Citation: Elisa Magosso, Giulia Ricci, Mauro Ursino. Modulation of brain alpha rhythm and heart rate variability by attention-related mechanisms[J]. AIMS Neuroscience, 2019, 6(1): 1-24. doi: 10.3934/Neuroscience.2019.1.1
[1] | Niedermeyer E, Lopes da Silva FH (1999) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Philadelphia: Lippincott Williams and Wilkins. |
[2] | Pfurtscheller G, Stancak Jr A, Neuper C (1996) Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24: 39–46. doi: 10.1016/S0167-8760(96)00066-9 |
[3] | Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4: 186. |
[4] | Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16: 606–617. doi: 10.1016/j.tics.2012.10.007 |
[5] | Foxe JJ, Snyder AC (2011) The role of Alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol 2: 154. |
[6] | Frey JN, Ruhnau P, Weisz N (2015) Not so different after all: The same oscillatory processes support different types of attention. Brain Res 1626: 183–197. doi: 10.1016/j.brainres.2015.02.017 |
[7] | De Smedt B, Grabner RH, Studer B (2009) Oscillatory EEG correlates of arithmetic strategy use in addition and subtraction. Exp Brain Res 195: 635–642. doi: 10.1007/s00221-009-1839-9 |
[8] | Liang Y, Liu X, Qiu L, et al. (2018) An EEG study of a confusing state induced by information insufficiency during mathematical problem-solving and reasoning. Comput Intell Neurosci 2018: 1943565. |
[9] | Yu X, Zhang J, Xie D, et al. (2009) Relationship between scalp potential and autonomic nervous activity during a mental arithmetic task. Auton Neurosci 146: 81–86. doi: 10.1016/j.autneu.2008.12.005 |
[10] | Benedek M, Schickel RJ, Jauk E, et al. (2014) Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia 56: 393–400. doi: 10.1016/j.neuropsychologia.2014.02.010 |
[11] | Jensen O, Gelfand J, Kounios J, et al. (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12: 877–882. doi: 10.1093/cercor/12.8.877 |
[12] | Tuladhar AM, ter Huurne N, Schoffelen JM, et al. (2007) Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp 28: 785–792. doi: 10.1002/hbm.20306 |
[13] | Chang YC, Huang SL (2012) The influence of attention levels on psychophysiological responses. Int J Psychophysiol 86: 39–47. doi: 10.1016/j.ijpsycho.2012.09.001 |
[14] | Grabner RH, Brunner C, Leeb R, et al. (2007) Event-related EEG theta and alpha band oscillatory responses during language translation. Brain Res Bull 72: 57–65. doi: 10.1016/j.brainresbull.2007.01.001 |
[15] | Grabner RH, De Smedt B (2011) Neurophysiological evidence for the validity of verbal strategy reports in mental arithmetic. Biol Psychol 87: 128–136. doi: 10.1016/j.biopsycho.2011.02.019 |
[16] | Fernandez T, Harmony T, Rodriguez M, et al. (1995) EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalogr Clin Neurophysiol 94: 175–182. doi: 10.1016/0013-4694(94)00262-J |
[17] | Hairston WD, Whitaker KW, Ries AJ, et al. (2014) Usability of four commercially-oriented EEG systems. J Neural Eng 11: 046018. doi: 10.1088/1741-2560/11/4/046018 |
[18] | Grummett TS, Leibbrandt RE, Lewis TW, et al. (2015) Measurement of neural signals from inexpensive, wireless and dry EEG systems. Physiol Meas 36: 1469–1484. doi: 10.1088/0967-3334/36/7/1469 |
[19] | Mihajlovic V, Grundlehner B, Vullers R, et al. (2015) Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J Biomed Health Inform 19: 6–21. doi: 10.1109/JBHI.2014.2328317 |
[20] | Luque-Casado A, Perales JC, Cardenas D, et al. (2016) Heart rate variability and cognitive processing: The autonomic response to task demands. Biol Psychol 113: 83–90. doi: 10.1016/j.biopsycho.2015.11.013 |
[21] | Krakauer J, Ghez C (2000) Voluntary movement, In: Kandel ER, Schwartz JH, Jessell TM, editors, Principles of Neural Science, 4th Edition ed., New York: McGraw-Hill, 756–781. |
[22] | Babiloni C, Vecchio F, Miriello M, et al. (2006) Visuo-spatial consciousness and parieto-occipital areas: a high-resolution EEG study. Cereb Cortex 16: 37–46. doi: 10.1093/cercor/bhi082 |
[23] | Gobel SM, Calabria M, Farne A, et al. (2006) Parietal rTMS distorts the mental number line: simulating 'spatial' neglect in healthy subjects. Neuropsychologia 44: 860–868. doi: 10.1016/j.neuropsychologia.2005.09.007 |
[24] | Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7: 1129–1159. doi: 10.1162/neco.1995.7.6.1129 |
[25] | Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11: 417–441. doi: 10.1162/089976699300016719 |
[26] | Makeig S, Onton J (2009) ERP features and EEG dynamics: An ICA perspective, In: Kappenman ES, Luck SJ, editors, The Oxford Handbook of Event-Related Potential Components, New York: Oxford University Press, 51–86. |
[27] | Kaufmann T, Sutterlin S, Schulz SM, et al. (2011) ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis. Behav Res Methods 43: 1161–1170. doi: 10.3758/s13428-011-0107-7 |
[28] | Berntson GG, Quigley KS, Jang JF, et al. (1990) An approach to artifact identification: application to heart period data. Psychophysiology 27: 586–598. doi: 10.1111/j.1469-8986.1990.tb01982.x |
[29] | Babiloni C, Carducci F, Cincotti F, et al. (1999) Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage 10: 658–665. doi: 10.1006/nimg.1999.0504 |
[30] | Manganotti P, Gerloff C, Toro C, et al. (1998) Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109: 50–62. doi: 10.1016/S0924-980X(97)00074-X |
[31] | Menon V, Rivera SM, White CD, et al. (2000) Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage 12: 357–365. doi: 10.1006/nimg.2000.0613 |
[32] | Fournier LR, Wilson GF, Swain CR (1999) Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: manipulations of task difficulty and training. Int J Psychophysiol 31: 129–145. doi: 10.1016/S0167-8760(98)00049-X |
[33] | Hansen AL, Johnsen BH, Thayer JF (2003) Vagal influence on working memory and attention. Int J Psychophysiol 48: 263–274. doi: 10.1016/S0167-8760(03)00073-4 |
[34] | Kubota Y, Sato W, Toichi M, et al. (2001) Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure. Brain Res Cogn Brain Res 11: 281–287. doi: 10.1016/S0926-6410(00)00086-0 |
[35] | Duschek S, Worsching J, Reyes Del Paso GA (2015) Autonomic cardiovascular regulation and cortical tone. Clin Physiol Funct Imaging 35: 383–392. doi: 10.1111/cpf.12174 |
[36] | Triggiani AI, Valenzano A, Del Percio C, et al. (2016) Resting state Rolandic mu rhythms are related to activity of sympathetic component of autonomic nervous system in healthy humans. Int J Psychophysiol 103: 79–87. doi: 10.1016/j.ijpsycho.2015.02.009 |
[37] | Faes L, Nollo G, Jurysta F, et al. (2014) Information dynamics of brain–heart physiological networks during sleep. New J Phys 16: 105005. doi: 10.1088/1367-2630/16/10/105005 |