Research article

Effect of sintering temperatures on the physical, structural properties and microstructure of mullite-based ceramics

  • Received: 09 January 2024 Revised: 10 February 2024 Accepted: 21 February 2024 Published: 28 February 2024
  • This study explored the impact of sintering temperature variations on the synthesis and characteristics of mullite ceramics derived from a composite blend of kaolinite clay, silica (silicon dioxide), and feldspar. Sintering temperatures ranging from 1100 to 1200 ℃ were systematically examined to analyze alterations in shrinkage, density, microstructure, elemental composition, and phase formation. The study revealed that an increase in sintering temperature led to decreased shrinkage due to improved particle packing and reduced porosity. Ceramic density showed a direct relation with sintering temperature, reaching the optimal density at 1175 ℃ and indicating efficient particle packing and compaction. Analysis through field emission scanning electron microscopy (FESEM) provided insights into microstructural changes, including alterations in grain morphology, porosity, and connectivity. Energy dispersive X-ray spectroscopy (EDS) clarified element distribution within the microstructure, offering valuable information on compositional variations. X-ray diffraction (XRD) examinations unveiled temperature-dependent phase transformations, which confirmed the successful formation of mullite during the sintering process. A sintering temperature of 1175 ℃ yielded the optimal ceramic quality and cost-effectiveness for high-temperature heating processes.

    Citation: Mohamed Lokman Jalaluddin, Umar Al-Amani Azlan, Mohd Warikh Abd Rashid, Norfauzi Tamin. Effect of sintering temperatures on the physical, structural properties and microstructure of mullite-based ceramics[J]. AIMS Materials Science, 2024, 11(2): 243-255. doi: 10.3934/matersci.2024014

    Related Papers:

  • This study explored the impact of sintering temperature variations on the synthesis and characteristics of mullite ceramics derived from a composite blend of kaolinite clay, silica (silicon dioxide), and feldspar. Sintering temperatures ranging from 1100 to 1200 ℃ were systematically examined to analyze alterations in shrinkage, density, microstructure, elemental composition, and phase formation. The study revealed that an increase in sintering temperature led to decreased shrinkage due to improved particle packing and reduced porosity. Ceramic density showed a direct relation with sintering temperature, reaching the optimal density at 1175 ℃ and indicating efficient particle packing and compaction. Analysis through field emission scanning electron microscopy (FESEM) provided insights into microstructural changes, including alterations in grain morphology, porosity, and connectivity. Energy dispersive X-ray spectroscopy (EDS) clarified element distribution within the microstructure, offering valuable information on compositional variations. X-ray diffraction (XRD) examinations unveiled temperature-dependent phase transformations, which confirmed the successful formation of mullite during the sintering process. A sintering temperature of 1175 ℃ yielded the optimal ceramic quality and cost-effectiveness for high-temperature heating processes.



    加载中


    [1] Pacheco R, Ordóñez J, Martínez G (2012) Energy efficient design of building: A review. Renew Sust Energ Rev 16: 3559–3573. https://doi.org/10.1016/j.rser.2012.03.045 doi: 10.1016/j.rser.2012.03.045
    [2] Mirrahimi S, Mohamed MF, Haw LC, et al. (2016) The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renew Sust Energ Rev 53: 1508–1519.https://doi.org/10.1016/j.rser.2015.09.055 doi: 10.1016/j.rser.2015.09.055
    [3] Tian W, Shui A, Ke S, et al. (2019) Low-temperature preparation of humidity self-regulating porous ceramics with high strength performance. Mater Lett 243: 128–131. https://doi.org/10.1016/j.matlet.2019.02.019 doi: 10.1016/j.matlet.2019.02.019
    [4] Boschi G, Bonvicini G, Masi G, et al. (2023) Recycling insight into the ceramic tile manufacturing industry. Open Ceram 16: 100471. https://doi.org/10.1016/j.oceram.2023.100471 doi: 10.1016/j.oceram.2023.100471
    [5] Sokolar R, Nguyen M (2022) Sintering of anorthite ceramic body based on interstratified illite-smectite clay. Ceram Int 48: 31783–31789. https://doi.org/10.1016/j.ceramint.2022.07.105 doi: 10.1016/j.ceramint.2022.07.105
    [6] Castellano J, Sanz V, Cañas E, et al. (2022) Effect of firing temperature on humidity self-regulation functionality in a ceramic tile composition. J Eur Ceram Soc 42: 6236–6243. https://doi.org/10.1016/j.jeurceramsoc.2022.05.058 doi: 10.1016/j.jeurceramsoc.2022.05.058
    [7] Azevedo ARG, França BR, Alexandre J, et al. (2018) Influence of sintering temperature of a ceramic substrate in mortar adhesion for civil construction. J Build Eng 19: 342–348. https://doi.org/10.1016/j.jobe.2018.05.026 doi: 10.1016/j.jobe.2018.05.026
    [8] Pinto MF, Sousa SJG, Holanda JNF (2005) Effect of the firing cycle on the technological properties of a red ceramic mass for porous coating. Ceramica 51: 225–229. https://doi.org/10.1016/j.matpr.2024.01.022 doi: 10.1016/j.matpr.2024.01.022
    [9] Şan O, Koç M, Cengizler H (2019) Production of porous ceramic from clinoptilolite incorporating aluminum powder. Ceram Int 45: 24037–24043. https://doi.org/10.1016/j.ceramint.2019.08.108 doi: 10.1016/j.ceramint.2019.08.108
    [10] Li B, Yan Y, Jin X, et al. (2021) Microstructure and mechanical and thermal shock properties of hierarchically porous ceramics. Ceram Int 47: 24887–24894. https://doi.org/10.1016/j.ceramint.2021.05.215 doi: 10.1016/j.ceramint.2021.05.215
    [11] Han L, Deng X, Li F, et al. (2018) Preparation of high strength porous mullite ceramics via combined foam-gelcasting and microwave heating. Ceram Int 44: 14728–14733. https://doi.org/10.1016/j.ceramint.2018.05.101 doi: 10.1016/j.ceramint.2018.05.101
    [12] Ma B, Su C, Ren X, et al. (2019) Preparation and properties of porous mullite ceramics with high-closed porosity and high strength from fly ash via reaction synthesis process. J Alloys Compd 803: 981–991. https://doi.org/10.1016/j.jallcom.2019.06.272 doi: 10.1016/j.jallcom.2019.06.272
    [13] Wang H, Li S, Li Y, et al. (2021) Preparation of novel reticulated prickly porous ceramics with mullite whiskers. J Eur Ceram Soc 41: 864–870. https://doi.org/10.1016/j.jeurceramsoc.2020.08.001 doi: 10.1016/j.jeurceramsoc.2020.08.001
    [14] Li X, Li S, Yin Z, et al. (2023) Foam-gelcasting preparation and properties of high-strength mullite porous ceramics. Ceram Int 49: 6873–6879. https://doi.org/10.1016/j.ceramint.2022.10.096 doi: 10.1016/j.ceramint.2022.10.096
    [15] Yang J, Zhang X, Zhang B, et al. (2022) Mullite ceramic foams with tunable pores from dual-phase sol nanoparticle-stabilized foams. J Eur Ceram Soc 42: 1703–1711. https://doi.org/10.1016/j.jeurceramsoc.2021.12.008 doi: 10.1016/j.jeurceramsoc.2021.12.008
    [16] Hossain SS, Baek IW, Son HJ, et al. (2022) 3D printing of porous low-temperature in-situ mullite ceramic using waste rice husk ash-derived silica. J Eur Ceram Soc 42: 2408–2419. https://doi.org/10.1016/j.jeurceramsoc.2022.01.001 doi: 10.1016/j.jeurceramsoc.2022.01.001
    [17] Huo X, Xia B, Hu T, et al. (2023) Effect of MoO3 addition on fly ash based porous and high-strength mullite ceramics: In situ whisker growth and self-enhancement mechanism. Ceram Int 49: 21069–21077. https://doi.org/10.1016/j.ceramint.2023.03.242 doi: 10.1016/j.ceramint.2023.03.242
    [18] Ma B, Su C, Ren X, et al. (2019) Preparation and properties of porous mullite ceramics with high-closed porosity and high strength from fly ash via reaction synthesis process. J Alloys Compd 803: 981–991.https://doi.org/10.1016/j.jallcom.2019.06.272 doi: 10.1016/j.jallcom.2019.06.272
    [19] Kurovics E, Ibrahim JFM, Tihtih M, et al. (2020) Examination of mullite ceramic specimens made by conventional casting method from kaolin and sawdust. J Phys Conf Ser 1527: 012034. https://doi.org/10.1088/1742-6596/1527/1/012034 doi: 10.1088/1742-6596/1527/1/012034
    [20] Martínez-Martínez S, Pérez-Villarejo L, Garzón E, et al. (2023) Influence of firing temperature on the ceramic properties of illite-chlorite-calcitic clays. Ceram Int 49: 24541–24557. https://doi.org/10.1016/j.ceramint.2022.11.077 doi: 10.1016/j.ceramint.2022.11.077
    [21] Harrati A, Manni A, Hassani FO, et al. (2022) Potentiality of new dark clay-rich materials for porous ceramic applications in Ouled Sidi Ali Ben Youssef Area (Coastal Meseta, Morocco). Bol Soc Esp Ceram Vidrio 61: 130–145. https://doi.org/10.1016/j.bsecv.2020.08.003 doi: 10.1016/j.bsecv.2020.08.003
    [22] Semiz B (2017) Characteristics of clay-rich raw materials for ceramic applications in Denizli region (Western Anatolia). Appl Clay Sci 137: 83–93. https://doi.org/10.1016/j.clay.2016.12.014 doi: 10.1016/j.clay.2016.12.014
    [23] Yuan L, Ma B, Zhu Q, et al. (2017) Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process. Ceram Int 43: 5478–5483. https://doi.org/10.1016/j.ceramint.2017.01.062 doi: 10.1016/j.ceramint.2017.01.062
    [24] Kiran GS, Mukthapuram J, Yadav AK, et al. (2020) Effect of MoO3 additive on fabrication of mullite based porous ceramics. AIP Conf Proc 2244: 040007. https://doi.org/10.1063/5.0009333 doi: 10.1063/5.0009333
    [25] Zainudin FH, Zulkifli MS, Saud AS, et al. (2023) Formulation of Malaysian clay into inert ceramic balls: Effect of sintering temperature. Mater Today Proc 75: 197–201. https://doi.org/10.1016/j.matpr.2022.12.243 doi: 10.1016/j.matpr.2022.12.243
    [26] Zanelli C, Dondi M, Raimondo M, et al. (2010) Phase composition of alumina–mullite–zirconia refractory materials. J Eur Ceram Soc 30: 29–35. https://doi.org/10.1016/j.jeurceramsoc.2009.07.016 doi: 10.1016/j.jeurceramsoc.2009.07.016
    [27] Wang W, Sun K, Liu H (2020) Effects of different aluminum sources on morphologies and properties of ceramic floor tiles from red mud. Constr Build Mater 241: 118119. https://doi.org/10.1016/j.conbuildmat.2020.118119 doi: 10.1016/j.conbuildmat.2020.118119
    [28] Hajian A, Artemenko A, Kromka A, et al. (2022) Impact of sintering temperature on phase composition, microstructure, and porosification behavior of LTCC substrates. J Eur Ceram Soc 42: 5789–5800. https://doi.org/10.1016/j.jeurceramsoc.2022.05.049 doi: 10.1016/j.jeurceramsoc.2022.05.049
    [29] Wu D, Zhang H, Li L, et al. (2021) Effect of sintering temperature on structure and electrical transport properties of La0.7Ca0.26Na0.04MnO3 ceramics. Ceram Int 47: 12716–12724. https://doi.org/10.1016/j.ceramint.2021.01.131 doi: 10.1016/j.ceramint.2021.01.131
    [30] Choudhary B, Anwar S, Medvedev DA, et al. (2022) Effect of sintering temperature on the transport properties of La2Ce2O7 ceramic materials. Ceram Int 48: 6758–6766. https://doi.org/10.1016/j.ceramint.2021.11.227 doi: 10.1016/j.ceramint.2021.11.227
    [31] Manullang RJ, Purnawan M, Taufik D, et al. (2022) The effect of pore former addition and sintering temperature on the characteristic of ceramic membrane. AIP Conf Proc 2391: 070017. https://doi.org/10.1063/5.0075598 doi: 10.1063/5.0075598
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(925) PDF downloads(130) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog