(y)−1/(p−1)dy)(p−1)/p+C∑|α2|=m2||Dα2b2||BMO∑|α1|=m1[2j2k(n+1)+2jε2k(n+ε)]|Dα1˜b1(x)|[w1(Bj)]1/p−1×(∫Bjw2(y)−1/(p−1)dy)(p−1)/p+C∑|α1|=m1,|α2|=m1[2j2k(n+1)+2jε2k(n+ε)]|Dα1˜b1(x)||Dα2˜b2(x)|[w1(Bj)]1/p−1×(∫Bjw2(y)−1/(p−1)dy)(p−1)/p, | (3.26) |
thus
M1≤C2∏j=1(∑|αj|=mj||Dαjbj||BMO)∞∑k=−∞[w1(Bk)]1−1/pk−1∑j=−∞|λj|[2j2k(n+1)+2jε2k(n+ε)]×[w1(Bj)]1/p−1(∫Bjw2(y)−1/(p−1)dy)(p−1)/p[w2(Bk)]1/p+C∑|α1|=m1||Dα1b1||BMO∞∑k=−∞[w1(Bk)]1−1/pk−1∑j=−∞|λj|∑|α2|=m2[2j2k(n+1)+2jε2k(n+ε)]×[w1(Bj)]1/p−1(∫Bjw2(y)−1/(p−1)dy)(p−1)/p(∫Bk|Dα2˜b2(x)|pw2(x)dx)1/p+C∑|α2|=m2||Dα2b2||BMO∞∑k=−∞[w1(Bk)]1−1/pk−1∑j=−∞|λj|∑|α1|=m1[2j2k(n+1)+2jε2k(n+ε)]×[w1(Bj)]1/p−1(∫Bjw2(y)−1/(p−1)dy)(p−1)/p(∫Bk|Dα1˜b1(x)|pw2(x)dx)1/p+C∑|α1|=m1,|α2|=m1∞∑k=−∞[w1(Bk)]1−1/pk−1∑j=−∞|λj|[2j2k(n+1)+2jε2k(n+ε)][w1(Bj)]1/p−1×(∫Bjw2(y)−1/(p−1)dy)(p−1)/p(∫Bk|Dα1˜b1(x)Dα2˜b2(x)|pw2(x)dx)1/p≤C∞∑j=−∞|λj|∞∑k=j+1[2j2k(n+1)+2jε2k(n+ε)][w1(Bk)w1(Bj)|Bj||Bk|]1−1/p[w2(Bk)w2(Bj)|Bj||Bk|]1/p|Bk|≤C∞∑j=−∞|λj|∞∑k=j+1[2j−k+2(j−k)ε]≤C∞∑j=−∞|λj|≤C||f||H˙Kp(w1,w2). | (3.27) |
This completes the proof of Theorem 4.
Now we apply the theorems of this paper to some concrete including Littlewood-Paley operators, Marcinkiewicz operators and the Bochner-Riesz operator.
Example 1. Littlewood-Paley operators.
Fixed ε>0 and μ>(3n+2)/n. Let ψ be a fixed function which satisfies:
(1) ∫Rnψ(x)dx=0,
(2) |ψ(x)|≤C(1+|x|)−(n+1),
(3) |ψ(x+y)−ψ(x)|≤C|y|ε(1+|x|)−(n+1+ε) when 2|y|<|x|.
We denote that Γ(x)={(y,t)∈Rn+1+:|x−y|<t} and the characteristic function of Γ(x) by χΓ(x). The Littlewood-Paley multilinear operators are defined by (see [13]),
gAψ(f)(x)=(∫∞0|FAt(f)(x)|2dtt)1/2, |
SAψ(f)(x)=[∫∫Γ(x)|FAt(f)(x,y)|2dydttn+1]1/2 |
and
gAμ(f)(x)=[∫∫Rn+1+(tt+|x−y|)nμ|FAt(f)(x,y)|2dydttn+1]1/2, |
where
FAt(f)(x)=∫Rn∏lj=1Rmj+1(Aj;x,y)|x−y|mψt(x−y)f(y)dy, |
FAt(f)(x,y)=∫Rn∏lj=1Rmj+1(Aj;x,z)|x−z|mf(z)ψt(y−z)dz, |
and ψt(x)=t−nψ(x/t) for t>0. The variants of gAψ, SAψ and gAμ are defined by
˜gAψ(f)(x)=(∫∞0|˜FAt(f)(x)|2dtt)1/2, |
˜SAψ(f)(x)=[∫∫Γ(x)|˜FAt(f)(x,y)|2dydttn+1]1/2, |
and
˜gAμ(f)(x)=[∫∫Rn+1+(tt+|x−y|)nμ|˜FAt(f)(x,y)|2dydttn+1]1/2, |
where
˜FAt(f)(x)=∫Rn∏lj=1Qmj+1(Aj;x,y)|x−y|mψt(x−y)f(y)dy, |
and
˜FAt(f)(x,y)=∫Rn∏lj=1Qmj+1(Aj;x,z)|x−z|mψt(y−z)f(z)dz. |
Set Ft(f)(y)=f∗ψt(y). We also define that
gψ(f)(x)=(∫∞0|Ft(f)(x)|2dtt)1/2, |
Sψ(f)(x)=(∫∫Γ(x)|Ft(f)(y)|2dydttn+1)1/2, |
and
gμ(f)(x)=(∫∫Rn+1+(tt+|x−y|)nμ|Ft(f)(y)|2dydttn+1)1/2, |
which are the Littlewood-Paley operators (see [19]). Let H be the space
H={h:||h||=(∫∞0|h(t)|2dt/t)1/2<∞}, |
or
H={h:||h||=(∫∫Rn+1+|h(y,t)|2dydt/tn+1)1/2<∞}, |
then, for each fixed x∈Rn, FAt(f)(x) and FAt(f)(x,y) may be viewed as the mapping from [0,+∞) to H, and it is clear that
gAψ(f)(x)=||FAt(f)(x)||, gψ(f)(x)=||Ft(f)(x)||, |
SAψ(f)(x)=||χΓ(x)FAt(f)(x,y)||, Sψ(f)(x)=||χΓ(x)Ft(f)(y)||, |
and
gAμ(f)(x)=||(tt+|x−y|)nμ/2FAt(f)(x,y)||, gμ(f)(x)=||(tt+|x−y|)nμ/2Ft(f)(y)||. |
It is easy to see that gψ, Sψ and gμ satisfy the conditions of Theorems 1–4, thus Theorems 1–4 hold for gAψ and ˜gAψ, SAψ and ˜SAψ, gAμ and ˜gAμ.
Example 2. Marcinkiewicz operators.
Fixed λ>max(1,2n/(n+2)) and 0<γ≤1. Let Ω be homogeneous of degree zero on Rn with ∫Sn−1Ω(x′)dσ(x′)=0. Assume that Ω∈Lipγ(Sn−1). The Marcinkiewicz multilinear operators are defined by
μAΩ(f)(x)=(∫∞0|FAt(f)(x)|2dtt3)1/2, |
μAS(f)(x)=[∫∫Γ(x)|FAt(f)(x,y)|2dydttn+3]1/2, |
and
μAλ(f)(x)=[∫∫Rn+1+(tt+|x−y|)nλ|FAt(f)(x,y)|2dydttn+3]1/2, |
where
FAt(f)(x)=∫|x−y|≤t∏lj=1Rmj+1(Aj;x,y)|x−y|mΩ(x−y)|x−y|n−1f(y)dy, |
and
FAt(f)(x,y)=∫|y−z|≤t∏lj=1Rmj+1(Aj;y,z)|y−z|mΩ(y−z)|y−z|n−1f(z)dz; |
The variants of μAΩ, μAS and μAλ are defined by
˜μAΩ(f)(x)=(∫∞0|˜FAt(f)(x)|2dtt3)1/2, |
˜μAS(f)(x)=[∫∫Γ(x)|˜FAt(f)(x,y)|2dydttn+3]1/2, |
and
˜μAλ(f)(x)=[∫∫Rn+1+(tt+|x−y|)nλ|˜FAt(f)(x,y)|2dydttn+3]1/2, |
where
˜FAt(f)(x)=∫|x−y|≤t∏lj=1Qmj+1(Aj;x,y)|x−y|mΩ(x−y)|x−y|n−1f(y)dy, |
and
˜FAt(f)(x,y)=∫|y−z|≤t∏lj=1Qmj+1(Aj;y,z)|y−z|mΩ(y−z)|y−z|n−1f(z)dz. |
Set
Ft(f)(x)=∫|x−y|≤tΩ(x−y)|x−y|n−1f(y)dy; |
We also define that
μΩ(f)(x)=(∫∞0|Ft(f)(x)|2dtt3)1/2, |
μS(f)(x)=(∫∫Γ(x)|Ft(f)(y)|2dydttn+3)1/2, |
and
μλ(f)(x)=(∫∫Rn+1+(tt+|x−y|)nλ|Ft(f)(y)|2dydttn+3)1/2, |
which are the Marcinkiewicz operators (see [20]). Let H be the space
H={h:||h||=(∫∞0|h(t)|2dt/t3)1/2<∞}, |
or
H={h:||h||=(∫∫Rn+1+|h(y,t)|2dydt/tn+3)1/2<∞}. |
Then, it is clear that
μAΩ(f)(x)=||FAt(f)(x)||, μΩ(f)(x)=||Ft(f)(x)||, |
μAS(f)(x)=||χΓ(x)FAt(f)(x,y)||, μS(f)(x)=||χΓ(x)Ft(f)(y)||, |
and
μAλ(f)(x)=||(tt+|x−y|)nλ/2FAt(f)(x,y)||, μλ(f)(x)=||(tt+|x−y|)nλ/2Ft(f)(y)||. |
It is easy to see that μΩ, μS and μλ satisfy the conditions of Theorems 1–4, thus Theorems 1–4 hold for μAΩ and ˜μAΩ, μAS and ˜μAS, μAλ and ˜μAλ.
Example 3. Bochner-Riesz operator.
Let δ>(n−1)/2, Bδt(f^)(ξ)=(1−t2|ξ|2)δ+ˆf(ξ) and Bδt(z)=t−nBδ(z/t) for t>0. Set
FAδ,t(f)(x)=∫Rn∏lj=1Rmj+1(Aj;x,y)|x−y|mBδt(x−y)f(y)dy, |
and
˜FAδ,t(f)(x)=∫Rn∏lj=1Qmj+1(Aj;x,y)|x−y|mBδt(x−y)f(y)dy. |
The maximal Bochner-Riesz multilinear operator and its the variants are defined by
BAδ,∗(f)(x)=supt>0|BAδ,t(f)(x)| and ˜BAδ,∗(f)(x)=supt>0|˜BAδ,t(f)(x)|. |
We also define that
Bδ,∗(f)(x)=supt>0|Bδt(f)(x)|, |
which is the maximal Bochner-Riesz operator (see [14]). Let H be the space H={h:||h||=supt>0|h(t)|<∞}, then
BAδ,∗(f)(x)=||BAδ,t(f)(x)||, Bδ∗(f)(x)=||Bδt(f)(x)||. |
It is easy to see that Bδ,∗ satisfies the conditions of Theorems 1–4, thus Theorems 1–4 hold for BAδ,∗ and ˜BAδ,∗.
Project supported by Scientific Research Fund of Hunan Provincial Education Departments (19A347).
No conflict of interest.
[1] | J. Alvarez, R. J. Babgy, D. S. Kurtz, C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195–209. |
[2] |
M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc., 133 (2005), 3535–3542. https://doi.org/10.1090/S0002-9939-05-07892-5 doi: 10.1090/S0002-9939-05-07892-5
![]() |
[3] | W. G. Chen, G. E. Hu, Weak type (H1, L1) estimate for multilinear singular integral operator, Adv. Math., 30 (2001), 63–69. |
[4] | J. Cohen, A sharp estimate for a multilinear singular integral on Rn, Indiana U. Math. J., 30 (1981), 693–702. |
[5] | J. Cohen, J. Gosselin, A BMO estimate for multilinear singular integral, Illinois J. Math., 30 (1986), 445–464. |
[6] |
R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
![]() |
[7] |
J. Garcia-Cuerva, M. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, P. Lond. Math. Soc., 69 (1994), 605–628. https://doi.org/10.1112/plms/s3-69.3.605 doi: 10.1112/plms/s3-69.3.605
![]() |
[8] | J. Garcia-Cuerva, J. R. de Francia, Weighted norm inequalities and related topics, 1985. |
[9] | E. Harboure, C. Segovia, J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of p, Illinois J. Math., 41 (1997), 676–700. |
[10] | E. Hernandez, G. Weiss, D. C. Yang, The ϕ-transform and wavelet characterizations of Herz-type spaces, Collect. Math., 47 (1996), 285–320. |
[11] | E. Hernandez, D. C. Yang, Interpolation of Herz-type Hardy spaces, Illinois J. Math., 42 (1998), 564–581. |
[12] | L. Z. Liu, Weighted weak type (H1, L1) estimates for commutators of Littlewood-Paley operator, Indian J. Math., 45 (2003), 71–78. |
[13] | L. Z. Liu, Weighted endpoint estimates for multilinear Littlewood-Paley operators, Acta Math. Univ. Comenianae, 73 (2004), 55–67. |
[14] | S. Z. Lu, Four lectures on real Hp spaces, NI: World Scientific, River Edge, 1995. |
[15] | S. Z. Lu, D. C. Yang, The decomposition of the weighted Herz spaces on Rn and its applications, Chinese Sci. Abstr. Ser. A, 38 (1995), 147–158. |
[16] | S. Z. Lu, D. C. Yang, The weighted Herz type Hardy spaces and its applications, Chinese Sci. Abstr. Ser. A, 38 (1995), 662–673. |
[17] | B. H. Qui, Weighted Hardy spaces, Math. Nachr., 103 (1981), 45–62. |
[18] | E. M. Stein, T. S. Murphy, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton: Princeton University Press, 1993. |
[19] | A. Torchinsky, Real variable methods in harmonic analysis, New York: Academic Press, 1986. |
[20] | A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60/61 (1990), 235–243. |
1. | Xiuyun Xia, Huatao Chen, Hao Tian, Ye Wang, Yadan Shi, Sharp and Weighted Boundedness for Multilinear Integral Operators, 2024, 86, 1338-9750, 185, 10.2478/tmmp-2024-0017 |