Research article

On $ \Phi $-powerful submodules and $ \mathrm{\Phi} $-strongly prime submodules

  • Received: 11 February 2021 Accepted: 25 July 2021 Published: 11 August 2021
  • MSC : 13C13, 13C99

  • Let $ R $ be a commutative ring with identity and $ N $ be a submodule of an $ R $-module $ M $. We say a nonnil submodule $ N $ of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-powerful (resp., $ \mathrm{\Phi} $-strongly prime) submodule, if $ \mathrm{\Phi}(N) $ is a powerful (resp., strongly prime) submodule of a module $ \mathrm{\Phi}(M) $. We show that a nonnil prime submodule $ N $ of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-powerful submodule if and only if it is a $ \mathrm{\Phi} $-strongly prime submodule. Similarly, if every prime submodule of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-strongly prime, then we call it a $ \mathrm{\Phi} $-pseudo-valuation module ($ \mathrm{\Phi} $-PVM). We also prove that a faithful multiplication $ R $-module $ M $ is $ \mathrm{\Phi} $-PVM if and only if some maximal nonnil submodules of $ M $ are $ \mathrm{\Phi} $-powerful. In this perspective, we analyze that $ M $ is $ \mathrm{\Phi} $-PVM if and only if $ R $ is a PVD. In due course, we provide some characterizations of these submodules along with their relationships under certain conditions.

    Citation: Waheed Ahmad Khan, Kiran Farid, Abdelghani Taouti. On $ \Phi $-powerful submodules and $ \mathrm{\Phi} $-strongly prime submodules[J]. AIMS Mathematics, 2021, 6(10): 11610-11619. doi: 10.3934/math.2021674

    Related Papers:

  • Let $ R $ be a commutative ring with identity and $ N $ be a submodule of an $ R $-module $ M $. We say a nonnil submodule $ N $ of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-powerful (resp., $ \mathrm{\Phi} $-strongly prime) submodule, if $ \mathrm{\Phi}(N) $ is a powerful (resp., strongly prime) submodule of a module $ \mathrm{\Phi}(M) $. We show that a nonnil prime submodule $ N $ of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-powerful submodule if and only if it is a $ \mathrm{\Phi} $-strongly prime submodule. Similarly, if every prime submodule of an $ R $-module $ M $ is a $ \mathrm{\Phi} $-strongly prime, then we call it a $ \mathrm{\Phi} $-pseudo-valuation module ($ \mathrm{\Phi} $-PVM). We also prove that a faithful multiplication $ R $-module $ M $ is $ \mathrm{\Phi} $-PVM if and only if some maximal nonnil submodules of $ M $ are $ \mathrm{\Phi} $-powerful. In this perspective, we analyze that $ M $ is $ \mathrm{\Phi} $-PVM if and only if $ R $ is a PVD. In due course, we provide some characterizations of these submodules along with their relationships under certain conditions.



    加载中


    [1] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Commun. Algebra, 36 (2008), 4620–4642. doi: 10.1080/00927870802186805
    [2] D. F. Anderson, A. Badawi, On $\phi$-Prüfer rings and $\phi$-Bezout rings, Houston J. Math., 30 (2004), 331–343.
    [3] D. F. Anderson, A. Badawi, On $\phi$-Dedekind rings and $\phi$-Krull rings, Houston J. Math., 31 (2005), 1007–1022.
    [4] S. E. Atani, S. D. Pishhesari, M. Khoramdel, Some remarks on Prüfer modules, Discuss. Math. Gen. Algebra Appl., 33 (2013), 121–128. doi: 10.7151/dmgaa.1201
    [5] A. Badawi, On $\phi$-Pseudo-valuation rings, In: Advances in commutative ring theory, New York/Basel: Dekker, 1999,101–110.
    [6] A. Badawi, On $\phi$-Mori rings, Houston J. Math., 32 (2006), 1–32.
    [7] A. Y. Darani, M. Rahmatinia, On $\mathrm{\Phi}$-Mori modules, New York J. Math., 21 (2015), 1269–1282.
    [8] A. Y. Darani, Nonnil-noetherian modules over commutative rings, J. Algebr. Syst., 3 (2016), 201–210.
    [9] A. Y. Darani, The study of $\phi$-Powerful ideals, Research project at Faculty of Science, Department of Mathematics and Applications, University of Mohaghegh Ardabili, 2019. Available from: http://repository.uma.ac.ir/id/eprint/8260.
    [10] N. J. Groenewald, D. Ssevviiri, Generalization of nilpotency of ring elements to module elements, Commun. Algebra, 42 (2014), 571–577. doi: 10.1080/00927872.2012.718822
    [11] J. R. Hedstrom, E. G. Houston, Pseudo-valuation domains, Pac. J. Math., 75 (1978), 137–147.
    [12] A. Khaksari, S. Mehry, R. Safakish, On special submodule of modules, B. Iran. Math. Soc., 40 (2014), 1441–1451.
    [13] R. Kumar, A. Gaur, A note on pairs of rings with same prime ideals, 2020, arXiv: 2005.05959v1.
    [14] J. Moghaderi, R. Nekooei, Strongly prime submodules and pseudo-valuation modules, Int. Electron. J. Algebra, 10 (2011), 65–75.
    [15] H. Mostafanasab, A. Y. Darani, On $\phi$-n-absorbing primary ideals of commutative rings, J. Korean Math. Soc., 53 (2016), 549–582. doi: 10.4134/JKMS.j150171
    [16] S. Motmaen, A. Y. Darani, On $\mathrm{\Phi}$-Dedekind, $\mathrm{\Phi}$-Prüfer and $\mathrm{\Phi}$-Bezout modules, Georgian Math. J., 27 (2020), 103–110. doi: 10.1515/gmj-2017-0049
    [17] A. G. Naoum, F. H. Al-Alwan, Dedekind modules, Commun. Algebra, 24 (1996), 397–412.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1916) PDF downloads(87) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog