Citation: Guoqiao You. A novel quantity for identifying the repelling structures of continuous dynamical systems[J]. AIMS Mathematics, 2021, 6(4): 3378-3392. doi: 10.3934/math.2021202
[1] | E. J. Candès, L. Ying, Fast geodesics computation with the phase flow method, J. Comput. Phys., 220 (2006), 6–18. doi: 10.1016/j.jcp.2006.07.032 |
[2] | R. Ding, J. Li, Nonlinear finite-time Lyapunov exponent and predictability, Physics Letters A, 364 (2007), 396–400. doi: 10.1016/j.physleta.2006.11.094 |
[3] | S. Gottlieb, C. W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comput., 67 (1998), 73–85. doi: 10.1090/S0025-5718-98-00913-2 |
[4] | M. A. Green, C. W. Rowley, A. J. Smiths, Using hyperbolic Lagrangian coherent structures to investigate vortices in biospired fluid flows, Chaos, 20 (2010), 017510. doi: 10.1063/1.3270045 |
[5] | G. Haller, Distinguished material surfaces and coherent structures in Three-Dimensional fluid flows, Physica D, 149 (2001), 248–277. doi: 10.1016/S0167-2789(00)00199-8 |
[6] | G. Haller, Lagrangian structures and the rate of Strain in a partition of Two-Dimensional turbulence, Phys. Fluids A, 13 (2001), 3368–3385. |
[7] | G. Haller, Lagrangian coherent structures from approximate velocity data, Physics Fluid, 14 (2002), 1851–1861. doi: 10.1063/1.1477449 |
[8] | G. Haller, A variational theory of hyperbolic Lagrangian coherent structure, Physica D, 240 (2011), 574–598. doi: 10.1016/j.physd.2010.11.010 |
[9] | G. Haller, G. Yuan, Lagrangian coherent structures and mixing in Two-Dimensional turbulence, Physica D, 147 (2000), 352–370. doi: 10.1016/S0167-2789(00)00142-1 |
[10] | D. Karrasch, G. Haller, Do finite-size Lynapunov exponents detect coherent structures? Chaos, 23 (2013), 043126. doi: 10.1063/1.4837075 |
[11] | F. Lekien, N. Leonard, Dynamically consistent Lagrangian coherent structures, Experimental Chaos: 8-th Experimental Chaos Conference, 2004,132–139. |
[12] | F. Lekien, S. D. Ross, The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds, Chaos, 20 (2010), 017505. doi: 10.1063/1.3278516 |
[13] | F. Lekien, S. C. Shadden, J. E. Marsden, Lagrangian coherent structures in $n$-dimensional systems, J. Math. Phys., 48 (2007), 065404. doi: 10.1063/1.2740025 |
[14] | S. Leung, An Eulerian approach for computing the finite time Lyapunov exponent, J. Comput. Phys., 230 (2011), 3500–3524. doi: 10.1016/j.jcp.2011.01.046 |
[15] | S. Leung, A backward phase flow method for the finite time Lyapunov exponent, Chaos, 23 (2013), 043132. doi: 10.1063/1.4847175 |
[16] | S. Leung, J. Qian, R. Burridge, Eulerian Gaussian Beams for high frequency wave propagation, Geophysics, 72 (2007), SM61–SM76. doi: 10.1190/1.2752136 |
[17] | D. Lipinski, K. Mohseni, Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria, J. Exp. Biology, 212 (2009), 2436–2447. doi: 10.1242/jeb.026740 |
[18] | X. D. Liu, S. J. Osher, T. Chan, Weighted essentially NonOscillatory schemes, J. Comput. Phys., 115 (1994), 200–212. doi: 10.1006/jcph.1994.1187 |
[19] | S. Lukens, X. Yang, L. Fauci, Using Lagrangian coherent structures to analyze fluid mixing by cillia, Chaos, 20 (2010), 017511. doi: 10.1063/1.3271340 |
[20] | T. Sapsis, G. Haller, Inertial particle dynamics in a hurricane, J. Atmos. Sci., 66 (2009), 2481–2492. doi: 10.1175/2009JAS2865.1 |
[21] | S. C. Shadden, F. Lekien, J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212 (2005), 271–304. doi: 10.1016/j.physd.2005.10.007 |
[22] | C. W. Shu, Essentially Non-Oscillatory and weighted essentially Non-Oscillatory schemes for hyperbolic conservation laws, NASA Langley Research Center, 1997. |
[23] | W. Tang, T. Peacock, Lagrangian coherent structures and internal wave attractors, Chaos, 20 (2010), 017508. doi: 10.1063/1.3273054 |
[24] | F. Wang, D. Zhao, L. Deng, S. Li, An accurate vortex feature extraction method for Lagrangian vortex visualization on high-order flow field data, J. Visualization, 20 (2017), 729–742. doi: 10.1007/s12650-017-0421-y |
[25] | G. You, T. Wong, S. Leung, Eulerian methods for visualizing continuous dynamical systems using Lyapunov exponents, SIAM J. Sci. Comput., 39 (2017), A415–A437. doi: 10.1137/16M1066890 |