Research article

The Górnicki -Proinov type contraction on quasi-metric spaces

  • Received: 09 February 2021 Accepted: 05 June 2021 Published: 10 June 2021
  • MSC : 47H09, 47H10, 54H25

  • In this manuscript, we look for the answer of the question: Under which conditions the Górnicki-Proinov type contractions possesses a fixed point in the framework of quasi-metric spaces. The observed results are not only generalize but also uniform several existing fixed point theorem in this direction. We also present an example to demonstrate the validity of the obtained main result.

    Citation: A. El-Sayed Ahmed, Andreea Fulga. The Górnicki -Proinov type contraction on quasi-metric spaces[J]. AIMS Mathematics, 2021, 6(8): 8815-8834. doi: 10.3934/math.2021511

    Related Papers:

  • In this manuscript, we look for the answer of the question: Under which conditions the Górnicki-Proinov type contractions possesses a fixed point in the framework of quasi-metric spaces. The observed results are not only generalize but also uniform several existing fixed point theorem in this direction. We also present an example to demonstrate the validity of the obtained main result.



    加载中


    [1] R. P. Agarwal, E. Karapınar, A. Roldan, Fixed point theorems in quasi-metric spaces and applications to multidimensional fixed point theorems on G-metric spaces, J. Nonlinear Convex Anal., 2014, 36.
    [2] C. Alegre, A. Fulga, E. Karapınar, P. Tirado, A Discussion on $p$-Geraghty Contraction on mw-Quasi-Metric Spaces, Mathematics, 8 (2020), 1437. doi: 10.3390/math8091437
    [3] H. H. Al-Sulami, E. Karapınar, F. Khojasteh, A.Roldán, A proposal to the study of contractions in quasi metric spaces, Discrete Dyn. Nat. Soc., 2014, Article ID: 269286.
    [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181
    [5] N. Bilgili, E. Karapınar, B. Samet, Generalized $\alpha$-$\psi$ Contractive Mappings in Quasi-Metric Spaces and Related Fixed Point Theorems, J. Inequal. Appl., 2014.
    [6] R. K. Bisht, A note on the fixed point theorem of Górnicki, J. Fixed Point Theory Appl., 21 (2019), 54. doi: 10.1007/s11784-019-0695-x
    [7] Lj. B. Ciric, On contraction type mappings, Math. Balkanica, 1 (1971), 52–57.
    [8] C. M. Chen, E. Karapınar, I. J. Lin, Periodic points of weaker Meir-Keeler contractive mappings on generalized quasi-metric spaces, Abstract Appl. Anal., 2014, Article No: 490450.
    [9] R. Caccioppoli, Una teorema generale sull'esistenza di elementi uniti in una transformazione funzionale, Ren. Accad. Naz Lincei, 11 (1930), 794–799.
    [10] C. M. Chen, E. Karapınar, V. Rakocevic, Existence of periodic fixed point theorems in the setting of generalized quasi-metric spaces, J. Appl. Math., 2014 (2014), Article ID: 353765.
    [11] E. Karapınar and W.-S. Du, A note on $b$-cone metric and its related results: Generalizations or equivalence?, Fixed Point Theory Appl., 2013 (2013), 210. doi: 10.1186/1687-1812-2013-210
    [12] J. Górnicki, Remarks on asymptotic regularity and fixed points, J. Fixed Point Theory Appl., 21 (2019), 29. doi: 10.1007/s11784-019-0668-0
    [13] J. Górnicki, On some mappings with a unique fixed point, J. Fixed Point Theory Appl., 22 (2020), 8. doi: 10.1007/s11784-019-0741-8
    [14] V. I. Istrăţescu, Some fixed point theorems for convex contraction mappings and convex non-expansive mapping, Libertas Math., 1 (1981), 151–163.
    [15] M. Noorwali, E. Karapınar, H. H. Alsulami, Some extensions of fixed point results over QUASI-JS-SPACES, J. Funct. Space., 2016, Article ID: 865798.
    [16] E. Karapınar, P. Kumam, P. Salimi, On $\alpha$-$\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 94. doi: 10.1186/1687-1812-2013-94
    [17] E. Karapınar, B. Samet, Generalized $\alpha-\psi$-Contractive Type Mappings and Related Fixed Point Theorems with Applications, Abstract Appl. Anal., 2012, Article ID: 793486.
    [18] E. Karapınar, A. F. Roldan-Lopez-de-Hierro, B. Samet, Matkowski theorems in the context of quasi-metric spaces and consequences on G-metric spaces, An. Sti. U. Ovid. Co-Mat., 24 (2016), 309–333.
    [19] E. Karapınar, A. Fulga, On hybrid contractions via simulation function in the context of quasi-metric spaces, J. Nonlinear Covnex Anal., 21 (2020), 2115–2124.
    [20] E. Karapınar, S. Romaguera, On the weak form of Ekeland's Variational Principle in quasi-metric spaces, Topol. Appl., 184 (2015), 54–60. doi: 10.1016/j.topol.2015.01.011
    [21] E. Karapınar, A. Pitea, On alpha-psi-Geraghty contraction type mappings on quasi-Branciari metric spaces, J. Nonlinear Convex Anal., 17 (2016), 1291–1301.
    [22] E. Karapınar, L. Gholizadeh, H. H. Alsulami, M. Noorwali, $alpha-(psi, phi)$-Contractive mappings on quasi-partial metric spaces, Fixed Point Theory Appl., 2015 (2015), 105. doi: 10.1186/s13663-015-0352-z
    [23] E. Karapınar, H. Lakzian, ($\alpha, \psi$)-contractive mappings on generalized quasi-metric spaces, J. Function Space., 2014 (2014), Article ID: 914398.
    [24] E. Karapınar, S.Romaguera, P. Tirado, Contractive multivalued maps in terms of Q-functions on complete quasimetric spaces, Fixed Point Theory Appl., 2014 (2014), 53. doi: 10.1186/1687-1812-2014-53
    [25] E. Karapınar, M. De la Sen, A. Fulga, A Note on the Górnicki-Proinov Type Contraction, J. Function Space., 2021, Article ID: 6686644.
    [26] A. Pant, R. P. Pant, Fixed Points and Continuity of Contractive Maps, Filomat, 31 (2017), 3501–3506.
    [27] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210.
    [28] O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014, Article ID: 190.
    [29] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21.
    [30] A. Roldan, E. Karapınar, M. De La Sen, Coincidence point theorems in quasi-metric spaces without assuming the mixed monotone property and consequences in G-metric spaces, Fixed Point Theory Appl., 2014 (2014), 184. doi: 10.1186/1687-1812-2014-184
    [31] F. Skof, Theoremi di punto fisso per applicazioni negli spazi metrici, Atti. Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 111 (1977), 323–329.
    [32] B. Samet, C.Vetro, F.Vetro, Remarks on G-Metric Spaces, Int. J. Anal., 2013 (2013), Article ID: 917158.
    [33] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for a $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal., Theory, Methods Appl., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2420) PDF downloads(154) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog