Research article

Long-time dynamics of a stochastic multimolecule oscillatory reaction model with Poisson jumps

  • Received: 05 July 2021 Accepted: 18 November 2021 Published: 23 November 2021
  • MSC : 34E10, 60H10, 60J75

  • This paper reveals dynamical behaviors in the stochastic multimolecule oscillatory reaction model with Poisson jumps. First, this system is proved to have a unique global positive solution via the Lyapunov technique. Second, the existence and uniqueness of general random attractors for its stochastic homeomorphism flow is proved by the comparison theorem, and meanwhile, a criterion for the existence of singleton sets is obtained. Finally, numerical simulations are used to illustrate the predicted random attractors.

    Citation: Yongchang Wei, Zongbin Yin. Long-time dynamics of a stochastic multimolecule oscillatory reaction model with Poisson jumps[J]. AIMS Mathematics, 2022, 7(2): 2956-2972. doi: 10.3934/math.2022163

    Related Papers:

  • This paper reveals dynamical behaviors in the stochastic multimolecule oscillatory reaction model with Poisson jumps. First, this system is proved to have a unique global positive solution via the Lyapunov technique. Second, the existence and uniqueness of general random attractors for its stochastic homeomorphism flow is proved by the comparison theorem, and meanwhile, a criterion for the existence of singleton sets is obtained. Finally, numerical simulations are used to illustrate the predicted random attractors.



    加载中


    [1] L. Arnold, Random dynamical systems, Berlin: Springer, 1998. doi: 10.1007/978-3-662-12878-7.
    [2] L. Arnold, G. Bleckert, K. R. Schenk-Hoppe, The stochastic Brusselator: parametric noise destroys Hopf bifurcation, In: Stochastic dynamics, Berlin: Springer, 1999, 71–92. doi: 10.1007/0-387-22655-9-4.
    [3] V. Bally, D. Talay, The law of the euler scheme for stochastic differential equations, Probab. Th. Rel. Fields, 104 (1996), 43–60. doi: 10.1007/BF01303802. doi: 10.1007/BF01303802
    [4] J. Bao, X. Mao, G. Yin, C. Yuan, Completive Lotak-Volterra population dynamics with jump, Nonlinear Anal. Theor., 74 (2011), 6601–6616. doi: 10.1016/j.na.2011.06.043. doi: 10.1016/j.na.2011.06.043
    [5] J. Bao, C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119. doi: 10.1007/s10440-011-9633-7. doi: 10.1007/s10440-011-9633-7
    [6] T. Biancalani, D. Fanelli, F. Di Patti, Stochastic Turing patterns in the Brusselator model, Phys. Rev. E, 81 (2010), 046215. doi: 10.1103/PhysRevE.81.046215. doi: 10.1103/PhysRevE.81.046215
    [7] D. A. Dawson, Galerkin approximation of nonlinear Markov processes, In: Statistics and related topics, North Holland: Amsterdam, 1981,317–339.
    [8] N. T. Dieu, N. H. Du, G. Yin, Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15 (2016), 1062–1084. doi: 10.1137/15M1043315. doi: 10.1137/15M1043315
    [9] A. A. Golovin, B. J. Matkowski, V. A. Volpert, Turing pattern formation in the Brusselator model with superdiffusion, SIAM J. Appl. Math., 69 (2008), 251–272. doi: 10.1137/070703454. doi: 10.1137/070703454
    [10] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge: Cambridge University Press, 1981.
    [11] Z. Huang, J. Cao, G. Long, Long-time behavior of stochastic multimolecular reaction model, Physica A, 503 (2018), 331–344. doi: 10.1016/j.physa.2018.02.164. doi: 10.1016/j.physa.2018.02.164
    [12] G. Kager, M. K. R. Scheutzow, Generation of one-sided random dynamical systems by stochastic differential equations, Electron. J. Probab., 2 (1997), 1–17. doi: 10.1214/EJP.v2-22. doi: 10.1214/EJP.v2-22
    [13] G. Li, Q. Yang, Y. Wei, Dynamics of stochastic heroin epidemic model with lévy jumps, J. Appl. Anal. Comput., 8 (2018), 998–1010. doi: 10.11948/2018.998. doi: 10.11948/2018.998
    [14] P. Lipster, A strong law of large numbers for local martingales, Stachastics, 3 (1980), 217–218. doi: 10.1080/17442508008833146. doi: 10.1080/17442508008833146
    [15] X. Mao, Stochastic differential equations and their applications, Horwood: Chinester, 2007. doi: 10.1533/9780857099402.
    [16] X. Mao, G. Marion, E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. doi: 10.1016/S0304-4149(01)00126-0. doi: 10.1016/S0304-4149(01)00126-0
    [17] J. Nee, A note for the solution of the Brusselator equation, Contemporary Analysis and Applied Mathematics, 1 (2013), 49–59.
    [18] G. Nicolis, I. Prigogine, Self-organization in nonequilibrium systems, New York: Wiley, 1997.
    [19] H. Qiao, J. Duan, Topological equivalence for discontinuous random dynamical systems and applications, Stoch. Dyn., 14 (2014), 1350007. doi: 10.1142/S021949371350007X. doi: 10.1142/S021949371350007X
    [20] K. R. Schenk-Hoppé, Random attractors-general properties, existence and applications to stochastic bifurcation theory, Discrete Cont. Dyn. Syst., 4 (1998), 99–130. doi: 10.3934/dcds.1998.4.99. doi: 10.3934/dcds.1998.4.99
    [21] E. E. Sel'kov, Self-oscillations in glycolysis. 1. A simple kinetic model, Eur. J. Biochem., 4 (1968), 79–86. doi: 10.1111/j.1432-1033.1968.tb00175.x. doi: 10.1111/j.1432-1033.1968.tb00175.x
    [22] M. Sun, Y. Tan, L. Chen, Dynamical behaviors of the brusselator system with impulsive input, J. Math. Chem., 44 (2008), 637–649. doi: 10.1007/s10910-008-9362-y. doi: 10.1007/s10910-008-9362-y
    [23] Y. Tang, W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869–883. doi: 10.1016/j.camwa.2003.05.012. doi: 10.1016/j.camwa.2003.05.012
    [24] J. J. Tyson, J. C. Light, Properties of two-component bimolecular and trimolecular chemical reaction systems, J. Chem. Phys., 59 (1973), 4164. doi: 10.1063/1.1680609. doi: 10.1063/1.1680609
    [25] Y. Wei, Q. Yang, Dynamics of the stochastic low concentration trimolecular oscillatory chemical system with jumps, Commun. Nonlinear Sci. Numer. Simulat., 59 (2018), 396–408. doi: 10.1016/j.cnsns.2017.11.019. doi: 10.1016/j.cnsns.2017.11.019
    [26] Y. Yang, Y. Zhao, D. Jiang, The dynamics of the stochastic multi-molecule biochemical reaction model, J. Math. Chem., 52 (2014), 1477–1495. doi: 10.1007/s10910-014-0324-2. doi: 10.1007/s10910-014-0324-2
    [27] W. Zhang, Existence of closed orbits for a differential equation model concerning multimolecule, Appl. Math. Mech., 14 (1993), 589–596. doi: 10.1007/BF02451369. doi: 10.1007/BF02451369
    [28] X. Zou, K. Wang, Numerical simulations and modeling for stochastic biological systems with jumps, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1557–1568. doi: 10.1016/j.cnsns.2013.09.010. doi: 10.1016/j.cnsns.2013.09.010
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1452) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog