In this paper, we obtain a concise high-precision approximation for $ \mathcal{K}(r) $:
$ \begin{equation*} \frac{2}{\pi }\mathcal{K}(r){\rm{ }}>{\rm{ }}\frac{22\left( r^{\prime }\right) ^{2}+84r^{\prime }+22}{7\left( r^{\prime }\right) ^{3}+57\left( r^{\prime }\right) ^{2}+57r^{\prime }+7}, \end{equation*} $
which holds for all $ r\in (0, 1) $, where $ \mathcal{K}(r) $ is complete elliptic integral of the first kind and $ r^{\prime } = \sqrt{1-r^{2}} $.
Citation: Ling Zhu. Concise high precision approximation for the complete elliptic integral of the first kind[J]. AIMS Mathematics, 2021, 6(10): 10881-10889. doi: 10.3934/math.2021632
In this paper, we obtain a concise high-precision approximation for $ \mathcal{K}(r) $:
$ \begin{equation*} \frac{2}{\pi }\mathcal{K}(r){\rm{ }}>{\rm{ }}\frac{22\left( r^{\prime }\right) ^{2}+84r^{\prime }+22}{7\left( r^{\prime }\right) ^{3}+57\left( r^{\prime }\right) ^{2}+57r^{\prime }+7}, \end{equation*} $
which holds for all $ r\in (0, 1) $, where $ \mathcal{K}(r) $ is complete elliptic integral of the first kind and $ r^{\prime } = \sqrt{1-r^{2}} $.
[1] | F. Bowman, Introduction to Elliptic Function with Applications, Dover Publications, New York, 1961. |
[2] | P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971. |
[3] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York, 1997. |
[4] | G. D. Anderson, S. L. Qiu, M. Vuorinen, Precise estimates for differences of the Gaussian hypergeometric function, J. Math. Anal. Appl., 215 (1997), 212–234. doi: 10.1006/jmaa.1997.5641 |
[5] | S. Ponnusamy, M. Vuorinen, Univalence and convexity properties for Gaussian hypergeometric functions, Rocky Mountain J. Math., 31 (2001), 327–353. |
[6] | Y. Q. Song, P. G. Zhou, Y. M. Chu, Inequalities for the Gaussian hypergeometric function, Sci. China Math., 57 (2014), 2369–2380. doi: 10.1007/s11425-014-4858-3 |
[7] | M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mountain J. Math., 46 (2016), 679–691. |
[8] | M. K. Wang, Y. M. Chu, Y. Q. Song, Asymptotical formulas for Gaussian and generalized zero-balanced hypergeometric functions, Appl. Math. Comput., 276 (2016), 44–60. |
[9] | M. K. Wang, Y. M. Chu, Refinenemts of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37 (2017), 607–622. doi: 10.1016/S0252-9602(17)30026-7 |
[10] | B. C. Carlson, M. Vuorinen, Inequality of the AGM and the logarithmic mean, SIAM. Rev., 33 (1991), 653–654. |
[11] | M. K. Vamanamurthy, M. Vuorinen, Inequalities for means, J. Math. Anal. Appl., 183 (1994), 155–166. |
[12] | S. L. Qiu, M. K. Vamanamurthy, Sharp estimates for complete elliptic integrals, SIAM. J. Math. Anal., 27 (1996), 823–834. doi: 10.1137/0527044 |
[13] | H. Alzer, Sharp inequalities for the complete elliptic integral of the first kind, Math. Proc. Cambridge Philos. Soc., 124 (1998), 309–314. doi: 10.1017/S0305004198002692 |
[14] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Functional inequalities for hypergeometric functions and complete elliptic integrals, SIAM. J. Math. Anal., 23 (1992), 512–524. doi: 10.1137/0523025 |
[15] | H. Alzer, S. L. Qiu, Monotonicity theorem and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172 (2004), 289–312. doi: 10.1016/j.cam.2004.02.009 |
[16] | Zh. H. Yang, Y. Q. Song, Y. M. Chu, Sharp bounds for the arithmetic-geometric mean, J. Inequal. Appl., 192 (2014), 13. |
[17] | Z. H. Yang, W. M. Qian, Y. M. Chu, W. Zhang, On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714–1726. doi: 10.1016/j.jmaa.2018.03.005 |
[18] | Z. H. Yang, J. F. Tian, Y. R. Zhu, A rational approximation for the complete elliptic integral of the first kind, Mathematics., 8 (2020), 635. doi: 10.3390/math8040635 |