Loading [MathJax]/jax/output/SVG/jax.js
Research article

Weighted boundedness of multilinear integral operators for the endpoint cases

  • Received: 07 October 2021 Revised: 17 December 2021 Accepted: 27 December 2021 Published: 10 January 2022
  • MSC : 42B20, 42B25

  • We prove the weighted boundedness for the multilinear operators associated to some integral operators for the endpoint cases. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.

    Citation: Ancheng Chang. Weighted boundedness of multilinear integral operators for the endpoint cases[J]. AIMS Mathematics, 2022, 7(4): 5690-5711. doi: 10.3934/math.2022315

    Related Papers:

    [1] Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293
    [2] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [3] Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786
    [4] Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on p-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121
    [5] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [6] Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311
    [7] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [8] Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
    [9] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
    [10] Tianyang He, Zhiwen Liu, Ting Yu . The Weighted Lp estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041
  • We prove the weighted boundedness for the multilinear operators associated to some integral operators for the endpoint cases. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.



    As the development of singular integral operators, their commutators and multilinear operators have been well studied (see [1,3,4,5,6]. Let T be the Calderón-Zygmund singular integral operator and bBMO(Rn), a classical result of Coifman, Rochberg and Weiss stated that the commutator [b,T]f=T(bf)bTf is bounded on Lp(Rn) for 1<p<. In [10], authors obtain the boundedness properties of the commutators for the extreme values of p. And note that [b,T] is not bounded for the end point cases (that is p=1 and p=). In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,10,11]). The purpose of this paper is to introduce some multilinear operators associated to certain non-convolution type integral operators and prove the weighted boundedness properties of the multilinear operators for the endpoint cases (p=1 and p=). In fact, we prove the endpoint boundedness of the multilinear operators only under the boundedness of the operators on Lebesgue spaces, that is the boundedness of the operators on Lp(Rn) for 1<p implies the boundedness of the multilinear operators from L(Rn) to BMO(Rn) for p= and from H1(Rn) to L1(Rn) for p=1. Then, we apply the boundedness of the integral operator to some concrete including Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.

    First, let us introduce some preliminaries (see [7,8,14,15,16]). Throughout this paper, we denote by Ap the class of the Muckenhoupt weights for 1p< (see [9]). In this paper Q always stand for a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function b and a weight function w, let w(Q)=Qw(x)dx, bQ=|Q|1Qb(x)dx and b#w(x)=supQxw(Q)1Q|b(y)bQ|w(y)dy. b is said to belong to BMO(w) if b#wL(w) and define ||b||BMO(w)=||b#||L(w), if w=1, we denote BMO(w)=BMO(Rn). We also define the weighted central BMO space by CMO(w), which is the space of those functions bLloc(Rn) such that

    ||b||CMO(w)=supr>1w(Q(0,r))1Q|b(x)bQ|w(x)dx<.

    It is well-known that (see [8,9]

    ||b||CMO(w)supr>1infcCw(Q(0,r))1Q|b(x)c|w(x)dx.

    Also, we give the concepts of the atom and weighted Hardy spaces H1(w). A function a is called an H1 atom if there exists a cube Q such that a is supported on Q, ||a||L2(w)w(Q)1/2 and Rna(x)dx=0. It is well known that the weighted Hardy space H1(w) has the atomic decomposition characterization (see [2,9,16,17]).

    For kZ, define Bk={xRn:|x|2k} and Ck=BkBk1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k1 and ˜χ0 the characteristic function of B0.

    Definition 1. Let 1<p< and w1, w2 be two non-negative weight functions on Rn.

    (1) The homogeneous weighted Herz space is defined by

    ˙Kp(w1,w2;Rn)={fLploc(Rn{0}):||f||˙Kp(w1,w2)<},

    where

    ||f||˙Kp(w1,w2)=k=[w1(Bk)]11/p||fχk||Lp(w2);

    (2) The nonhomogeneous weighted Herz space is defined by

    Kp(w1,w2;Rn)={fLploc(Rn):||f||Kp(w1,w2)<},

    where

    ||f||Kp(w1,w2)=k=0[w1(Bk)]11/p||f˜χk||Lp(w2);

    (3) The homogeneous weighted Herz type Hardy space is defined by

    H˙Kp(w1,w2;Rn)={fS(Rn):G(f)˙Kp(w1,w2;Rn)},

    where

    ||f||H˙Kp(w1,w2)=||G(f)||˙Kp(w1,w2);

    (4) The nonhomogeneous weighted Herz type Hardy space is defined by

    HKp(w1,w2;Rn)={fS(Rn):G(f)Kp(w1,w2;Rn)},

    where

    ||f||HKp(w1,w2)=||G(f)||Kp(w1,w2);

    where G(f) is the grand maximal function of f, that is

    G(f)(x)=supφKmsup|xy|<t|fφt(y)|,

    where Km={φS(Rn):supxRn,|α|m(1+|u|)m+n|Dαφ(u)|1}, φt(x)=tnφ(x/t) for t>0, m is a positive integer and S(Rn) is the Schwartz class (see [18], p.88).

    The Herz type Hardy spaces have the atomic decomposition characterization.

    Definition 2. Let 1<p< and w1,w2A1. A function a(x) on Rn is called a central (n(11/p),p;w1,w2)-atom (or a central (n(11/p),p;w1,w2)-atom of restrict type), if

    1) suppaB(0,r) for some r>0 (or for some r1);

    2) ||a||Lp(w2)[w1(B(0,r))]1/p1;

    3) Rna(x)dx=0.

    Lemma 1. (see [7,16]). Let w1,w2A1 and 1<p<. A tempered distribution f belongs to H˙Kp(w1,w2;Rn)(or HKp(w1,w2;Rn)) if and only if there exist central (n(11/p),p;w1,w2)-atoms (or central (n(11/p),p;w1,w2)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, j|λj|< such that f=j=λjaj(or f=j=0λjaj) in the S(Rn) sense, and

    ||f||H˙Kp(w1,w2)( or ||f||HKp(w1,w2))j|λj|.

    Definition 3. Let 1<p< and w be a non-negative weight functions on Rn. We shall call Bp(w) the space of those functions f on Rn such that

    ||f||Bp(w)=supr>1[w(Q(0,r))]1/p||fχQ(0,r)||Lp(w)<.

    In this paper, we will consider a class of multilinear operators associated to some non-convolution type integral operators as following.

    Let mj be the positive integers(j=1,,l), m1++ml=m and bj be the locally integrable functions on Rn (j=1,,l). Set

    Rmj+1(bj;x,y)=bj(x)|α|mj1α!Dαbj(y)(xy)α,

    and

    Qmj+1(bj;x,y)=Rmj(bj;x,y)|α|=mj1α!Dαbj(x)(xy)α.

    Let Ft(x,y) define on Rn×Rn×[0,+). Set

    Ft(f)(x)=RnFt(x,y)f(y)dy,

    and

    Fbt(f)(x)=Rnlj=1Rmj+1(bj;x,y)|xy|mFt(x,y)f(y)dy,

    for every bounded and compactly supported function f. Let H be the Banach space H={h:||h||<} such that, for each fixed xRn, Ft(f)(x) and Fbt(f)(x) may be viewed as a mapping from [0,+) to H. Then, the multilinear operator associated to Ft is defined by

    Tb(f)(x)=||Fbt(f)(x)||,

    where Ft satisfies: for fixed 0<ε1,

    ||Ft(x,y)||C|xy|n,

    and

    ||Ft(y,x)Ft(z,x)||C|yz|ε|xz|nε,

    if 2|yz||xz|. Let T(f)(x)=||Ft(f)(x)||. We also consider the variant of Tb, which is defined by

    ˜Tb(f)(x)=||˜Fbt(f)(x)||,

    where

    ˜Fbt(f)(x)=Rnlj=1Qmj+1(bj;x,y)|xy|mFt(x,y)f(y)dy.

    Note that when m=0, Tb is just the higher order commutators of T and b (see [1,12,13,20]). The operator ˜Tb is a variant of Tb, and it has not any form in the commutator, thus, it is a non-trivial variant of the commutator. It is well-known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5,6]). In [3], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the weighted boundedness properties of the multilinear operators TA and ˜TA for the extreme cases. In Section 4, some examples of theorems in this paper are given.

    We shall prove the following theorems in Section 3.

    Theorem 1. Let wA1 and DαbjBMO(Rn) for all α with |α|=mj and j=1,,l. Suppose that T is bounded on Lq(u) for any 1<q and uA1. Then Tb is bounded from L(w) to BMO(w).

    Theorem 2. Let wA1 and DαbjBMO(Rn) for all α with |α|=mj and j=1,,l. Suppose that ˜Tb is bounded on Lq(u) for any 1<q and uA1. Then ˜Tb is bounded from H1(w) to L1(w).

    Theorem 3. Let 1<p<, wA1 and DαbjBMO(Rn) for all α with |α|=mj and j=1,,l. Suppose that T is bounded on Lq(u) for any 1<q and uA1. Then Tb is bounded from Bp(w) to CMO(w).

    Theorem 4. Let 1<p<, w1,w2A1 and DαbjBMO(Rn) for all α with |α|=mj and j=1,,l. Suppose that ˜Tb is bounded on Lq(u) for any 1<q and uA1. Then ˜Tb is bounded from ˙HKp(w1,w2;Rn) (or HKp(w1,w2;Rn)) to ˙Kp(w1,w2;Rn) (or HKp(w1,w2;Rn)).

    To prove the theorem, we need the following lemma.

    Lemma 2. (see [5]). Let b be a function on Rn and DαbLq(Rn) for |α|=m and some q>n. Then

    |Rm(b;x,y)|C|xy|m|α|=m(1|˜Q(x,y)|˜Q(x,y)|Dαb(z)|qdz)1/q,

    where ˜Q(x,y) is the cube centered at x and having side length 5n|xy|.

    Proof of Theorem 1. It is only to prove that there exists a constant CQ such that

    1w(Q)Q|Tb(f)(x)CQ|w(x)dxC||f||L(w)

    holds for any cube Q. Without loss of generality, we may assume l=2. Fix a cube Q=Q(x0,d). Let ˜Q=5nQ and ˜bj(x)=bj(x)|α|=m1α!(Dαbj)˜Qxα, then Rm(bj;x,y)=Rm(˜bj;x,y) and Dα˜bj=Dαbj(Dαbj)˜Q for |α|=mj. We write, for f1=fχ˜Q and f2=fχRn˜Q,

    Fbt(f)(x)=Rn2j=1Rmj+1(˜bj;x,y)|xy|mFt(x,y)f(y)dy=Rn2j=1Rmj+1(˜bj;x,y)|xy|mFt(x,y)f2(y)dy+Rn2j=1Rmj(˜bj;x,y)|xy|mFt(x,y)f1(y)dy|α1|=m11α1!RnRm2(˜b2;x,y)(xy)α1|xy|mDα1˜b1(y)Ft(x,y)f1(y)dy|α2|=m21α2!RnRm1(˜b1;x,y)(xy)α2|xy|mDα2˜b2(y)Ft(x,y)f1(y)dy+|α1|=m1, |α2|=m21α1!α2!Rn(xy)α1+α2Dα1˜b1(y)Dα2˜b2(y)|xy|mFt(x,y)f1(y)dy, (3.1)

    then

    |Tb(f)(x)T˜b(f2)(x0)|=|||Fbt(f)(x)||||F˜bt(f2)(x0)|||||Fbt(f)(x)F˜bt(f2)(x0)||||Rn2j=1Rmj(˜bj;x,y)|xy|mFt(x,y)f1(y)dy||+|||α1|=m11α1!RnRm2(˜b2;x,y)(xy)α1|xy|mDα1˜b1(y)Ft(x,y)f1(y)dy||+|||α2|=m21α2!RnRm1(˜b1;x,y)(xy)α2|xy|mDα2˜b2(y)Ft(x,y)f1(y)dy||+|||α1|=m1, |α2|=m21α1!α2!Rn(xy)α1+α2Dα1˜b1(y)Dα2˜b2(y)|xy|mFt(x,y)f1(y)dy||+|T˜b(f2)(x)T˜b(f2)(x0)|:=I1(x)+I2(x)+I3(x)+I4(x)+I5(x), (3.2)

    thus,

    1w(Q)Q|Tb(f)(x)T˜b(f2)(x0)|w(x)dx1w(Q)QI1(x)w(x)dx+1w(Q)QI2(x)w(x)dx+1w(Q)QI3(x)w(x)dx+1w(Q)QI4(x)w(x)dx+1w(Q)QI5(x)w(x)dx:=I1+I2+I3+I4+I5. (3.3)

    Now, let us estimate I1, I2, I3, I4 and I5, respectively. First, for xQ and y˜Q, by Lemma 2, we get

    Rmj(˜bj;x,y)C|xy|mj|αj|=mj||Dαjbj||BMO,

    thus, by the L(w)-boundedness of T, we get

    I1C2j=1(|αj|=mj||Dαjbj||BMO)1w(Q)Q|T(f1)(x)|w(x)dxC2j=1(|αj|=mj||Dαjbj||BMO)||T(f1)||L(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w). (3.4)

    For I2, since wA1, w satisfies the reverse of Hölder's inequality:

    (1|Q|Qw(x)qdx)1/qC|Q|Qw(x)dx

    for all cube Q and some 1<q< (see [9]). Thus, by the Lp(w)-boundedness of T for p>1 and Hölder'inequality, we get

    I2C|α2|=m2||Dα2b2||BMO|α1|=m11w(Q)Q|T(Dα1˜b1f1)(x)|w(x)dxC|α2|=m2||Dα2b2||BMO|α1|=m1(1w(Q)Rn|T(Dα1˜b1f1)(x)|pw(x)dx)1/pC|α2|=m2||Dα2b2||BMO|α1|=m1(1w(Q)Rn|Dα1˜b1(x)f1(x)|pw(x)dx)1/pC|α2|=m2||Dα2b2||BMO|α1|=m1(1|Q|˜Q|Dα1b1(x)(Dα1b1)˜Q|pqdx)1/pq×w(Q)1/p|Q|1/p(1|Q|˜Qw(x)qdx)1/pq||f||L(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w). (3.5)

    For I3, similar to the proof of I2, we get

    I3C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w).

    Similarly, for I4, choose 1<r1,r2< such that 1/r1+1/r2+1/q=1, we obtain, by Hölder'inequality,

    I4C|α1|=m1,|α2|=m2(1w(Q)Rn|T(Dα1˜b1Dα2˜b2f1)(x)|pw(x)dx)1/pC|α1|=m1,|α2|=m2w(Q)1/p(Rn|Dα1˜b1(x)Dα2˜b2(x)f1(x)|pw(x)dx)1/pC|α1|=m1,|α2|=m2(1|Q|˜Q|Dα1˜b1(x)|pr1dx)1/pr1(1|Q|˜Q|Dα2˜b2(x)|pr2dx)1/pr2×w(Q)1/p|Q|1/p(1|Q|˜Qw(x)qdx)1/pq||f||L(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w). (3.6)

    For I5, we write

    F˜bt(f2)(x)F˜bt(f2)(x0)=Rn(Ft(x,y)|xy|mFt(x0,y)|x0y|m)2j=1Rmj(˜bj;x,y)f2(y)dy+Rn(Rm1(˜b1;x,y)Rm1(˜b1;x0,y))Rm2(˜b2;x,y)|x0y|mFt(x0,y)f2(y)dy+Rn(Rm2(˜b2;x,y)Rm2(˜b2;x0,y))Rm1(˜b1;x0,y)|x0y|mFt(x0,y)f2(y)dy|α1|=m11α1!Rn[Rm2(˜b2;x,y)(xy)α1|xy|mFt(x,y)Rm2(˜b2;x0,y)(x0y)α1|x0y|mFt(x0,y)]×Dα1˜b1(y)f2(y)dy|α2|=m21α2!Rn[Rm1(˜b1;x,y)(xy)α2|xy|mFt(x,y)Rm1(˜b1;x0,y)(x0y)α2|x0y|mFt(x0,y)]×Dα2˜b2(y)f2(y)dy+|α1|=m1, |α2|=m21α1!α2!Rn[(xy)α1+α2|xy|mFt(x,y)(x0y)α1+α2|x0y|mFt(x0,y)]×Dα1˜b1(y)Dα2˜b2(y)f2(y)dy=I(1)5+I(2)5+I(3)5+I(4)5+I(5)5+I(6)5. (3.7)

    By Lemma 2 and the following inequality (see [18])

    |bQ1bQ2|Clog(|Q2|/|Q1|)||b||BMO for Q1Q2,

    we know that, for xQ and y2k+1˜Q2k˜Q,

    |Rmj(˜bj;x,y)|C|xy|mj|α|=mj(||Dαbj||BMO+|(Dαbj)˜Q(x,y)(Dαbj)˜Q|)Ck|xy|mj|α|=mj||Dαbj||BMO. (3.8)

    Note that |xy||x0y| for xQ and yRn˜Q, we obtain, by the condition on Ft,

    ||I(1)5||CRn(|xx0||x0y|m+n+1+|xx0|ε|x0y|m+n+ε)2j=1|Rmj(˜bj;x,y)||f2(y)|dyC2j=1(|αj|=mj||Dαjbj||BMO)k=02k+1˜Q2k˜Qk2(|xx0||x0y|n+1+|xx0|ε|x0y|n+ε)|f(y)|dyC2j=1(|αj|=mj||Dαjbj||BMO)k=1k2(2k+2εk)||f||L(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w). (3.9)

    For I(2)5, by the formula (see [5]):

    Rmj(˜bj;x,y)Rmj(˜bj;x0,y)=|β|<m1β!Rm|β|(Dβ˜bj;x,x0)(xy)β,

    and Lemma 2, we have

    |Rmj(˜bj;x,y)Rmj(˜bj;x0,y)|C|β|<mj|α|=mj|xx0|mj|β||xy||β|||Dαbj||BMO,

    thus

    ||I(2)5||C2j=1(|αj|=mj||Dαjbj||BMO)k=02k+1˜Q2k˜Qk|xx0||x0y|n+1|f(y)|dyC2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w). (3.10)

    Similarly,

    ||I(3)5||C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w).

    For I(4)5, similar to the proof of I(1)5 and I(2)5, we get

    ||I(4)5||C|α1|=m1Rn||(xy)α1Ft(x,y)|xy|m(x0y)α1Ft(x0,y)|x0y|m|||Rm2(˜b2;x,y)||Dα1˜b1(y)||f2(y)|dy+C|α1|=m1Rn|Rm2(˜b2;x,y)Rm2(˜b2;x0,y)|||(x0y)α1Ft(x0,y)|||x0y|m|Dα1˜b1(y)||f2(y)|dyC|α2|=m2||Dα2b2||BMO|α1|=m1k=1k(2k+2εk)(1|2k˜Q|2k˜Q|Dα1˜b1(y)|dy)||f||L(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w). (3.11)

    Similarly,

    ||I(5)5||C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w).

    For I(6)5, taking 1<r1,r2< such that 1/r1+1/r2=1, then

    ||I(6)5||C|α1|=m1,|α2|=m2Rn||(xy)α1+α2Ft(x,y)|xy|m(x0y)α1+α2Ft(x0,y)|x0y|m||×|Dα1˜b1(y)||Dα2˜b2(y)||f2(y)|dyC|α1|=m1,|α2|=m2k=1(2k+2εk)||f||L(w)×(1|2k˜Q|2k˜Q|Dα1˜b1(y)|r1dy)1/r1(1|2k˜Q|2k˜Q|Dα2˜b2(y)|r2dy)1/r2C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w). (3.12)

    Thus

    I5C2j=1(|αj|=mj||Dαjbj||BMO)||f||L(w).

    This completes the proof of Theorem 1.

    Proof of Theorem 2. First, we prove that there exists a constant C>0 such that for every H1(w)-atom a (that is that a satisfy: supp aQ=Q(x0,r), ||a||L2(w)w(Q)1/2 and Rna(y)dy=0 (see [7])), the following inequality holds:

    ||˜Tb(a)||L1(w)C.

    Without loss of generality, we may assume l=2. Write

    Rn˜Tb(a)(x)w(x)dx=[2Q+(2Q)c]˜Tb(a)(x)w(x)dx:=J1+J2.

    For J1, by the L2(w)-boundedness of ˜Tb, we get

    J1C||˜Tb(a)||L2(w)w(2Q)1/2C||a||L2(w)w(Q)C.

    To obtain the estimate of J2, we denote that ˜bj(x)=bj(x)|αj|=mj1α!(Dαbj)2Qxα. Then Qmj(bj;x,y)=Qmj(˜bj;x,y). We write, by the vanishing moment of a,

    ˜Fbt(a)(x)=Rn[Ft(x,y)|xy|mFt(x,x0)|xx0|m]Rm1(˜b1;x,y)Rm2(˜b2;x,y)a(y)dy+RnFt(x,x0)|xx0|m[Rm1(˜b1;x,y)Rm2(˜b2;x,y)Rm1(˜b1;x,x0)Rm2(˜b2;x,x0)]a(y)dy|α2|=m2Rn[Ft(x,y)(xy)α2|xy|mFt(x,x0)(xx0)α2|xx0|m]Rm1(˜b1;x,y)Dα2˜b2(x)a(y)dy|α2|=m2RnFt(x,x0)(xx0)α2|xx0|m[Rm1(˜b1;x,y)Rm1(˜b1;x,x0)]Dα2˜b2(x)a(y)dy|α1|=m1Rn[Ft(x,y)(xy)α1|xy|mFt(x,x0)(xx0)α1|xx0|m]Rm2(˜b2;x,y)Dα1˜b1(x)a(y)dy|α1|=m1RnFt(x,x0)(xx0)α1|xx0|m[Rm2(˜b2;x,y)Rm2(˜b2;x,x0)]Dα1˜b1(x)a(y)dy+|α1|=m1,|α2|=m2Rn[Ft(x,y)(xy)α1+α2|xy|mFt(x,x0)(xx0)α1+α2|xx0|m]×Dα1˜b1(x)Dα2˜b2(x)a(y)dy, (3.13)

    notice that if wA1, then w(Q2)|Q2||Q1|w(Q1)C for all cubes Q1,Q2 with Q1Q2. Thus, by Hölder's inequality and the reverse of Hölder's inequality for wA1 and 1<q<, we obtain, similar to the proof of Theorem 1,

    J2C2j=1(|αj|=mj||Dαjbj||BMO)k=1k2(2k+2εk)(|Q|w(Q)w(2k+1Q)|2k+1Q|)+C|α1|=m1||Dα1b1||BMOk=1k(2k+2εk)|α2|=m2(1|2k+1Q|2k+1Q|Dα2˜b2(x)|qdx)1/q×|Q|w(Q)(1|2k+1Q|2k+1Qw(x)qdx)1/q+C|α2|=m2||Dα2b2||BMOk=1k(2k+2εk)|α1|=m1(1|2k+1Q|2k+1Q|Dα1˜b1(x)|qdx)1/q×|Q|w(Q)(1|2k+1Q|2k+1Qw(x)qdx)1/q+Ck=1(2k+2εk)|Q|w(Q)(1|2k+1Q|2k+1Qw(x)qdx)1/q×|α1|=m1(1|2k+1Q|2k+1Q|Dα1˜b1(x)|r1dx)1/r1|α2|=m2(1|2k+1Q|2k+1Q|Dα2˜b2(x)|r2dx)1/r2C2j=1(|αj|=mj||Dαjbj||BMO)k=1k2(2k+2εk)(w(2k+1Q)|2k+1Q||Q|w(Q))C. (3.14)

    Now, for fH1(w) with f=j=1λjaj, where ajs are the H1(w)-atom and j|λj|C||f||H1(w). From above, we get

    j=1|λj|||˜Tb(aj)||L1(w)Cj=1|λj|C||f||H1(w),

    that is j=1|λj|||˜Tb(aj)|L1(w), and

    ||˜Tb(f)||L1(w)j=1|λj|||˜TA(aj)||L1(w)Cj=1|λj|C||f||H1(w).

    This completes the proof of Theorem 2.

    Proof of Theorem 3. It is only to prove that there exists a constant CQ such that

    1w(Q)Q|Tb(f)(x)CQ|w(x)dxC||f||Bp(w)

    holds for any cube Q=Q(0,d) with d>1. Without loss of generality, we may assume l=2. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5nQ and ˜bj(x)=bj(x)|α|=mj1α!(Dαbj)˜Qxα, then Rmj(bj;x,y)=Rmj(˜bj;x,y) and Dα˜bj=Dαbj(Dαbj)˜Q for |α|=mj. Similar to the proof of Theorem 1, we write, for f1=fχ˜Q and f2=fχRn˜Q,

    1w(Q)Q|Tb(f)(x)T˜b(f2)(0)|w(x)dx1w(Q)Q||Rn2j=1Rmj(˜bj;x,y)|xy|mFt(x,y)f1(y)dy||w(x)dx+1w(Q)Q|||α1|=m11α1!RnRm2(˜b2;x,y)(xy)α1|xy|mDα1˜b1(y)Ft(x,y)f1(y)dy||w(x)dx+1w(Q)Q|||α2|=m21α2!RnRm1(˜b1;x,y)(xy)α2|xy|mDα2˜b2(y)Ft(x,y)f1(y)dy||w(x)dx+1w(Q)Q|||α1|=m1, |α2|=m21α1!α2!Rn(xy)α1+α2Dα1˜b1(y)Dα2˜b2(y)|xy|mFt(x,y)f1(y)dy||w(x)dx+1w(Q)Q|T˜b(f2)(x)T˜b(f2)(0)|w(x)dx:=L1+L2+L3+L4+L5. (3.15)

    Similar to the proof of Theorem 1, we get

    L1C2j=1(|αj|=mj||Dαjbj||BMO)(1w(Q)Q|T(f1)(x)|pw(x)dx)1/pC2j=1(|αj|=mj||Dαjbj||BMO)w(˜Q)1/p||fχ˜Q||Lp(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w). (3.16)

    For L2, taking r,s>1 such that rs<p and q=(psrs)/(prs), then, by the reverse of Hölder's inequality,

    L2C|α2|=m2||Dα2b2||BMO|α1|=m1(1w(Q)Rn|T(Dα1˜b1f1)(x)|rw(x)dx)1/rC|α2|=m2||Dα2b2||BMO|α1|=m1w(Q)1/r||Dα1˜b1f1||Lr(w)C2j=1(|αj|=mj||Dαjbj||BMO)|Q|1/rsw(Q)1/r(˜Q|f(x)|pw(x)dx)1/p(˜Qw(x)qdx)(pr)/pqrC2j=1(|αj|=mj||Dαjbj||BMO)w(˜Q)1/p||fχ˜Q||Lp(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w).L3C2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w). (3.17)

    For L4, taking r,t1,t2,t3>1 such that 1/t1+1/t2+1/t3=1, rt3<p and q=(pt3rt3)/(prt3), then, by the reverse of Hölder's inequality,

    L4C|α1|=m1,|α2|=m2(1w(Q)Rn|T(Dα1˜b1Dα2˜b2f1)(x)|rw(x)dx)1/rC|α1|=m1,|α2|=m2w(Q)1/r(Rn|Dα1˜b1(x)Dα2˜b2(x)f1(x)|rw(x)dx)1/rC|α1|=m1(˜Q|Dα1˜b1(x)|rt1dx)1/rt1|α2|=m2(˜Q|Dα2˜b2(x)|rt2dx)1/rt2×w(Q)1/r(˜Q|f(x)|rt3w(x)t3dx)1/rt3C2j=1(|αj|=mj||Dαjbj||BMO)|Q|1/rt1+1/rt2w(Q)1/r||fχ˜Q||Lp(w)(˜Qw(x)qdx)(prt3)/prt3C2j=1(|αj|=mj||Dαjbj||BMO)w(˜Q)1/p||fχ˜Q||Lp(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w). (3.18)

    For L5, we write, for xQ,

    F˜bt(f2)(x)F˜bt(f2)(0)=Rn(Ft(x,y)|xy|mFt(0,y)|y|m)2j=1Rmj(˜bj;x,y)f2(y)dy+Rn(Rm1(˜b1;x,y)Rm1(˜b1;0,y))Rm2(˜b2;x,y)|y|mFt(0,y)f2(y)dy+Rn(Rm2(˜b2;x,y)Rm2(˜b2;0,y))Rm1(˜b1;0,y)|y|mFt(0,y)f2(y)dy|α1|=m11α1!Rn[Rm2(˜b2;x,y)(xy)α1|xy|mFt(x,y)Rm2(˜b2;0,y)(y)α1|y|mFt(0,y)]Dα1˜b1(y)f2(y)dy|α2|=m21α2!Rn[Rm1(˜b1;x,y)(xy)α2|xy|mFt(x,y)Rm1(˜b1;0,y)(y)α2|y|mFt(0,y)]Dα2˜b2(y)f2(y)dy+|α1|=m1, |α2|=m21α1!α2!Rn[(xy)α1+α2|xy|mFt(x,y)(y)α1+α2|y|mFt(0,y)]×Dα1˜b1(y)Dα2˜b2(y)f2(y)dy=L(1)5+L(2)5+L(3)5+L(4)5+L(5)5+L(6)5. (3.19)

    Similar to the proof of Theorem 1 and notice that wA1Ap, we get

    ||L(1)5||CRn(|x||y|m+n+1+|x|ε|y|m+n+ε)2j=1|Rmj(˜bj;x,y)||f2(y)|dyC2j=1(|αj|=mj||Dαjbj||BMO)k=02k+1˜Q2k˜Qk2(|x||y|n+1+|x|ε|y|n+ε)|f(y)|dyC2j=1(|αj|=mj||Dαjbj||BMO)k=1k2(2k+2εk)w(2k˜Q)1/p(2k˜Q|f(y)|pw(y)dy)1/p×(1|2k˜Q|2k˜Qw(y)dy)1/p(1|2k˜Q|2k˜Qw(y)1/(p1)dy)(p1)/pC2j=1(|αj|=mj||Dαjbj||BMO)k=1k2(2k+2εk)||f||Bp(w)C2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w).||L(2)5||C2j=1(|αj|=mj||Dαjbj||BMO)k=02k+1˜Q2k˜Qk|x||y|n+1|f(y)|dyC2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w).||L(3)5||C2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w). (3.20)

    For L(4)5, choose 1<r<p, notice that wA1Ap/r, we get

    ||L(4)5||C|α2|=m2||Dα2b2||BMOk=02k+1˜Q2k˜Qk(|x||y|n+1+|x|ε|y|n+ε)|Dα1˜b1(y)||f(y)|dyC|α2|=m2||Dα2b2||BMOk=0(d(2kd)n+1+dε(2kd)n+ε)(2k+1˜Q|f(y)|rdy)1/rdy×(2k+1˜Q|Dα1˜b1(y)|rdy)1/rC2j=1(|αj|=mj||Dαjbj||BMO)k=1k(2k+2εk)w(2k˜Q)1/p(2k˜Q|f(y)|pw(y)dy)1/p×(1|2k˜Q|2k˜Qw(y)dy)1/p(1|2k˜Q|2k˜Qw(y)r/(pr)dy)(pr)/prC2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w).||L(5)5||C2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w). (3.21)

    For L(6)5, choose 1<r1,r2,r3< such that r3<p and 1/r1+1/r2+1/r3=1, notice that wA1Ap/r3, we get

    ||L(6)5||Ck=0(d(2kd)n+1+dε(2kd)n+ε)(2k+1˜Q|f(y)|r3dy)1/r3dy×|α1|=m1(2k+1˜Q|Dα1˜b1(y)|r1dy)1/r1|α2|=m2(2k+1˜Q|Dα2˜b2(y)|r2dy)1/r2C2j=1(|αj|=mj||Dαjbj||BMO)k=1(2k+2εk)w(2k˜Q)1/p(2k˜Q|f(y)|pw(y)dy)1/p×(1|2k˜Q|2k˜Qw(y)dy)1/p(1|2k˜Q|2k˜Qw(y)r3/(pr3)dy)(pr3)/pr3C2j=1(|αj|=mj||Dαjbj||BMO)||f||Bp(w). (3.22)

    Thus

    L5C2j=1(αj|=mj||Dαjbj||BMO)||f||Bp(w).

    This finishes the proof of Theorem 3.

    Proof of Theorem 4. We only give the proof of homogeneous Herz type Hardy spaces. Without loss of generality, we may assume l=2. Let fH˙Kp(w1,w2;Rn), by Lemma 1, f=j=λjaj, where ajs are the central (n(11/p),p;w1,w2)-atom with suppajBj=B(0,2j) and ||f||H˙Kp(w1,w2)j|λj|. Write

    ||˜Tb(f)||˙Kp(w1,w2)=k=[w1(Bk)]11/p||χk˜Tb(f)||Lp(w2)k=[w1(Bk)]11/pk1j=|λj|||χk˜Tb(aj)||Lp(w2)+k=[w1(Bk)]11/pj=k|λj|||χk˜Tb(aj)||Lp(w2)=M1+M2. (3.23)

    For M2, by the Lp(w)-boundedness of ˜Tb for 1<p< and wA1, we get

    M2Ck=[w1(Bk)]11/pj=k|λj|||aj||Lp(w2)Ck=[w1(Bk)]11/pj=k|λj|[w1(Bj)](11/p)Cj=|λj|jk=[w1(Bk)w1(Bj)]11/pCj=|λj|C||f||H˙Kp(w1,w2). (3.24)

    To estimate M1, we denote that ˜bj(x)=bj(x)|αj|=mj1α!(Dαbj)2Qxα. Then Qmj(bj;x,y)=Qmj(˜bj;x,y). We write, by the moment condition of aj,

    ˜Fbt(aj)(x)=Rn[Ft(x,y)|xy|mFt(x,0)|x|m]Rm1(˜b1;x,y)Rm2(˜b2;x,y)aj(y)dy+RnFt(x,0)|x|m[Rm1(˜b1;x,y)Rm2(˜b2;x,y)Rm1(˜b1;x,0)Rm2(˜b2;x,0)]aj(y)dy|α2|=m2Rn[Ft(x,y)(xy)α2|xy|mFt(x,0)xα2|x|m]Rm1(˜b1;x,y)Dα2˜b2(x)aj(y)dy|α2|=m2RnFt(x,0)xα2|x|m[Rm1(˜b1;x,y)Rm1(˜b1;x,0)]Dα2˜b2(x)aj(y)dy|α1|=m1Rn[Ft(x,y)(xy)α1|xy|mFt(x,0)xα1|x|m]Rm2(˜b2;x,y)Dα1˜b1(x)aj(y)dy|α1|=m1RnFt(x,0)xα1|x|m[Rm2(˜b2;x,y)Rm2(˜b2;x,0)]Dα1˜b1(x)aj(y)dy+|α1|=m1,|α2|=m2Rn[Ft(x,y)(xy)α1+α2|xy|mFt(x,0)xα1+α2|x|m]Dα1˜b1(x)Dα2˜b2(x)aj(y)dy. (3.25)

    Going through a similar argument to Theorem 2, we obtain

    |˜Tb(aj)(x)|C2j=1(|αj|=mj||Dαjbj||BMO)[2j2k(n+1)+2jε2k(n+ε)]||aj||Lp(w2)(Bjw2(y)1/(p1)dy)(p1)/p+C|α1|=m1||Dα1b1||BMO|α2|=m2[2j2k(n+1)+2jε2k(n+ε)]|Dα2˜b2(x)|||aj||Lp(w2)×(Bjw2(y)1/(p1)dy)(p1)/p+C|α2|=m2||Dα2b2||BMO|α1|=m1[2j2k(n+1)+2jε2k(n+ε)]|Dα1˜b1(x)|||aj||Lp(w2)×(Bjw2(y)1/(p1)dy)(p1)/p+C|α1|=m1,|α2|=m1[2j2k(n+1)+2jε2k(n+ε)]|Dα1˜b1(x)||Dα2˜b2(x)|||aj||Lp(w2)×(Bjw2(y)1/(p1)dy)(p1)/pC2j=1(|αj|=mj||Dαjbj||BMO)[2j2k(n+1)+2jε2k(n+ε)][w1(Bj)]1/p1(Bjw2(y)1/(p1)dy)(p1)/p+C|α1|=m1||Dα1b1||BMO|α2|=m2[2j2k(n+1)+2jε2k(n+ε)]|Dα2˜b2(x)|[w1(Bj)]1/p1×(Bjw2(y)1/(p1)dy)(p1)/p+C|α2|=m2||Dα2b2||BMO|α1|=m1[2j2k(n+1)+2jε2k(n+ε)]|Dα1˜b1(x)|[w1(Bj)]1/p1×(Bjw2(y)1/(p1)dy)(p1)/p+C|α1|=m1,|α2|=m1[2j2k(n+1)+2jε2k(n+ε)]|Dα1˜b1(x)||Dα2˜b2(x)|[w1(Bj)]1/p1×(Bjw2(y)1/(p1)dy)(p1)/p, (3.26)

    thus

    M1C2j=1(|αj|=mj||Dαjbj||BMO)k=[w1(Bk)]11/pk1j=|λj|[2j2k(n+1)+2jε2k(n+ε)]×[w1(Bj)]1/p1(Bjw2(y)1/(p1)dy)(p1)/p[w2(Bk)]1/p+C|α1|=m1||Dα1b1||BMOk=[w1(Bk)]11/pk1j=|λj||α2|=m2[2j2k(n+1)+2jε2k(n+ε)]×[w1(Bj)]1/p1(Bjw2(y)1/(p1)dy)(p1)/p(Bk|Dα2˜b2(x)|pw2(x)dx)1/p+C|α2|=m2||Dα2b2||BMOk=[w1(Bk)]11/pk1j=|λj||α1|=m1[2j2k(n+1)+2jε2k(n+ε)]×[w1(Bj)]1/p1(Bjw2(y)1/(p1)dy)(p1)/p(Bk|Dα1˜b1(x)|pw2(x)dx)1/p+C|α1|=m1,|α2|=m1k=[w1(Bk)]11/pk1j=|λj|[2j2k(n+1)+2jε2k(n+ε)][w1(Bj)]1/p1×(Bjw2(y)1/(p1)dy)(p1)/p(Bk|Dα1˜b1(x)Dα2˜b2(x)|pw2(x)dx)1/pCj=|λj|k=j+1[2j2k(n+1)+2jε2k(n+ε)][w1(Bk)w1(Bj)|Bj||Bk|]11/p[w2(Bk)w2(Bj)|Bj||Bk|]1/p|Bk|Cj=|λj|k=j+1[2jk+2(jk)ε]Cj=|λj|C||f||H˙Kp(w1,w2). (3.27)

    This completes the proof of Theorem 4.

    Now we apply the theorems of this paper to some concrete including Littlewood-Paley operators, Marcinkiewicz operators and the Bochner-Riesz operator.

    Example 1. Littlewood-Paley operators.

    Fixed ε>0 and μ>(3n+2)/n. Let ψ be a fixed function which satisfies:

    (1) Rnψ(x)dx=0,

    (2) |ψ(x)|C(1+|x|)(n+1),

    (3) |ψ(x+y)ψ(x)|C|y|ε(1+|x|)(n+1+ε) when 2|y|<|x|.

    We denote that Γ(x)={(y,t)Rn+1+:|xy|<t} and the characteristic function of Γ(x) by χΓ(x). The Littlewood-Paley multilinear operators are defined by (see [13]),

    gAψ(f)(x)=(0|FAt(f)(x)|2dtt)1/2,
    SAψ(f)(x)=[Γ(x)|FAt(f)(x,y)|2dydttn+1]1/2

    and

    gAμ(f)(x)=[Rn+1+(tt+|xy|)nμ|FAt(f)(x,y)|2dydttn+1]1/2,

    where

    FAt(f)(x)=Rnlj=1Rmj+1(Aj;x,y)|xy|mψt(xy)f(y)dy,
    FAt(f)(x,y)=Rnlj=1Rmj+1(Aj;x,z)|xz|mf(z)ψt(yz)dz,

    and ψt(x)=tnψ(x/t) for t>0. The variants of gAψ, SAψ and gAμ are defined by

    ˜gAψ(f)(x)=(0|˜FAt(f)(x)|2dtt)1/2,
    ˜SAψ(f)(x)=[Γ(x)|˜FAt(f)(x,y)|2dydttn+1]1/2,

    and

    ˜gAμ(f)(x)=[Rn+1+(tt+|xy|)nμ|˜FAt(f)(x,y)|2dydttn+1]1/2,

    where

    ˜FAt(f)(x)=Rnlj=1Qmj+1(Aj;x,y)|xy|mψt(xy)f(y)dy,

    and

    ˜FAt(f)(x,y)=Rnlj=1Qmj+1(Aj;x,z)|xz|mψt(yz)f(z)dz.

    Set Ft(f)(y)=fψt(y). We also define that

    gψ(f)(x)=(0|Ft(f)(x)|2dtt)1/2,
    Sψ(f)(x)=(Γ(x)|Ft(f)(y)|2dydttn+1)1/2,

    and

    gμ(f)(x)=(Rn+1+(tt+|xy|)nμ|Ft(f)(y)|2dydttn+1)1/2,

    which are the Littlewood-Paley operators (see [19]). Let H be the space

    H={h:||h||=(0|h(t)|2dt/t)1/2<},

    or

    H={h:||h||=(Rn+1+|h(y,t)|2dydt/tn+1)1/2<},

    then, for each fixed xRn, FAt(f)(x) and FAt(f)(x,y) may be viewed as the mapping from [0,+) to H, and it is clear that

    gAψ(f)(x)=||FAt(f)(x)||,   gψ(f)(x)=||Ft(f)(x)||,
    SAψ(f)(x)=||χΓ(x)FAt(f)(x,y)||,  Sψ(f)(x)=||χΓ(x)Ft(f)(y)||,

    and

    gAμ(f)(x)=||(tt+|xy|)nμ/2FAt(f)(x,y)||, gμ(f)(x)=||(tt+|xy|)nμ/2Ft(f)(y)||.

    It is easy to see that gψ, Sψ and gμ satisfy the conditions of Theorems 1–4, thus Theorems 1–4 hold for gAψ and ˜gAψ, SAψ and ˜SAψ, gAμ and ˜gAμ.

    Example 2. Marcinkiewicz operators.

    Fixed λ>max(1,2n/(n+2)) and 0<γ1. Let Ω be homogeneous of degree zero on Rn with Sn1Ω(x)dσ(x)=0. Assume that ΩLipγ(Sn1). The Marcinkiewicz multilinear operators are defined by

    μAΩ(f)(x)=(0|FAt(f)(x)|2dtt3)1/2,
    μAS(f)(x)=[Γ(x)|FAt(f)(x,y)|2dydttn+3]1/2,

    and

    μAλ(f)(x)=[Rn+1+(tt+|xy|)nλ|FAt(f)(x,y)|2dydttn+3]1/2,

    where

    FAt(f)(x)=|xy|tlj=1Rmj+1(Aj;x,y)|xy|mΩ(xy)|xy|n1f(y)dy,

    and

    FAt(f)(x,y)=|yz|tlj=1Rmj+1(Aj;y,z)|yz|mΩ(yz)|yz|n1f(z)dz;

    The variants of μAΩ, μAS and μAλ are defined by

    ˜μAΩ(f)(x)=(0|˜FAt(f)(x)|2dtt3)1/2,
    ˜μAS(f)(x)=[Γ(x)|˜FAt(f)(x,y)|2dydttn+3]1/2,

    and

    ˜μAλ(f)(x)=[Rn+1+(tt+|xy|)nλ|˜FAt(f)(x,y)|2dydttn+3]1/2,

    where

    ˜FAt(f)(x)=|xy|tlj=1Qmj+1(Aj;x,y)|xy|mΩ(xy)|xy|n1f(y)dy,

    and

    ˜FAt(f)(x,y)=|yz|tlj=1Qmj+1(Aj;y,z)|yz|mΩ(yz)|yz|n1f(z)dz.

    Set

    Ft(f)(x)=|xy|tΩ(xy)|xy|n1f(y)dy;

    We also define that

    μΩ(f)(x)=(0|Ft(f)(x)|2dtt3)1/2,
    μS(f)(x)=(Γ(x)|Ft(f)(y)|2dydttn+3)1/2,

    and

    μλ(f)(x)=(Rn+1+(tt+|xy|)nλ|Ft(f)(y)|2dydttn+3)1/2,

    which are the Marcinkiewicz operators (see [20]). Let H be the space

    H={h:||h||=(0|h(t)|2dt/t3)1/2<},

    or

    H={h:||h||=(Rn+1+|h(y,t)|2dydt/tn+3)1/2<}.

    Then, it is clear that

    μAΩ(f)(x)=||FAt(f)(x)||,   μΩ(f)(x)=||Ft(f)(x)||,
    μAS(f)(x)=||χΓ(x)FAt(f)(x,y)||,  μS(f)(x)=||χΓ(x)Ft(f)(y)||,

    and

    μAλ(f)(x)=||(tt+|xy|)nλ/2FAt(f)(x,y)||,  μλ(f)(x)=||(tt+|xy|)nλ/2Ft(f)(y)||.

    It is easy to see that μΩ, μS and μλ satisfy the conditions of Theorems 1–4, thus Theorems 1–4 hold for μAΩ and ˜μAΩ, μAS and ˜μAS, μAλ and ˜μAλ.

    Example 3. Bochner-Riesz operator.

    Let δ>(n1)/2, Bδt(f^)(ξ)=(1t2|ξ|2)δ+ˆf(ξ) and Bδt(z)=tnBδ(z/t) for t>0. Set

    FAδ,t(f)(x)=Rnlj=1Rmj+1(Aj;x,y)|xy|mBδt(xy)f(y)dy,

    and

    ˜FAδ,t(f)(x)=Rnlj=1Qmj+1(Aj;x,y)|xy|mBδt(xy)f(y)dy.

    The maximal Bochner-Riesz multilinear operator and its the variants are defined by

    BAδ,(f)(x)=supt>0|BAδ,t(f)(x)|  and  ˜BAδ,(f)(x)=supt>0|˜BAδ,t(f)(x)|.

    We also define that

    Bδ,(f)(x)=supt>0|Bδt(f)(x)|,

    which is the maximal Bochner-Riesz operator (see [14]). Let H be the space H={h:||h||=supt>0|h(t)|<}, then

    BAδ,(f)(x)=||BAδ,t(f)(x)||,  Bδ(f)(x)=||Bδt(f)(x)||.

    It is easy to see that Bδ, satisfies the conditions of Theorems 1–4, thus Theorems 1–4 hold for BAδ, and ˜BAδ,.

    Project supported by Scientific Research Fund of Hunan Provincial Education Departments (19A347).

    No conflict of interest.



    [1] J. Alvarez, R. J. Babgy, D. S. Kurtz, C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195–209.
    [2] M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc., 133 (2005), 3535–3542. https://doi.org/10.1090/S0002-9939-05-07892-5 doi: 10.1090/S0002-9939-05-07892-5
    [3] W. G. Chen, G. E. Hu, Weak type (H1, L1) estimate for multilinear singular integral operator, Adv. Math., 30 (2001), 63–69.
    [4] J. Cohen, A sharp estimate for a multilinear singular integral on Rn, Indiana U. Math. J., 30 (1981), 693–702.
    [5] J. Cohen, J. Gosselin, A BMO estimate for multilinear singular integral, Illinois J. Math., 30 (1986), 445–464.
    [6] R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [7] J. Garcia-Cuerva, M. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, P. Lond. Math. Soc., 69 (1994), 605–628. https://doi.org/10.1112/plms/s3-69.3.605 doi: 10.1112/plms/s3-69.3.605
    [8] J. Garcia-Cuerva, J. R. de Francia, Weighted norm inequalities and related topics, 1985.
    [9] E. Harboure, C. Segovia, J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of p, Illinois J. Math., 41 (1997), 676–700.
    [10] E. Hernandez, G. Weiss, D. C. Yang, The ϕ-transform and wavelet characterizations of Herz-type spaces, Collect. Math., 47 (1996), 285–320.
    [11] E. Hernandez, D. C. Yang, Interpolation of Herz-type Hardy spaces, Illinois J. Math., 42 (1998), 564–581.
    [12] L. Z. Liu, Weighted weak type (H1, L1) estimates for commutators of Littlewood-Paley operator, Indian J. Math., 45 (2003), 71–78.
    [13] L. Z. Liu, Weighted endpoint estimates for multilinear Littlewood-Paley operators, Acta Math. Univ. Comenianae, 73 (2004), 55–67.
    [14] S. Z. Lu, Four lectures on real Hp spaces, NI: World Scientific, River Edge, 1995.
    [15] S. Z. Lu, D. C. Yang, The decomposition of the weighted Herz spaces on Rn and its applications, Chinese Sci. Abstr. Ser. A, 38 (1995), 147–158.
    [16] S. Z. Lu, D. C. Yang, The weighted Herz type Hardy spaces and its applications, Chinese Sci. Abstr. Ser. A, 38 (1995), 662–673.
    [17] B. H. Qui, Weighted Hardy spaces, Math. Nachr., 103 (1981), 45–62.
    [18] E. M. Stein, T. S. Murphy, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton: Princeton University Press, 1993.
    [19] A. Torchinsky, Real variable methods in harmonic analysis, New York: Academic Press, 1986.
    [20] A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60/61 (1990), 235–243.
  • This article has been cited by:

    1. Xiuyun Xia, Huatao Chen, Hao Tian, Ye Wang, Yadan Shi, Sharp and Weighted Boundedness for Multilinear Integral Operators, 2024, 86, 1338-9750, 185, 10.2478/tmmp-2024-0017
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1839) PDF downloads(68) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog