In this paper, we introduce the concept of $ j $-hyperfilters, for all positive integers $ 1\leq j \leq n $ and $ n \geq 2 $, on (ordered) $ n $-ary semihypergroups and establish the relationships between $ j $-hyperfilters and completely prime $ j $-hyperideals of (ordered) $ n $-ary semihypergroups. Moreover, we investigate the properties of the relation $ \mathcal{N} $, which is generated by the same principal hyperfilters, on (ordered) $ n $-ary semihypergroups. As we have known from [
Citation: Jukkrit Daengsaen, Sorasak Leeratanavalee. Semilattice strongly regular relations on ordered $ n $-ary semihypergroups[J]. AIMS Mathematics, 2022, 7(1): 478-498. doi: 10.3934/math.2022031
In this paper, we introduce the concept of $ j $-hyperfilters, for all positive integers $ 1\leq j \leq n $ and $ n \geq 2 $, on (ordered) $ n $-ary semihypergroups and establish the relationships between $ j $-hyperfilters and completely prime $ j $-hyperideals of (ordered) $ n $-ary semihypergroups. Moreover, we investigate the properties of the relation $ \mathcal{N} $, which is generated by the same principal hyperfilters, on (ordered) $ n $-ary semihypergroups. As we have known from [
[1] | S. M. Anvariyeh, S. Momeni, $n$-ary hypergroups associated with $n$-ary relations, Bull. Korean Math. Soc., 50 (2013), 507–524. |
[2] | Y. Cao, Chain decompositions of ordered semigroups, Semigroup Forum, 65 (2002), 83–106. doi: 10.1007/s002330010120. doi: 10.1007/s002330010120 |
[3] | T. Changphas, B. Davvaz, Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math., 33 (2014), 425–432. |
[4] | P. Corsini, Prolegomena of hypergroup theory, 1 Ed., Tricesimo: Aviani Editore, 1993. |
[5] | P. Corsini, V. Leoreanu-Fotea, Applications of hyperstructure theory, Advances Mathematics, Dordrecht: Kluwer Academic Publishers, 2003. doi: 10.1007/978-1-4757-3714-1. |
[6] | I. Cristea, M. Ștefǎnescu, Binary relations and reduced hypergroups, Discrete Math., 308 (2008), 3537–3544. doi: 10.1016/j.disc.2007.07.011. doi: 10.1016/j.disc.2007.07.011 |
[7] | I. Cristea, Ștefǎnescu, Hypergroups and $n$-ary relations, Eur. J. Combin., 31 (2010), 780–789. doi: 10.1016/j.ejc.2009.07.005. doi: 10.1016/j.ejc.2009.07.005 |
[8] | J. Daengsaen, S. Leeratanavalee, B. Davvaz, On minimal and maximal hyperideals in $n$-ary semihypergroups, Mathematics, 8 (2020), 1656. doi: 10.3390/math8101656. doi: 10.3390/math8101656 |
[9] | J. Daengsaen, S. Leeratanavalee, Regularities in ordered n-ary semihypergroups, Mathematics, 9 (2021), 1857. doi: 10.3390/math9161857. doi: 10.3390/math9161857 |
[10] | B. Davvaz, Semihypergroup theory, 1 Ed., London: Academic Press, 2016. doi: 10.1016/C2015-0-06681-3. |
[11] | B. Davvaz, P. Corsini, T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, Eur. J. Combin., 44 (2015). 208–217. doi: 10.1016/j.ejc.2014.08.006. |
[12] | B. Davvaz, W. A. Dudek, S. Mirvakili, Neutral elements, fundamental relations and $n$-ary hypersemigroups, Internat. J. Algebra Comput., 19 (2009), 567–583. doi: 10.1142/S0218196709005226. doi: 10.1142/S0218196709005226 |
[13] | B. Davvaz, W. A. Dudek, T. Vougiouklis, A generalization of $n$-ary algebraic systems, Commun. Algebra, 37 (2009), 1248–1263. doi: 10.1080/00927870802466835. doi: 10.1080/00927870802466835 |
[14] | B. Davvaz, T. Vougiouklis, $n$-ary hypergroups, Iran. J. Sci. Technol., 30 (2006), 165–174. |
[15] | W. A. Dudek, I. Groździńska, On ideals in regular $n$-semigroups, Mat. Bilten, 4(1980), 35–44. |
[16] | L. Fuchs, Partially ordered algebraic systems, 1 Ed., London: Pergemon Press, 1963. |
[17] | A. M. W. Glass, Partially ordered groups, 1 Ed., Singapore: World Scientific, 1999. |
[18] | D. Heidari, B. Davvaz, On ordered hyperstructures, UPB Sci. Bull. Ser. A, Appl. Math. Phys., 73 (2011), 85–96. |
[19] | S. Hobanthad, On $0$-minimal $(0, 2)$-bi-hyperideals of semihypergroups, Thai J. Math., 19 (2021), 399–405. |
[20] | T. Kumduang, S. Leeratanavalee, Menger hyperalgebras and their representations, Commun. Algebra, 49 (2021), 1513–1533. doi: 10.1080/00927872.2020.1839089. doi: 10.1080/00927872.2020.1839089 |
[21] | N. Kehayopulu, On semilattice congruences on hypersemigroups and on ordered hypersemigroups, Eur. J. Pure Appl. Math., 11 (2018), 476–492. doi: 10.29020/nybg.ejpam.v11i2.3266. doi: 10.29020/nybg.ejpam.v11i2.3266 |
[22] | N. Kehayopulu, G. Lepouras, M. Tsingelis, On right regular and right duo ordered semigroups, Math. Japonica, 2 (1997), 311–315. |
[23] | N. Kehayopulu, M. Tsingelis, On ordered semigroups which are semilattices of simple and regular semigroups, Commun. Algebra, 41 (2015), 3252–3260. doi: 10.1080/00927872.2012.682674. doi: 10.1080/00927872.2012.682674 |
[24] | N. Kehayopulu, M. Tsingelis, On the decomposition of prime ideals of ordered semigroups into their $\mathcal{N}$-classes, Semigroup Forum, 47 (1993), 393–395. doi: 10.1007/BF02573777. doi: 10.1007/BF02573777 |
[25] | S. K. Lee, S. S Lee, Left (right) filters on po-semigroups, Korean J. Math., 8 (2000), 43–45. |
[26] | V. Leoreanu-Fotea, About the simplifiable cyclic semihypergroups, Ital. J. Pure Appl. Math., 7 (2000), 69–76. |
[27] | V. Leoreanu-Fotea, B. Davvaz, $n$-hypergroups and binary relations, Eur. J. Combin., 29 (2008), 1207–1218. doi: 10.1016/j.ejc.2007.06.025. doi: 10.1016/j.ejc.2007.06.025 |
[28] | F. Marty, Sur une generalization de la notion de group, Proc. 8th Congress Math. Scandenaves, Stockholm, Sweden, 1934, 45–49. |
[29] | S. Omidi, B. Davvaz, A short note on the relation $\mathcal{N}$ in ordered semihypergroups, GU. J. Sci., 29 (2016), 659–662. |
[30] | P. Pornsurat, P. P. Ayutthaya, B. Pibaljommee, Prime $i$-ideals in ordered $n$-ary semigroups, Mathematics, 9 (2021), 491. doi: 10.3390/math9050491. doi: 10.3390/math9050491 |
[31] | J. Tang, B. Davvaz, Study on Green's relations in ordered semihypergroups, Soft Comput., 24 (2020), 11189–11197. doi: 10.1007/s00500-020-05035-y. doi: 10.1007/s00500-020-05035-y |
[32] | J. Tang, B. Davvaz, Y. Luo, Hyperfilters and fuzzy hyperfilters of ordered semihypergroups, J. Intell. Fuzzy Syst., 29 (2015), 75–84. doi: 10.3233/IFS-151571. doi: 10.3233/IFS-151571 |
[33] | J. Tang, X. Feng, B. Davvaz, X. Y. Xie, A further study on ordered regular equivalence relations in ordered semihypergroups, Open Math., 16 (2018), 168–184. doi: 10.1515/math-2018-0016. doi: 10.1515/math-2018-0016 |
[34] | Q. S. Zhu, Z. Popovic, Decompositions of ordered semigroups into a chain of $k$-Archimedean ordered semigroups, Filomat, 30 (2016), 2771–2780. doi: 10.2298/FIL1610771Q. doi: 10.2298/FIL1610771Q |