Review

Possible magnetic performances of graphene-oxide and it's composites: A brief review

  • Received: 14 April 2023 Revised: 25 July 2023 Accepted: 31 July 2023 Published: 13 September 2023
  • Carbon-based nanostructured materials are very promising for spintronic applications due to their weak spin-orbit coupling and potentially providing a long spin lifetime. Nanostructured carbons are not magnetic materials, but intrinsic magnetic behavioral nanostructure carbon materials could be fabricated through qualitative alterations. On alterations of carbon nanostructured materials, it changes their critical temperature and magneto-crystalline anisotropy energy that could be useful as favorable magnetic materials for different magnetic/electromagnetic device-based applications. Different processes are used for the alteration of nanostructure carbon materials like chemical doping, introducing defects, changing the density of states, functionalization, intercalation, forming heterostructure and fabricating nanocomposites layered semiconductor materials. Among the carbon-based derived nanostructured materials, the graphene oxide (GO) gets attracted towards the magnet forming in the spin-like structure across the area of the magnet. Due to its magnetic behaviour, it is used for the adsorption of metals and radionuclides and to make nonconductive oxide-metal. In this review article, the basics of magnetic behavioral change of the carbon-based GO/GO-nanocomposites nanostructured materials are described by gathering information from the literature that were/are reported by different researchers/research groups worldwide.

    Citation: Sekhar Chandra Ray. Possible magnetic performances of graphene-oxide and it's composites: A brief review[J]. AIMS Materials Science, 2023, 10(5): 767-818. doi: 10.3934/matersci.2023043

    Related Papers:

  • Carbon-based nanostructured materials are very promising for spintronic applications due to their weak spin-orbit coupling and potentially providing a long spin lifetime. Nanostructured carbons are not magnetic materials, but intrinsic magnetic behavioral nanostructure carbon materials could be fabricated through qualitative alterations. On alterations of carbon nanostructured materials, it changes their critical temperature and magneto-crystalline anisotropy energy that could be useful as favorable magnetic materials for different magnetic/electromagnetic device-based applications. Different processes are used for the alteration of nanostructure carbon materials like chemical doping, introducing defects, changing the density of states, functionalization, intercalation, forming heterostructure and fabricating nanocomposites layered semiconductor materials. Among the carbon-based derived nanostructured materials, the graphene oxide (GO) gets attracted towards the magnet forming in the spin-like structure across the area of the magnet. Due to its magnetic behaviour, it is used for the adsorption of metals and radionuclides and to make nonconductive oxide-metal. In this review article, the basics of magnetic behavioral change of the carbon-based GO/GO-nanocomposites nanostructured materials are described by gathering information from the literature that were/are reported by different researchers/research groups worldwide.



    加载中


    [1] Lee D, Seo J (2017) Magnetic frustration of graphite oxide. Sci Rep 7: 44690. https://doi.org/10.1038/srep44690 doi: 10.1038/srep44690
    [2] Novoselov KS, Geim AK, Morozov SV, et al. (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: 197–200. https://doi.org/10.1038/nature04233 doi: 10.1038/nature04233
    [3] Ohta T, Bostwick A, Seyller T, et al. (2006) Controlling the electronic structure of bilayer graphene. Science 313: 951–954. https://www.science.org/doi/10.1126/science.1130681
    [4] Chen H, Müller MB, Gilmore KJ, et al. (2008) Mechanically strong, electrically conductive and biocompatible graphene paper. Adv Mater 20: 3557–3561. https://doi.org/10.1002/adma.200800757 doi: 10.1002/adma.200800757
    [5] Zhang Y, Tan Y-W, Stormer HL, et al. (2005) Experimental observation of the quantum hall effect and Berry's phase in graphene. Nature 438: 201–204. https://doi:10.1038/nature04235 doi: 10.1038/nature04235
    [6] Maher P, Dean CR, Young F, et al. (2013) Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nat Phys 9: 154–158. https://doi:10.1038/nphys2528 doi: 10.1038/nphys2528
    [7] Huang L, Wu B, Yu G, et al. (2011) Graphene: learning from carbon nanotubes. J Mater Chem 21: 919–929. https://doi:10.1039/c0jm02225j doi: 10.1039/c0jm02225j
    [8] Yola ML, Eren T, Atar N (2014) A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125: 38–47. http://dx.doi.org/ 10.1016/j.electacta.2014.01.074 doi: 10.1016/j.electacta.2014.01.074
    [9] Gupta VK, Atar N, Yola ML (2014) A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nano-catalyst for the reduction of nitrophenol compounds. Water Res 48: 210–217. http://dx.doi.org/ 10.1016/j.watres.2013.09.027 doi: 10.1016/j.watres.2013.09.027
    [10] Yola ML, Gupta VK, Eren T, et al. (2014) A novel electro analytical nano-sensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120: 204–211. http://dx.doi.org/ 10.1016/j.electacta.2013.12.086 doi: 10.1016/j.electacta.2013.12.086
    [11] Yola ML, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sensor Actuat B-Chem 210: 149–157. https://doi.org/10.1016/j.snb.2014.12.098 doi: 10.1016/j.snb.2014.12.098
    [12] Yola ML, Atar N, Eren T, et al. (2015) Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 5: 65953–65962. https://doi.org/10.1039/C5RA07443F doi: 10.1039/C5RA07443F
    [13] Yola ML, Atar N (2017) A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr Anal. Chem 13: 13–17. https://doi.org/10.2174/1573411012666160601141018 doi: 10.2174/1573411012666160601141018
    [14] Yola ML, Eren T, Atar N, et al. (2016) Direct-methanol fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28: 570–579. https://doi.org/10.1002/elan.201500381 doi: 10.1002/elan.201500381
    [15] Elçin S, Yola ML, Eren T, et al. (2016) Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis 28: 611–619. https://doi.org/10.1002/elan.201500495 doi: 10.1002/elan.201500495
    [16] Yokuş ÖA, Kardaş F, Akyıldırım O, et al. (2016) Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sensor Actuat B-Chem 233: 47–54. http://dx.doi.org/ 10.1016/j.snb.2016.04.050 doi: 10.1016/j.snb.2016.04.050
    [17] Yola ML, Atar N (2016) Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J Electrochem Soc 163: B718–B725. https://dx.doi.org/10.1149/2.1191614jes doi: 10.1149/2.1191614jes
    [18] Yola ML, Atar N (2017) A highly efficient nanomaterial with molecular imprinting polymer: carbon nitride nanotubes decorated with graphene quantum dots for sensitive electrochemical determination of chlorpyrifos. J Electrochem Soc 164: B223–B229. https://dx.doi.org/10.1149/2.1411706jes doi: 10.1149/2.1411706jes
    [19] Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80: 1339. https://pubs.acs.org/sharingguidelines
    [20] Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide by modified Hummers method and its Thermal reduction to obtain reduced graphene oxide. Graphene 6: 1–18. https://doi.org/10.4236/graphene.2017.61001 doi: 10.4236/graphene.2017.61001
    [21] Nyangiwe NN, Khenfouch M, Thema FT, et al. (2015) Free-green synthesis and dynamics of reduced graphene sheets via sun light irradiation. Graphene 4: 54–61. https://doi.org/10.4236/graphene.2015.43006 doi: 10.4236/graphene.2015.43006
    [22] Park S, An J, Potts JR. et al. (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49: 3019–3023. https://doi:10.1016/j.carbon.2011.02.071 doi: 10.1016/j.carbon.2011.02.071
    [23] Shin H-J, Kim KK, Benayad A, et al. (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19: 1987–1992. https://doi:10.1002/adfm.200900167 doi: 10.1002/adfm.200900167
    [24] Pei S, Zhao J, Du J, et al. (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48: 4466–4474. https://doi:10.1016/j.carbon.2010.08.006 doi: 10.1016/j.carbon.2010.08.006
    [25] Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93: 267–300. https://doi.org/10.1021/cr00017a013 doi: 10.1021/cr00017a013
    [26] Zhou M, Wang Y, Zhai Y, et al. (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15: 6116–6120. https://doi.org/10.1002/chem.200900596 doi: 10.1002/chem.200900596
    [27] Wang Z, Zhou X, Zhang J, et al. (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113: 14071–14075. https://doi.org/10.1021/jp906348x doi: 10.1021/jp906348x
    [28] Wang H, Robinson JT, Li X, et al. (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131: 9910-9911. https://doi.org/10.1021/ja904251p doi: 10.1021/ja904251p
    [29] Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4: 217–224. https://doi.org/10.1038/nnano.2009.58 doi: 10.1038/nnano.2009.58
    [30] Kan E, Li Z, Yang J (2008) Magnetism in graphene system. Nano 3: 433–442. https://doi.org/10.1142/S1793292008001350 doi: 10.1142/S1793292008001350
    [31] Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73: 056501. https://doi.org/10.1088/0034-4885/73/5/056501 doi: 10.1088/0034-4885/73/5/056501
    [32] Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75: 125408. https://doi.org/10.1103/PhysRevB.75.125408 doi: 10.1103/PhysRevB.75.125408
    [33] Yazyev OV, Katsnelson MI (2012) Theory of magnetism in grapheme, Advanced functional materials, Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems, Elsevier, 4: 71–103. https://dx.doi.org/10.1016/B978-0-44-453681-5.00004-2
    [34] Yazyev OV, Katsnelson MI (2008) Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys Rev Lett 100: 047209. https://doi.org/10.1103/PhysRevLett.100.047209 doi: 10.1103/PhysRevLett.100.047209
    [35] Golor M, Wessel S, Schmidt MJ (2014) Quantum nature of edge magnetism in graphene. Phys Rev Lett 112: 46601. https://doi.org/10.1103/PhysRevLett.112.046601 doi: 10.1103/PhysRevLett.112.046601
    [36] Li W, Zhao M, Xia Y, et al. (2009) Covalent-adsorption induced magnetism in graphene J Mater Chem 48: 9274–9282. https://doi.org/10.1039/b908949g doi: 10.1039/b908949g
    [37] Santos EJG, Ayuela A, Sánchez-Portal D (2012) Universal magnetic properties of sp3-type defects in covalently functionalized graphene. New J Phys 14: 43022. https://doi.org/10.1088/1367-2630/14/4/043022 doi: 10.1088/1367-2630/14/4/043022
    [38] Tang T, Tang N, Zheng Y, et al. (2015) Robust magnetic moments on the basal plane of the graphene sheet effectively induced by OH groups. Sci Rep 5: 8448. https://doi.org/10.1038/srep08448 doi: 10.1038/srep08448
    [39] Bagani K, Bhattacharya A, Kaur J (2014) Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide. J Appl Phys 115: 023902. https://doi.org/10.1063/1.4861173 doi: 10.1063/1.4861173
    [40] Tang T, Liu F, Liu Y, et al. (2014) Identifying the magnetic properties of graphene oxide. Appl Phys Lett 104: 123104. https://doi.org/10.1063/1.4869827 doi: 10.1063/1.4869827
    [41] Lee D, Seo J, Zhu XI, et al. (2015) Magnetism in graphene oxide induced by epoxy groups. Appl Phys Lett 106: 172402. https://doi.org/10.1063/1.4919529 doi: 10.1063/1.4919529
    [42] Sinha A, Ali A, Thakur AD (2021) Ferromagnetism in graphene oxide. Mater Today Proceed 46: 6230–6233. https://doi.org/10.1016/j.matpr.2020.04.771 doi: 10.1016/j.matpr.2020.04.771
    [43] Mei X, Ouyang J (2011) Ultra sonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49: 5389–5397. https://doi.org/10.1016/j.carbon.2011.08.019 doi: 10.1016/j.carbon.2011.08.019
    [44] Sun P, Wang K, Wei J, et al. (2014) Magnetic transitions in graphene derivatives. Nano Res 7: 1507–1518. https://doi.org/10.1007/s12274-014-0512-1 doi: 10.1007/s12274-014-0512-1
    [45] Saremi S (2007) RKKY in half-filled bipartite lattices: Graphene as an example. Phys Rev B 76: 184430. https://doi.org/10.1103/PhysRevB.76.184430 doi: 10.1103/PhysRevB.76.184430
    [46] Wang M, Li CM (2010) Magnetism in graphene oxide. New J Phys 12: 083040. https://doi.org/10.1088/1367-2630/12/8/083040 doi: 10.1088/1367-2630/12/8/083040
    [47] Fujii S, Enoki T (2010) Cutting of oxidized graphene into nanosized pieces. J Am Chem Soc 132: 10034–10041. https//doi.org/10.1021/ja101265r doi: 10.1021/ja101265r
    [48] Boukhvalov DW (2010) Modelling of hydrogen and hydroxyl group migration on graphene. Phys Chem Chem Phys 12: 15367–15371. https://doi.org/10.1039/c0cp01009j doi: 10.1039/c0cp01009j
    [49] Ghaderi N, Peressi M (2010) First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide. J Phys Chem C 114: 21625–21630. https://doi.org/10.1021/jp108688m doi: 10.1021/jp108688m
    [50] Boukhvalov DW (2013) DFT modeling of the covalent functionalization of graphene: From ideal to realistic models. RSC Adv 3: 7150–7159. https://doi.org/10.1039/C3RA23372C doi: 10.1039/C3RA23372C
    [51] Santos EJG, Ayuela A, Sánchez-Portal D (2012) Universal magnetic properties of sp3-type defects in covalently functionalized graphene. New J Phys 14: 043022. https://doi.org/10.1088/1367-2630/14/4/043022 doi: 10.1088/1367-2630/14/4/043022
    [52] Wang M, Huang W, Chan-Park MB (2011) Magnetism in oxidized graphene with hydroxyl groups. Nanotechnology 22: 105702. https://doi.org/10.1088/0957-4484/22/10/105702 doi: 10.1088/0957-4484/22/10/105702
    [53] Strzelczyk R, Augustyniak-Jabtokow MA, Fedaruk R, et al. (2022) Edge ferromagnetism of graphene oxide. J Mag Mag Mater 544: 168686. https://doi.org/10.1016/j.jmmm.2021.168686 doi: 10.1016/j.jmmm.2021.168686
    [54] Radovic LR, Bockrath B (2005) On the Chemical nature of Graphene edge: origin of stability and potential for magnetism in carbon materials. 127: 5917–5927. https://doi.org/10.1021/ja050124h
    [55] Ray SC, Soin N, Makgato T, et al. (2014) Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci Rep 4: 3862. https://doi.org/10.1038/srep03862 doi: 10.1038/srep03862
    [56] Boukhvalov DW, Katsnelson MI (2011) sp-electron magnetic clusters with a large spin in graphene. ACS Nano 5: 2440–2446. https://doi.org/10.1021/nn103510c doi: 10.1021/nn103510c
    [57] Bagani K, Ray MK, Satpati B, et al. (2014) Contrasting magnetic properties of thermally and chemically reduced graphene oxide. J Phys Chem C 118: 13254–13259. https://doi.org/10.1021/jp503034d doi: 10.1021/jp503034d
    [58] Chuang CH, Wang Y-F, Shao Y-C, et al. (2014) The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides. Sci Rep 4: 4525. https://doi.org/10.1038/srep04525 doi: 10.1038/srep04525
    [59] Wang YF, Singh SB, Limaye MV, et al. (2015) Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy. Sci Rep 5: 15439. https://doi.org/10.1038/srep15439 doi: 10.1038/srep15439
    [60] Ferrari AC, Meyer JC, Scardaci V, et al. (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97: 187401. https://doi.org/10.1103/PhysRevLett.97.187401 doi: 10.1103/PhysRevLett.97.187401
    [61] Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61: 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095 doi: 10.1103/PhysRevB.61.14095
    [62] Wang YY, Ni Zh, Yu T, et al. (2008) Raman studies of monolayer graphene: The substrate effect. J Phys Chem C 112: 10637–10640. https://doi.org/10.1021/jp8008404 doi: 10.1021/jp8008404
    [63] Liu Y, Tang N, Wan X, et al. (2013) Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci Rep 3: 2566. https://doi.org/10.1038/srep02566 doi: 10.1038/srep02566
    [64] Zhou JG, Wang J, Sun CL, et al. (2011) Nano-scale chemical imaging of a single sheet of reduced graphene oxide. J Mater Chem 21: 14622–14630. https://doi.org/10.1039/c1jm11071c doi: 10.1039/c1jm11071c
    [65] Schniepp HC, Li JL, McAllister MJ, et al. (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110: 8535–8539. https://doi.org/10.1021/jp060936f doi: 10.1021/jp060936f
    [66] Shen X, Lin X, Yousefi N, et al. (2014) Wrinkling in graphene sheets and graphene oxide papers. Carbon 66: 84–92. https://doi.org/10.1016/j.carbon.2013.08.046 doi: 10.1016/j.carbon.2013.08.046
    [67] Hua W, Gao B, Li S, et al. (2010) X-ray absorption spectra of graphene from first-principles simulations. Phys Rev B 82: 155433. https://doi.org/PhysRevB.82.155433
    [68] Jeong HK, Noh H-J, Kim J-Y, et al. (2009) Comment on "Near-edge X-ray absorption fine-structure investigation of graphene". Phys Rev Lett 102: 099701. https://doi.org/http://dx.doi.org/10.1103/PhysRevLett.102.099701 doi: 10.1103/PhysRevLett.102.099701
    [69] Pacilé D, Papagno, Rodríguez AF, et al. (2008) Near-edge X-ray absorption fine-structure investigation of graphene. Phys Rev Lett 101: 066806. https://doi.org/10.1103/PhysRevLett.101.066806 doi: 10.1103/PhysRevLett.101.066806
    [70] Pacilé D, Papagno M, Rodríguez AF, et al. (2009) Comment on "Near-edge X-ray absorption fine-structure investigation of graphene". Phys Rev Lett 102: 099702. https://doi.org/10.1103/PhysRevLett.102.099702 doi: 10.1103/PhysRevLett.102.099702
    [71] Ganguly A, Sharma S, Papakonstantinou P, et al. (2011) Probing the thermal deoxygenation of graphene oxide using high- resolution in situ X-ray-based spectroscopies. J Phys Chem C 115: 17009–17019. https://doi.org/10.1021/jp203741y doi: 10.1021/jp203741y
    [72] Zhou SY, Girit ÇÖ, Scholl A, et al. (2009) Instability of two-dimensional graphene: Breaking sp2 bonds with soft X rays. Phys Rev B 80: 121409. https://doi.org/10.1103/PhysRevB.80.121409 doi: 10.1103/PhysRevB.80.121409
    [73] Idisi DO, Ali H, Oke JA, et al. (2019) Electronic, electrical and magnetic behaviours of reduced graphene-oxide functionalized with silica coated gold nanoparticles. Appl Surf Sci 483: 106–113. https://doi.org/10.1016/j.apsusc.2019.03.271 doi: 10.1016/j.apsusc.2019.03.271
    [74] Mondal A, Saha A, Sinha A, et al. (2012) Tunable catalytic performance and selectivity of a nanoparticle-graphene composite through finely controlled nanoparticle loading. Chem Asian J 7: 2931–2936. https://doi.org/10.1002/asia.201200716 doi: 10.1002/asia.201200716
    [75] Suda M, Kameyama N, Ikegami A, et al. (2009) Size-reduction induced ferromagnetism and photomagnetic effects in azobenzene-thiol- passivated gold nanoparticles. Polyhedron 28: 1868–1874. https://doi.org/10.1016/j.poly.2008.10.021 doi: 10.1016/j.poly.2008.10.021
    [76] Sarma S, Ray SC, Strydom AM (2017) Electronic and magnetic properties of nitrogen functionalized graphene-oxide. Dia Rel Mater 79: 1–6. https://doi.org/10.1016/j.diamond.2017.08.011 doi: 10.1016/j.diamond.2017.08.011
    [77] Ghosh B, Sarma S, Pontsho M, et al. (2018) Tuning of magnetic behaviour in nitrogenated graphene oxide functionalized with iron oxide. Dia Rel Mater 89: 35–42. https://doi.org/10.1016/j.diamond.2018.08.006 doi: 10.1016/j.diamond.2018.08.006
    [78] Bhattacharya G, Kandasamy G, Soin N, et al. (2017) Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical super- capacitors. RSC Adv 7: 327–335. https://doi.org/10.1039/C6RA25630A doi: 10.1039/C6RA25630A
    [79] Zhang X, Liu J, He B, et al. (2014) Magnetic-resonance-based electrical properties tomography: A review. IEEE Rev Biomed Eng 7: 87–96. https://doi.org/10.1109/rbme.2013.2297206 doi: 10.1109/rbme.2013.2297206
    [80] Carmeli I, Skakalova V, Naaman R, et al. (2002) Magnetization of chiral monolayers of polypeptide a possible source of magnetism in some biological membranes. Angew Chemie Int Ed Engl 41: 761–764. https://doi.org/10.1002/1521-3773(20020301)41:5%3C761::AID-ANIE761%3E3.0.CO;2-Z doi: 10.1002/1521-3773(20020301)41:5%3C761::AID-ANIE761%3E3.0.CO;2-Z
    [81] Idisi DO, Oke JA, Sarma S, et al. (2019) Tuning of electronic and magnetic properties of multifunctional r-GO-ATA-Fe2O3-composites for magnetic resonance imaging (MRI) contrast agent. J Appl Phys 126: 035301. https://doi.org/10.1063/1.5099892 doi: 10.1063/1.5099892
    [82] Ionov AN, Volkov MP, Nikolaeva MN, et al. (2021) The magnetism of a composite based on reduced graphene oxide and polystyrene. Nanomaterials 11: 403. https://doi.org/10.3390%2Fnano11020403
    [83] Cong CJ, Liao L, Liu QY, et al. (2006) Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related Raman vibration. Nanotechnology 17: 1520–1526. https://doi.org/10.1088/0957-4484/17/5/059 doi: 10.1088/0957-4484/17/5/059
    [84] Abdelbasir S, Shalan AE (2019) Intriguing properties and applications of functional magnetic materials, In: Sahu D, Functional Materials, IntechOpen, https://doi.org/10.5772/intechopen.81386
    [85] Goncalves G, Marques PAAP, Granadeiro CM, et al. (2009) Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21: 4796–4802. https://doi.org/10.1021/cm901052s doi: 10.1021/cm901052s
    [86] Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75: 125408. https://doi.org/10.1103/PhysRevB.75.125408 doi: 10.1103/PhysRevB.75.125408
    [87] Bozorth RM (1978) Ferromagnetism, Wiley-IEEE Press.
    [88] Sahoo PK, Panigrahy B, Li D, et al. (2013) Magnetic behaviour of reduced graphene oxide/metal nanocomposites. J Appl Phys 113: 17B525. https://doi.org/10.1063/1.4799150 doi: 10.1063/1.4799150
    [89] Aktürk OÜ, Tomak M (2009) AunPtn clusters adsorbed on graphene studied by first-principles calculations. Phys Rev B 80: 85417. https://doi.org/10.1103/PhysRevB.80.085417 doi: 10.1103/PhysRevB.80.085417
    [90] Krasheninnikov AV, Lehtinen PO, Foster AS, et al. (2009) Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys Rev Lett 102: 126807. https://doi.org/10.1103/PhysRevLett.102.126807 doi: 10.1103/PhysRevLett.102.126807
    [91] Chikazumi S, Charap SH (1964) Physics of Magnetism, New York: John Wiley & Sons.
    [92] Danan H, Meyer JP (1968) New determinations of the saturation magnetization of nickel and iron. J Appl Phys 39: 669. https://doi.org/10.1063/1.2163571 doi: 10.1063/1.2163571
    [93] Lin D, Nunes AC, Majkrzak CF, et al. (1995) Polarized neutron study of the magnetization density distribution within a CoFe2O4 colloidal particle Ⅱ. J Magn Magn Mater 145: 343. https://doi.org/10.1016/0304-8853(94)01627-5 doi: 10.1016/0304-8853(94)01627-5
    [94] Lu AH, Salabas EL, Schüth F, et al. (2007) Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed 46: 1222. https://doi.org/10.1002/anie.200602866 doi: 10.1002/anie.200602866
    [95] Sun XC, Dong, XL (2002) Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer. Mater Res Bull 37: 991. https://doi.org/10.1016/S0025-5408(02)00702-X doi: 10.1016/S0025-5408(02)00702-X
    [96] Matte HSSR, Subrahmanyam KS, Rao CNR (2009) Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113: 9982. https://doi.org/10.1021/jp903397u doi: 10.1021/jp903397u
    [97] Dutta S, Lakshmi S, Pati SK (2008) Electron-electron interactions on the edge states of graphene: A many-body configuration interaction study. Phys Rev B 77: 073412. https://doi.org/10.1103/PhysRevB.77.073412 doi: 10.1103/PhysRevB.77.073412
    [98] Chen Y, Peng D-L, Lin D, et al. (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18: 505703. https://doi.org/10.1088/0957-4484/18/50/505703 doi: 10.1088/0957-4484/18/50/505703
    [99] Yang X, Xia H, Qin X, et al. (2009) Correlation between the vacancy defects and ferromagnetism in graphite. Carbon 47: 1399–1406. https://doi.org/10.1016/j.carbon.2009.01.032 doi: 10.1016/j.carbon.2009.01.032
    [100] Novoselov KS, Geim AK, Morozov SV, et al. (2004) Electric field effect in atomically thin carbon films. Science 306: 666–669. https://doi.org/10.1126/science.1102896 doi: 10.1126/science.1102896
    [101] Nigar S, Zhou Z, Wang H, et al. (2017) Modulating the electronic and magnetic properties of graphene. RSC Adv 7: 51546–51580. https://doi.org/10.1039/C7RA08917A doi: 10.1039/C7RA08917A
    [102] Błonśki P, Tucěk J, Sofer Z, et al. (2017) Doping with graphitic nitrogen triggers ferromagnetism in graphene. J Am Chem Soc 139: 3171–3180. https://doi.org/10.1021/jacs.6b12934 doi: 10.1021/jacs.6b12934
    [103] Miao Q, Wang L, Liu Z, et al. (2016) Magnetic properties of N-doped graphene with high curie temperature. Sci Rep 6: 21832. https://doi.org/10.1038/srep21832 doi: 10.1038/srep21832
    [104] Ito Y, Christodoulou C, Nardi MV, et al. (2015) Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains. J Am Chem Soc 137: 7678–7685. https://doi.org/10.1021/ja512897m doi: 10.1021/ja512897m
    [105] Denis PA (2022) Heteroatom co-doped graphene: The importance of nitrogen. ACS Omega 7: 45935–45961. https://doi.org/10.1021/acsomega.2c06010 doi: 10.1021/acsomega.2c06010
    [106] Sun P, Wang K, Wei J, et al. (2014) Magnetic transitions in graphene derivatives. Nano Res 7: 1507–1518. https://doi.org/10.1007/s12274-014-0512-1 doi: 10.1007/s12274-014-0512-1
    [107] Wu Y, Yu D, Feng Y, et al. (2021) Facilely synthesized N-doped graphene sheets and its ferromagnetic origin. Chinese Chem Lett 32: 3841–3846. https://doi.org/10.1016/j.cclet.2021.04.054 doi: 10.1016/j.cclet.2021.04.054
    [108] Talukdar N, Wang Y, Nunna BB, et al. (2021) Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability. Carbon 185: 198–214. https://doi.org/10.1016/j.carbon.2021.09.025 doi: 10.1016/j.carbon.2021.09.025
    [109] Gayan ES, Soin N, Moloi SJ, et al. (2020) Polyacrylate grafted graphene oxide nanocomposites for biomedical applications. J Appl Phys 127: 054302. https://doi.org/10.1063/1.5135572 doi: 10.1063/1.5135572
    [110] Sarkar AK, Bediako JK, Choi J-W, et al. (2019) Functionalized magnetic biopolymeric graphene oxide with outstanding performance in water purification. NPG Asia Mater 11: 4. https://doi.org/10.1038/s41427-018-0104-8 doi: 10.1038/s41427-018-0104-8
    [111] Viswanathan C, Senthilkumar V, Sriranjini R, et al. (2005) Effect of substrate temperature on the properties of vacuum evaporated indium selenide thin films. Cryst Res Technol 40: 658. https://doi.org/10.1002/crat.200410404 doi: 10.1002/crat.200410404
    [112] Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3: 270. https://doi.org/10.1038/nnano.2008.83 doi: 10.1038/nnano.2008.83
    [113] Vozmediano MAH, López-Sancho MP, Stauber T, et al. (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72: 155121. https://doi.org/10.1103/PhysRevB.72.155121 doi: 10.1103/PhysRevB.72.155121
    [114] Li G, Luican A, Lopes de Santos JMB, et al. (2010) Observation of Van Hove singularities in twisted graphene layers. Nat Phys 6: 109–113. https://doi.org/10.1038/NPHYS1463 doi: 10.1038/NPHYS1463
    [115] Eng AYS, Poh HL, Šaněk F, et al. (2013) Searching for magnetism in hydrogenated graphene. ACS Nano 7: 5930–5939. https://doi.org/10.1021/nn4016289 doi: 10.1021/nn4016289
    [116] Qin S, Guo X, Cao Y, et al. (2014) Strong ferromagnetism of reduced graphene oxide. Carbon 78: 559–565. https://doi.org/10.1016/j.carbon.2014.07.039 doi: 10.1016/j.carbon.2014.07.039
    [117] Taniguchi T, Yokoi H, Nagamine M, et al. (2014) Correlated optical and magnetic properties in photo-reduced graphene oxide. J Phys Chem C 118: 28258–28265. https://dx.doi.org/10.1021/jp509399x doi: 10.1021/jp509399x
    [118] Enayati M, Nemati A, Zarrabi A, et al. (2019) The role of oxygen defects in magnetic properties of gamma-irradiated reduced graphene oxide. J Alloys Compd 784: 134–148. https://doi.org/10.1016/j.jallcom.2018.12.363 doi: 10.1016/j.jallcom.2018.12.363
    [119] Enayati M, Nemati A, Zarrabi A, et al. (2018) Reduced graphene oxide: An alternative for magnetic resonance imaging contrast agent. Mater Lett 233: 363–366. https://doi.org/10.1016/j.matlet.2018.09.044 doi: 10.1016/j.matlet.2018.09.044
    [120] He Z, Yang X, Xia H, et al. (2011) Enhancing the ferro-magnetization of graphite by successive 12C+ ion implantation steps. Carbon 49: 1931–1938. https://doi.org/10.1016/j.carbon.2011.01.018 doi: 10.1016/j.carbon.2011.01.018
    [121] Soin N, Ray SC, Sarma S, et al. (2017) Tuning the electronic and magnetic properties of nitrogen functionalized few-layered graphene nanoflakes. J Phys Chem C 121: 14073. https://doi.org/10.1021/acs.jpcc.7b01645 doi: 10.1021/acs.jpcc.7b01645
    [122] Chuang C-H, Ray SC, Mazumder D, et al. (2017) Chemical modification of graphene oxide by nitrogenation: An x-ray absorption and emission spectroscopy study. Sci Rep 7: 42235. https://doi.org/10.1038/srep42235 doi: 10.1038/srep42235
    [123] Zhang K-C, Li Y-F, Liu Y, et al. (2016) Density-functional study on the structural and magnetic properties of N-doped graphene oxide. Carbon 102: 39–50. https://doi.org/10.1016/j.carbon.2016.02.030 doi: 10.1016/j.carbon.2016.02.030
    [124] Araki H, Yoshino K (1992) Preparation, molecular structures and novel magnetic properties of organic ferromagnetic compounds by pyrolysis of triphenoxy-triazine and benzoguanamine. J Phys Condens Matter 4: L119–L123. https://doi.org/10.1088/0953-8984/4/8/003 doi: 10.1088/0953-8984/4/8/003
    [125] Ganya ES, Moloi SJ, Ray SC, et al. (2020) Tuning the electronic and magnetic properties of PEDOT-PSS-coated graphene oxide nanocomposites for biomedical applications. J Mater Res 35: 2478–2490. https://doi.org/10.1557/jmr.2020.236 doi: 10.1557/jmr.2020.236
    [126] Ray SC, Bhunia SK, Saha A, et al. (2015) Graphene oxide (GO)/reduced-GO and their composite with conducting polymer nanostructure thin films for non-volatile memory device. Microelectron Eng 146: 48–52. https://doi.org/10.1016/j.mee.2015.04.001 doi: 10.1016/j.mee.2015.04.001
    [127] Eluyemi MS, Eleruja MA, Adedeji AV, et al. (2016) Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method. Graphene 5: 143–154. http://dx.doi.org/ 10.4236/graphene.2016.53012 doi: 10.4236/graphene.2016.53012
    [128] Roy S, Soin N, Bajpai R, et al. (2011) Graphene oxide for electrochemical sensing applications. J Mater Chem 21: 14725–14731. https://doi.org/10.1039/C1JM12028J doi: 10.1039/C1JM12028J
    [129] Ganguly A, Sharma S, Papakonstantinou P, et al. (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019. https://doi.org/10.1021/jp203741y doi: 10.1021/jp203741y
    [130] Roy S, Soin N, Bajpai R, et al. (2011) Graphene oxide for electrochemical sensing applications. J Mater Chem 21: 14725-14731. https://doi.org/10.1039/c1jm12028j doi: 10.1039/c1jm12028j
    [131] Chang Y-S, Chen F-K, Tsai D-C, et al. (2021) N-doped reduced graphene oxide for room-temperature NO gas sensors. Sci Rep 11: 20719. https://doi.org/10.1038%2Fs41598-021-99883-9
    [132] Singh K, Ohlan A, Saini P, et al. (2008) Poly(3, 4-ethylenedioxythiophene)γ-Fe2O3 polymer composite–super paramagnetic behavior and variable range hopping 1D conduction mechanism–synthesis and characterization. Polym Adv Technol 19: 229–236. https://doi.org/10.1002/pat.1003 doi: 10.1002/pat.1003
    [133] Geng D, Yang S, Zhang Y, et al. (2011) Nitrogen doping effects on the structure of graphene. Appl Surf Sci 257: 9193–9198. https://doi.org/10.1016/j.apsusc.2011.05.131 doi: 10.1016/j.apsusc.2011.05.131
    [134] Elk K, Richter J, Christoph V (1979) Density of states and electrical conductivity of disordered alloys with strong electron correlation. J Phys F Met Phys 9: 307–316. https://doi.org/10.1088/0305-4608/9/2/019 doi: 10.1088/0305-4608/9/2/019
    [135] See TP, Pandikumar A, Ngee LH, et al. (2014) Magnetically separable reduced graphene oxide/iron oxide nanocomposite materials for environmental remediation. Catal Sci Technol 4: 4396–4405. https://doi.org/10.1039/C4CY00806E doi: 10.1039/C4CY00806E
    [136] Ren LL, Huang S, Fan W, et al. (2011) One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Appl Surf Sci 258: 1132–1138. https://doi.org/10.1016/j.apsusc.2011.09.049 doi: 10.1016/j.apsusc.2011.09.049
    [137] Tanwar S, Mathur D (2020) Magnetite-graphene oxide nanocomposites: Facile synthesis and characterization of optical and magnetic property. Mater Today Proc 30: 17–22. https://doi.org/10.1016/j.matpr.2020.03.745 doi: 10.1016/j.matpr.2020.03.745
    [138] Sepioni M, Nair RR, Rablen S, et al. (2010) Limits on intrinsic magnetism in graphene. Phys Rev Lett 105: 207205. https://doi.org/10.1103/PhysRevLett.105.207205 doi: 10.1103/PhysRevLett.105.207205
    [139] Popplewell J, Sakhnini L (1995) The dependence of the physical and magnetic properties of magnetic fluids on particle size. J Magn Mater 149: 72–78. https://doi.org/10.1016/0304-8853(95)00341-X doi: 10.1016/0304-8853(95)00341-X
    [140] Thapa B, Diaz-Diestra D, Badillo-Diaz D, et al. (2029) Controlling the transverse proton relaxivity of Magnetic graphene-oxide. Sci Rep 9: 5633. https://doi.org/10.1038/s41598-019-42093-1 doi: 10.1038/s41598-019-42093-1
    [141] Wang GS, Chen GY, Wei ZY, et al. (2013) Multifunctional Fe3O4/graphene oxide nanocomposites for magnetic resonance imaging and drug delivery. Mater Chem Phys 141: 997–1004. https://doi.org/10.1016/j.matchemphys.2013.06.054 doi: 10.1016/j.matchemphys.2013.06.054
    [142] Cong HP, He JJ, Lu Y, et al. (2010) Water-soluble magnetic-functionalized reduced graphene oxide sheets: situ synthesis and magnetic resonance imaging applications. Small 6: 169–171. https://doi.org/10.1002/smll.200901360 doi: 10.1002/smll.200901360
    [143] Zhou GM, Wang DW, Zhang LL, et al. (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22: 5306–5313. https://doi.org/10.1021/cm101532x doi: 10.1021/cm101532x
    [144] Zhang M, Lei DN, Yin XM, et al. (2010) Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. Mater Chem 20: 5538–5543. https://doi.org/10.1039/C0JM00638F doi: 10.1039/C0JM00638F
    [145] Koo HY, Lee HJ, Go HA, et al. (2011) Graphene-based multifunctional iron oxide nanosheets with tuneable properties. Eur J 17: 1214–1219. https://doi.org/10.1002/chem.201002252 doi: 10.1002/chem.201002252
    [146] Ray SC, Pong WF (2022) Possible Ferro-electro-magnetic performance of "reduced graphene oxide" deposited on "ZnO-nanorod (NR) decorated with nanocrystalline (nc) Au particles". AIP Adv 12: 055008. https://doi.org/10.1063/5.0091852 doi: 10.1063/5.0091852
    [147] Ghosh B, Benecha EM, Ray SC, et al. (2019) ZnO nanorods decorated with nanocrystalline (nc) Au Particles: Electronic structure and magnetic behaviours. J Alloys Compd 797: 74–82. https://doi.org/10.1016/j.jallcom.2019.05.062 doi: 10.1016/j.jallcom.2019.05.062
    [148] Qin S, Sun P, Di Q, et al. (2015) Ferromagnetism of three-dimensional graphene framework. RSC Adv 5: 92899–92904. https://doi.org/10.1039/c5ra14377b doi: 10.1039/c5ra14377b
    [149] Sun Z, Yang X, Wang C, et al. (2014) Graphene activating room-temperature ferromagnetic exchange in cobalt-doped ZnO dilute magnetic semiconductor quantum dots. ACS Nano 8: 10589–10596. https://doi.org/10.1021/nn5040845 doi: 10.1021/nn5040845
    [150] Liu W, Speranza G (2021) Tuning the oxygen content of reduced graphene oxide and effects on its properties. ACS Omega 6: 6195–6205. https://doi.org/10.1021/acsomega.0c05578 doi: 10.1021/acsomega.0c05578
    [151] Chen J, Zhang W, Sun Y, et al. (2016) Creation of localized spins in graphene by ring-opening of epoxy derived hydroxyl. Sci Rep 6: 26862. https://doi.org/10.1038/srep26862 doi: 10.1038/srep26862
    [152] Thiyagarajan K, Muralidharan M, Sivakumar K (2018) Interfacial ferromagnetism in reduced graphene oxide-ZnO nanocomposites. J Mater Sci-Mater El 29: 7442–7452. https://doi.org/10.1007/s10854-018-8735-7 doi: 10.1007/s10854-018-8735-7
    [153] Ray SC, Mishra DK, Wang HT, et al. (2022) Effects of electronic structure and magnetic performance at the surface/interface of r-GO and TiO2 in r-GO/TiO2 composite thin films: X-ray absorption near-edge structure and x-ray photoelectron spectroscopy. AIP Adv 12: 075101. https://doi.org/10.1063/5.0096305 doi: 10.1063/5.0096305
    [154] Sarma S, Ray SC (2021) Low Temperature ferromagnetic behavior of graphene oxide (GO) and molybdenum disulphide (MoS2) hybrid nanocomposite. J Nanosci Nanotech 21: 3320–3324. https://doi.org/10.1166/jnn.2021.19286 doi: 10.1166/jnn.2021.19286
    [155] Ma J, Chen K (2017) Modulated self-reversed magnetic hysteresis in iron oxides. Sci Rep 7: 42312. https://doi.org/10.1038/srep42312 doi: 10.1038/srep42312
    [156] Yoshikazu I, Yasuhiko S (1963) Order-disorder transformation and reverse the remnant magnetism in the FeTiO3-Fe2O3 system. J Phys Chem Solids 24: 517–528. https://doi.org/10.1016/0022-3697(63)90147-1 doi: 10.1016/0022-3697(63)90147-1
    [157] Nord GL, Lawson CA (1992) Magnetic properties of ilmenite70–hematite30: Effect of transformation-induced twin boundaries. J Geophys Res 97: 10897–10910. https://doi.org/10.1029/91JB02259 doi: 10.1029/91JB02259
    [158] Hoffman KA (1992) Self-reversal of thermoremanent magnetization in the ilmenite-hematite system: Order-disorder, symmetry and spin alignment. J Geophys Res 97: 10883–10895. https://doi.org/10.1029/91JB02846 doi: 10.1029/91JB02846
    [159] Dunin-Borkowski RE, Kasama T, Harrison RJ (2015) Electron Holography of nanostructured materials, In: Kirkland AI, Haigh SJ, Nanocharacterisation, The Royal Society of Chemistry, 2Eds., 158–210. http://dx.doi.org/10.1039/9781782621867-00158
    [160] Ghosh B, Ray SC, Pattanaik S, et al. (2018) Tuning of electronic structure and magnetic properties of Xenon ion implanted zinc oxide. J Phys D-Appl Phys 51: 095304. https://doi.org/10.1088/1361-6463/aaa832 doi: 10.1088/1361-6463/aaa832
    [161] Matte HSSR, Maitra U, Kumar P, et al. (2012) Synthesis, characterization, and proper- ties of few-layer metal dichalcogenides and their nanocomposites with noble metal particles polyaniline, and reduced graphene oxide. ZAAC 638: 2617–2624. https://doi.org/10.1002/zaac.201200283 doi: 10.1002/zaac.201200283
    [162] Matte HSSR, Subrahmanyam KS, Rao CNR (2009) Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113:9982–9985. https://doi.org/10.1021/jp903397u doi: 10.1021/jp903397u
    [163] Rao CNR, Matte HSSR, Subrahmanyam KS, et al. (2012) Unusual magnetic properties of graphene and related materials. Chem Sci 3: 45–52. https://doi.org/10.1039/C1SC00726B doi: 10.1039/C1SC00726B
    [164] Nurhafizah MD (2020) Magnetic properties of graphene oxide vis a simple mixing with waste engine oil-based carbon nanotubes. SN Appl Sci 2: 534. https://doi.org/10.1007/s42452-020-2361-8 doi: 10.1007/s42452-020-2361-8
    [165] El-Khawas EH, Azab AA, Mansour AM (2020) Structural, magnetic and dielectric properties of reduced graphene oxide/La0.9Bi0.1FeO3 nanocomposites. Mater Chem Phys 241: 122335. https://doi.org/10.1016/j.matchemphys.2019.122335 doi: 10.1016/j.matchemphys.2019.122335
    [166] Tepel M, Nesbit O, Tokmak F, et al. (1998) Sodium-dependent Cl/HCO3 exchange in patients with chronic renal failure: correlation with renal function. Kidney Int 53: 432–438. https://doi.org/10.1046/j.1523-1755.1998.00776.x doi: 10.1046/j.1523-1755.1998.00776.x
    [167] Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101: 1981–2017. https://doi.org/10.1021/cr980129f doi: 10.1021/cr980129f
    [168] Xia Z, Poeppelmeier KR (2017) Chemistry-inspired adaptable framework structures. Acc Chem Res 50: 1222–1230. https://doi.org/10.1021/acs.accounts.7b00033 doi: 10.1021/acs.accounts.7b00033
    [169] Li T, Shen J, Li N, et al. (2013) Hydrothermal preparation, characterization and enhanced properties of reduced graphene-BiFeO3 nanocomposite. Mater Lett 91: 42–44. https://doi.org/10.1016/j.matlet.2012.09.045 doi: 10.1016/j.matlet.2012.09.045
    [170] Hu J, Wang L, Shi L, et al. (2014) Preparation of La1–xCaxMnO3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium. J Power Sources 269: 144–151. https://doi.org/10.1016/j.jpowsour.2014.07.004 doi: 10.1016/j.jpowsour.2014.07.004
    [171] Molina-García MA, Rees NV (2017) Dual-doped graphene/perovskite bifunctional catalysts and the oxygen reduction reaction. Electrochem. Commun 84: 65–70. https://doi.org/10.1016/j.elecom.2017.10.004 doi: 10.1016/j.elecom.2017.10.004
    [172] Dreyer DR, Park S, Bielawski CW and Ruoff RS (2010) The chemistry of graphite oxide. Chem Soc Rev 39: 228–240. https://doi.org/10.1039/B917103G doi: 10.1039/B917103G
    [173] Nair RR, Sepioni M, Tsai IL, et al. (2012) Spin-half paramagnetism in graphene induced by point defects. Nat Phys 8: 199–202. https://www.nature.com/articles/nphys2183#Sec1
    [174] Bhowmick S, Shenoy VB (2008) Edge state magnetism of single layer graphene nanostructures. J Chem Phys 128: 244717. https://doi.org/10.1063/1.2943678 doi: 10.1063/1.2943678
    [175] Chen L, Guo L, Li Z, et al. (2013) Towards intrinsic magnetism of graphene sheets with irregular zigzag edges. Sci Rep 3: 2599. https://doi.org/10.1038/srep02599 doi: 10.1038/srep02599
    [176] López-Sancho MP, De Juan F, Vozmediano MAH (2009) Magnetic moments in the presence of topological defects in graphene. Phys Rev B-Condens Matter Mater Phys 79: 075413. https://doi.org/10.1103/PhysRevB.79.075413 doi: 10.1103/PhysRevB.79.075413
    [177] Krishnamoorthy K, Veerapandian M, Yun K, et al. (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53: 38–49. https://doi.org/10.1016/j.carbon.2012.10.013 doi: 10.1016/j.carbon.2012.10.013
    [178] Thompson-Flagg RC, Moura MJB, Marder M (2009) Rippling of graphene. Epl 85: 46002. https://doi.org/10.1209/0295-5075/85/46002 doi: 10.1209/0295-5075/85/46002
    [179] Bagani K, Bhattacharya A, Kaur J, et al. (2014) Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide. J Appl Phys 115: 023902. https://doi.org/10.1063/1.4861173 doi: 10.1063/1.4861173
    [180] Kumazaki H, Hirashima D (2008) Nonmagnetic-defect-induced magnetism in graphene. Physica E 40: 1703–1705. https://doi.org/10.1016/j.physe.2007.10.112 doi: 10.1016/j.physe.2007.10.112
    [181] Li W, Zhao M, Xia Y, et al. (2009) Covalent adsorption induced magnetism in graphene. J Mater Chem 19: 9274–9282. https://doi.org/10.1039/B908949G doi: 10.1039/B908949G
    [182] Tang T, Liu F, Liu Y, et al. (2014) Identifying the magnetic properties of graphene oxide. Appl Phys Lett 104/12: 123104. https://doi.org/10.1063/1.4869827 doi: 10.1063/1.4869827
    [183] Bedanta S, Kleemann W (2009) Topical review supermagnetism. J Phys D-Appl Phys 42: 013001. https://doi.org/10.1088/0022-3727/42/1/013001 doi: 10.1088/0022-3727/42/1/013001
    [184] Fujii S, Enoki T (2010) Cutting of oxidized graphene into nanosized pieces. J Am Chem Soc 132: 10034–10041. https://doi.org/10.1021/ja101265r doi: 10.1021/ja101265r
    [185] Hernández Rosas JJ, Ramírez Gutiérrez RE, Escobedo-Morales A, et al. (2011) First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. J Mol Model 17: 1133–1139. https://doi.org/10.1007/s00894-010-0818-1 doi: 10.1007/s00894-010-0818-1
    [186] Li W, Zhao M, Xia Y, et al. (2009) Covalent-adsorption induced magnetism in graphene. J Mater Chem 19: 9274–9282. https://doi.org/10.1039/b908949g doi: 10.1039/b908949g
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1512) PDF downloads(121) Cited by(0)

Article outline

Figures and Tables

Figures(17)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog