Research article Special Issues

Semilattice strongly regular relations on ordered $ n $-ary semihypergroups

  • Received: 25 April 2021 Accepted: 30 August 2021 Published: 13 October 2021
  • MSC : 20N20, 20N15, 06F05

  • In this paper, we introduce the concept of $ j $-hyperfilters, for all positive integers $ 1\leq j \leq n $ and $ n \geq 2 $, on (ordered) $ n $-ary semihypergroups and establish the relationships between $ j $-hyperfilters and completely prime $ j $-hyperideals of (ordered) $ n $-ary semihypergroups. Moreover, we investigate the properties of the relation $ \mathcal{N} $, which is generated by the same principal hyperfilters, on (ordered) $ n $-ary semihypergroups. As we have known from [21] that the relation $ \mathcal{N} $ is the least semilattice congruence on semihypergroups, we illustrate by counterexample that the similar result is not necessarily true on $ n $-ary semihypergroups where $ n\geq 3 $. However, we provide a sufficient condition that makes the previous conclusion true on $ n $-ary semihypergroups and ordered $ n $-ary semihypergroups where $ n\geq 3 $. Finally, we study the decomposition of prime hyperideals and completely prime hyperideals by means of their $ \mathcal{N} $-classes. As an application of the results, a related problem posed by Tang and Davvaz in [31] is solved.

    Citation: Jukkrit Daengsaen, Sorasak Leeratanavalee. Semilattice strongly regular relations on ordered $ n $-ary semihypergroups[J]. AIMS Mathematics, 2022, 7(1): 478-498. doi: 10.3934/math.2022031

    Related Papers:

  • In this paper, we introduce the concept of $ j $-hyperfilters, for all positive integers $ 1\leq j \leq n $ and $ n \geq 2 $, on (ordered) $ n $-ary semihypergroups and establish the relationships between $ j $-hyperfilters and completely prime $ j $-hyperideals of (ordered) $ n $-ary semihypergroups. Moreover, we investigate the properties of the relation $ \mathcal{N} $, which is generated by the same principal hyperfilters, on (ordered) $ n $-ary semihypergroups. As we have known from [21] that the relation $ \mathcal{N} $ is the least semilattice congruence on semihypergroups, we illustrate by counterexample that the similar result is not necessarily true on $ n $-ary semihypergroups where $ n\geq 3 $. However, we provide a sufficient condition that makes the previous conclusion true on $ n $-ary semihypergroups and ordered $ n $-ary semihypergroups where $ n\geq 3 $. Finally, we study the decomposition of prime hyperideals and completely prime hyperideals by means of their $ \mathcal{N} $-classes. As an application of the results, a related problem posed by Tang and Davvaz in [31] is solved.



    加载中


    [1] S. M. Anvariyeh, S. Momeni, $n$-ary hypergroups associated with $n$-ary relations, Bull. Korean Math. Soc., 50 (2013), 507–524.
    [2] Y. Cao, Chain decompositions of ordered semigroups, Semigroup Forum, 65 (2002), 83–106. doi: 10.1007/s002330010120. doi: 10.1007/s002330010120
    [3] T. Changphas, B. Davvaz, Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math., 33 (2014), 425–432.
    [4] P. Corsini, Prolegomena of hypergroup theory, 1 Ed., Tricesimo: Aviani Editore, 1993.
    [5] P. Corsini, V. Leoreanu-Fotea, Applications of hyperstructure theory, Advances Mathematics, Dordrecht: Kluwer Academic Publishers, 2003. doi: 10.1007/978-1-4757-3714-1.
    [6] I. Cristea, M. Ștefǎnescu, Binary relations and reduced hypergroups, Discrete Math., 308 (2008), 3537–3544. doi: 10.1016/j.disc.2007.07.011. doi: 10.1016/j.disc.2007.07.011
    [7] I. Cristea, Ștefǎnescu, Hypergroups and $n$-ary relations, Eur. J. Combin., 31 (2010), 780–789. doi: 10.1016/j.ejc.2009.07.005. doi: 10.1016/j.ejc.2009.07.005
    [8] J. Daengsaen, S. Leeratanavalee, B. Davvaz, On minimal and maximal hyperideals in $n$-ary semihypergroups, Mathematics, 8 (2020), 1656. doi: 10.3390/math8101656. doi: 10.3390/math8101656
    [9] J. Daengsaen, S. Leeratanavalee, Regularities in ordered n-ary semihypergroups, Mathematics, 9 (2021), 1857. doi: 10.3390/math9161857. doi: 10.3390/math9161857
    [10] B. Davvaz, Semihypergroup theory, 1 Ed., London: Academic Press, 2016. doi: 10.1016/C2015-0-06681-3.
    [11] B. Davvaz, P. Corsini, T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, Eur. J. Combin., 44 (2015). 208–217. doi: 10.1016/j.ejc.2014.08.006.
    [12] B. Davvaz, W. A. Dudek, S. Mirvakili, Neutral elements, fundamental relations and $n$-ary hypersemigroups, Internat. J. Algebra Comput., 19 (2009), 567–583. doi: 10.1142/S0218196709005226. doi: 10.1142/S0218196709005226
    [13] B. Davvaz, W. A. Dudek, T. Vougiouklis, A generalization of $n$-ary algebraic systems, Commun. Algebra, 37 (2009), 1248–1263. doi: 10.1080/00927870802466835. doi: 10.1080/00927870802466835
    [14] B. Davvaz, T. Vougiouklis, $n$-ary hypergroups, Iran. J. Sci. Technol., 30 (2006), 165–174.
    [15] W. A. Dudek, I. Groździńska, On ideals in regular $n$-semigroups, Mat. Bilten, 4(1980), 35–44.
    [16] L. Fuchs, Partially ordered algebraic systems, 1 Ed., London: Pergemon Press, 1963.
    [17] A. M. W. Glass, Partially ordered groups, 1 Ed., Singapore: World Scientific, 1999.
    [18] D. Heidari, B. Davvaz, On ordered hyperstructures, UPB Sci. Bull. Ser. A, Appl. Math. Phys., 73 (2011), 85–96.
    [19] S. Hobanthad, On $0$-minimal $(0, 2)$-bi-hyperideals of semihypergroups, Thai J. Math., 19 (2021), 399–405.
    [20] T. Kumduang, S. Leeratanavalee, Menger hyperalgebras and their representations, Commun. Algebra, 49 (2021), 1513–1533. doi: 10.1080/00927872.2020.1839089. doi: 10.1080/00927872.2020.1839089
    [21] N. Kehayopulu, On semilattice congruences on hypersemigroups and on ordered hypersemigroups, Eur. J. Pure Appl. Math., 11 (2018), 476–492. doi: 10.29020/nybg.ejpam.v11i2.3266. doi: 10.29020/nybg.ejpam.v11i2.3266
    [22] N. Kehayopulu, G. Lepouras, M. Tsingelis, On right regular and right duo ordered semigroups, Math. Japonica, 2 (1997), 311–315.
    [23] N. Kehayopulu, M. Tsingelis, On ordered semigroups which are semilattices of simple and regular semigroups, Commun. Algebra, 41 (2015), 3252–3260. doi: 10.1080/00927872.2012.682674. doi: 10.1080/00927872.2012.682674
    [24] N. Kehayopulu, M. Tsingelis, On the decomposition of prime ideals of ordered semigroups into their $\mathcal{N}$-classes, Semigroup Forum, 47 (1993), 393–395. doi: 10.1007/BF02573777. doi: 10.1007/BF02573777
    [25] S. K. Lee, S. S Lee, Left (right) filters on po-semigroups, Korean J. Math., 8 (2000), 43–45.
    [26] V. Leoreanu-Fotea, About the simplifiable cyclic semihypergroups, Ital. J. Pure Appl. Math., 7 (2000), 69–76.
    [27] V. Leoreanu-Fotea, B. Davvaz, $n$-hypergroups and binary relations, Eur. J. Combin., 29 (2008), 1207–1218. doi: 10.1016/j.ejc.2007.06.025. doi: 10.1016/j.ejc.2007.06.025
    [28] F. Marty, Sur une generalization de la notion de group, Proc. 8th Congress Math. Scandenaves, Stockholm, Sweden, 1934, 45–49.
    [29] S. Omidi, B. Davvaz, A short note on the relation $\mathcal{N}$ in ordered semihypergroups, GU. J. Sci., 29 (2016), 659–662.
    [30] P. Pornsurat, P. P. Ayutthaya, B. Pibaljommee, Prime $i$-ideals in ordered $n$-ary semigroups, Mathematics, 9 (2021), 491. doi: 10.3390/math9050491. doi: 10.3390/math9050491
    [31] J. Tang, B. Davvaz, Study on Green's relations in ordered semihypergroups, Soft Comput., 24 (2020), 11189–11197. doi: 10.1007/s00500-020-05035-y. doi: 10.1007/s00500-020-05035-y
    [32] J. Tang, B. Davvaz, Y. Luo, Hyperfilters and fuzzy hyperfilters of ordered semihypergroups, J. Intell. Fuzzy Syst., 29 (2015), 75–84. doi: 10.3233/IFS-151571. doi: 10.3233/IFS-151571
    [33] J. Tang, X. Feng, B. Davvaz, X. Y. Xie, A further study on ordered regular equivalence relations in ordered semihypergroups, Open Math., 16 (2018), 168–184. doi: 10.1515/math-2018-0016. doi: 10.1515/math-2018-0016
    [34] Q. S. Zhu, Z. Popovic, Decompositions of ordered semigroups into a chain of $k$-Archimedean ordered semigroups, Filomat, 30 (2016), 2771–2780. doi: 10.2298/FIL1610771Q. doi: 10.2298/FIL1610771Q
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2118) PDF downloads(94) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog