Citation: Danhua He, Liguang Xu. Boundedness analysis of non-autonomous stochastic differential systems with Lévy noise and mixed delays[J]. AIMS Mathematics, 2020, 5(6): 6169-6182. doi: 10.3934/math.2020396
[1] | X. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood, 1997. |
[2] | T. Taniguchi, K. Liu, A. Truman, Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differ. Equations, 181 (2002), 72-91. |
[3] | D. Xu, Z. Yang, Y. Huang, Existence-uniqueness and continuation theorems for stochastic functional differential equations, J. Differ. Equations, 245 (2008), 1681-1703. doi: 10.1016/j.jde.2008.03.029 |
[4] | R. Z. Has'minskii, Stochastic Stability of Differential Equations, Heidelberg: Springer-Verlag, 2012. |
[5] | H. Hu, L. Xu, Existence and uniqueness theorems for periodic Markov process and applications to stochastic functional differential equations, J. Math. Anal. Appl., 466 (2018), 896-926. doi: 10.1016/j.jmaa.2018.06.025 |
[6] | D. Xu, Y. Huang, Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
[7] | R. Sakthivel, J. Luo, Asymptotic stability of nonlinear impulsive stochastic differential equations, Statist. Probab. Lett., 79 (2009), 1219-1223. doi: 10.1016/j.spl.2009.01.011 |
[8] | R. Sakthivel, J. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356 (2009), 1-6. doi: 10.1016/j.jmaa.2009.02.002 |
[9] | R. Sakthivel, Y. Ren, H. Kim, Asymptotic stability of second-order neutral stochastic differential equations, J. Math. Phys., 51 (2010), 052701. |
[10] | L. Xu, S. S. Ge, The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Appl. Math. Lett., 42 (2015), 22-29. doi: 10.1016/j.aml.2014.10.018 |
[11] | L. Xu, Z. Dai, D. He, Exponential ultimate boundedness of impulsive stochastic delay differential equations, Appl. Math. Lett., 85 (2018), 70-76. doi: 10.1016/j.aml.2018.05.019 |
[12] | L. Xu, Z. Dai, H. Hu, Almost sure and moment asymptotic boundedness of stochastic delay differential systems, Appl. Math. Comput., 361 (2019), 157-168. doi: 10.1016/j.cam.2019.04.001 |
[13] | L. Xu, S. S. Ge, H. Hu, Boundedness and stability analysis for impulsive stochastic differential equations driven by G-Brownian motion, Int. J. Control, 92 (2019), 642-652. doi: 10.1080/00207179.2017.1364426 |
[14] | L. Xu, H. Hu, Boundedness analysis of stochastic pantograph differential systems, Appl. Math. Lett., 111 (2021), 106630. |
[15] | B. Tojtovska, S. Jankovic, On a general decay stability of stochastic Cohen-Grossberg neural networks with time-varying delays, Appl. Math. Comput., 219 (2012), 2289-2302. |
[16] | A. Rathinasamy, J. Narayanasamy, Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks, Appl. Math. Comput., 348 (2019), 126-152. |
[17] | O. M. Otunuga, Closed-form probability distribution of number of infections at a given time in a stochastic SIS epidemic model, Heliyon, 5 (2019), e02499. |
[18] | A. Raza, M. Rafiq, D. Baleanu, et al. Competitive numerical analysis for stochastic HIV/AIDS epidemic model in a two-sex population, IET syst. biol., 13 (2019), 305-315. doi: 10.1049/iet-syb.2019.0051 |
[19] | D. He, L. Xu, Globally impulsive asymptotical synchronization of delayed chaotic systems with stochastic perturbation, Rocky MT. J. Math., 42 (2012), 617-632. doi: 10.1216/RMJ-2012-42-2-617 |
[20] | J. Zhao, Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay, Appl. Math. Model., 36 (2012), 3312-3319. doi: 10.1016/j.apm.2011.10.029 |
[21] | R. Sakthivel, T. Saravanakumar, B. Kaviarasan, et al., Dissipativity based repetitive control for switched stochastic dynamical systems, Appl. Math. Comput., 291 (2016), 340-353. |
[22] | L. Xu, D. He, Mean square exponential stability analysis of impulsive stochastic switched systems with mixed delays, Comput. Math. Appl., 62 (2011), 109-117. doi: 10.1016/j.camwa.2011.04.056 |
[23] | L. Liu, F. Deng, pth moment exponential stability of highly nonlinear neutral pantograph stochastic differential equations driven by Lévy noise, Appl. Math. Lett., 86 (2018), 313-319. doi: 10.1016/j.aml.2018.07.003 |
[24] | Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Syst. Control Let., 118 (2018), 62-68. doi: 10.1016/j.sysconle.2018.05.015 |
[25] | Y. Xu, B. Pei, G. Guo, Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise, Appl. Math. Comput., 263 (2015), 398-409. |
[26] | J. Yang, X. Liu, X. Liu, Stability of stochastic functional differential systems with semi-Markovian switching and Lévy noise by functional Itô's formula and its applications, J. Frankl. Inst., 357 (2020), 4458-4485. doi: 10.1016/j.jfranklin.2020.03.012 |
[27] | D. Applebaum, M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab. 46 (2009), 1116-1129. doi: 10.1239/jap/1261670692 |
[28] | D. He, L. Xu, Boundedness analysis of stochastic integrodifferential systems with Lévy noise, J. Taibah Univ. Sci., 14 (2020), 87-93. doi: 10.1080/16583655.2019.1708540 |
[29] | E. Beckenbach, R. Bellman, Inequalities, New York: Springer-Verlag, 1961. |
[30] | X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, London: Imperial College Press, 2006. |
[31] | Y. Miyahara, Ultimate boundedness of the systems governed by stochastic differential equations, Nagoya Math. J., 47 (1972), 111-144. doi: 10.1017/S0027763000014951 |
[32] | H. Ahmad, A. R. Seadawy, T. A. Khan, et al. Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations, J. Taibah. Univ. Sci., 14 (2020), 346-358. doi: 10.1080/16583655.2020.1741943 |
[33] | S. Peszat, J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise-Evolution Equation Approach, Cambridge: Cambridge Univ Press, 2009. |
[34] | L. Xu, S. S. Ge, Asymptotic behavior analysis of complex-valued impulsive differential systems with time-varying delays, Nonlinear Anal.: Hybrid Syst., 27 (2018), 13-28. doi: 10.1016/j.nahs.2017.07.002 |
[35] | L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. |
[36] | S. Ma, Y. Kang, Periodic averaging method for impulsive stochastic differential equations with Lévy noise, Appl. Math. Lett., 93 (2019), 91-97. doi: 10.1016/j.aml.2019.01.040 |