
Carbon-based nanostructured materials are very promising for spintronic applications due to their weak spin-orbit coupling and potentially providing a long spin lifetime. Nanostructured carbons are not magnetic materials, but intrinsic magnetic behavioral nanostructure carbon materials could be fabricated through qualitative alterations. On alterations of carbon nanostructured materials, it changes their critical temperature and magneto-crystalline anisotropy energy that could be useful as favorable magnetic materials for different magnetic/electromagnetic device-based applications. Different processes are used for the alteration of nanostructure carbon materials like chemical doping, introducing defects, changing the density of states, functionalization, intercalation, forming heterostructure and fabricating nanocomposites layered semiconductor materials. Among the carbon-based derived nanostructured materials, the graphene oxide (GO) gets attracted towards the magnet forming in the spin-like structure across the area of the magnet. Due to its magnetic behaviour, it is used for the adsorption of metals and radionuclides and to make nonconductive oxide-metal. In this review article, the basics of magnetic behavioral change of the carbon-based GO/GO-nanocomposites nanostructured materials are described by gathering information from the literature that were/are reported by different researchers/research groups worldwide.
Citation: Sekhar Chandra Ray. Possible magnetic performances of graphene-oxide and it's composites: A brief review[J]. AIMS Materials Science, 2023, 10(5): 767-818. doi: 10.3934/matersci.2023043
[1] | Yonca Erdem Demirtaş, Neslihan Fidan Keçeci . The efficiency of private pension companies using dynamic data envelopment analysis. Quantitative Finance and Economics, 2020, 4(2): 204-219. doi: 10.3934/QFE.2020009 |
[2] | Lei Mao, Yan Zhang . Robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks under CEV model. Quantitative Finance and Economics, 2021, 5(1): 134-162. doi: 10.3934/QFE.2021007 |
[3] | Hongxuan Huang, Zhengjun Zhang . An intrinsic robust rank-one-approximation approach for currency portfolio optimization. Quantitative Finance and Economics, 2018, 2(1): 160-189. doi: 10.3934/QFE.2018.1.160 |
[4] | Anna Timonina-Farkas . COVID-19: data-driven dynamic asset allocation in times of pandemic. Quantitative Finance and Economics, 2021, 5(2): 198-227. doi: 10.3934/QFE.2021009 |
[5] | Gülserim Özcan . The amplification of the New Keynesian models and robust optimal monetary policy. Quantitative Finance and Economics, 2020, 4(1): 36-65. doi: 10.3934/QFE.2020003 |
[6] | Jorge A. Chan-Lau . Systemic centrality and systemic communities in financial networks. Quantitative Finance and Economics, 2018, 2(2): 468-496. doi: 10.3934/QFE.2018.2.468 |
[7] | Thomas C. Chiang . Stock returns and inflation expectations: Evidence from 20 major countries. Quantitative Finance and Economics, 2023, 7(4): 538-568. doi: 10.3934/QFE.2023027 |
[8] | Vladimir Donskoy . BOMD: Building Optimization Models from Data (Neural Networks based Approach). Quantitative Finance and Economics, 2019, 3(4): 608-623. doi: 10.3934/QFE.2019.4.608 |
[9] | AiMin Yan, Hao Ma, Dandan Zhu, Julan Xie . Digital transformation and corporate resilience: Evidence from China during the COVID-19 pandemic. Quantitative Finance and Economics, 2024, 8(4): 779-814. doi: 10.3934/QFE.2024030 |
[10] | Salvatore Scognamiglio . Longevity risk analysis: applications to the Italian regional data. Quantitative Finance and Economics, 2022, 6(1): 138-157. doi: 10.3934/QFE.2022006 |
Carbon-based nanostructured materials are very promising for spintronic applications due to their weak spin-orbit coupling and potentially providing a long spin lifetime. Nanostructured carbons are not magnetic materials, but intrinsic magnetic behavioral nanostructure carbon materials could be fabricated through qualitative alterations. On alterations of carbon nanostructured materials, it changes their critical temperature and magneto-crystalline anisotropy energy that could be useful as favorable magnetic materials for different magnetic/electromagnetic device-based applications. Different processes are used for the alteration of nanostructure carbon materials like chemical doping, introducing defects, changing the density of states, functionalization, intercalation, forming heterostructure and fabricating nanocomposites layered semiconductor materials. Among the carbon-based derived nanostructured materials, the graphene oxide (GO) gets attracted towards the magnet forming in the spin-like structure across the area of the magnet. Due to its magnetic behaviour, it is used for the adsorption of metals and radionuclides and to make nonconductive oxide-metal. In this review article, the basics of magnetic behavioral change of the carbon-based GO/GO-nanocomposites nanostructured materials are described by gathering information from the literature that were/are reported by different researchers/research groups worldwide.
Since inception, Data Envelopment Analysis (DEA) developed by Charnes et al. (1978), has been widely used to evaluate the performance of a set of Decision Making Units (DMUs), especially those with multiple inputs and multiple outputs (e.g., Cook et.al, 2009; Cooper et al., 2007; Liang et al., 2008; Thanassoulis et al., 2011 and Wu and Liang, 2010). In the original DEA models, all DMUs are treated as a black box and the internal structure is always ignored; see, e.g., Lewis and Sexton (2004) for more details. However, there are cases where DMUs may consist of two-stage network structures with intermediate measures. In other words, DMUs under evaluation share a common feature found in many two-stage network structures, namely the outputs from the first stage become the inputs to the second stage. This is referred to intermediate measure. For instance, Seiford and Zhu (1999) developed the profitability and marketability of US commercial banks based on a two-stage Network Data Envelopment Analysis (NDEA) model. Kao and Hwang (2008) studied the efficiency of 24 insurance firms based on a two-stage model where operating and insurance expenses are applied to generate premiums in the first stage and the underwriting and investment profits are produced in the second stage by employing the intermediate premiums as a resource. Liang et al. (2008) developed cooperative and non-cooperative models to address the tension between two stages caused by the intermediate measures.
The DEA models are classified into four series: original DEA models; efficiency decomposition models; NDEA models; and game-theoretic models (e.g., Cook et al., 2010). Also, Cook and Zhu (2014) revised various DEA models for measuring efficiency in the two-stage network structures. Li et al. (2018) presented an extended model of Despotis et al.'s model (2016) to generate a Pareto solution and identified the leader stage of a two-stage DEA model. They displayed that the optimal solution for the developed model is also a leader-follower solution and that the global optimal solution can be specified by comparing the efficiency scores difference for the upper and lower bounds of the two stages. In recent years, many researchers also studied two-stage NDEA models with shared resources; see, e.g., Yu and Shi (2014), Moreno et al. (2015), Wu et al. (2016 a, 2016 b), Ang and Chen (2016), Guo et al. (2017), Li et al. (2017 c) and Izadikhah et al. (2018).
In all the above mentioned DEA models, all inputs and outputs parameters are assumed to be exact and the effect of uncertainty is ignored. Research showed that a small perturbation in the problem data can lead to a serious variation in ranking. Robust optimization is a widely used approach to deal with the data uncertainty (e.g., Soyster, 1973; Mulvey et al., 1995; Despotis and Smirlis, 2002). This approach firstly takes the percentage of the perturbation in the data into consideration and then obtains the robust efficiency (e.g., Ben-Tal and Nemirovski, 1999). In the realm of robust DEA, Sadjadi and Omrani (2008) considered uncertainty in output parameters for the performance evaluation of electricity distribution firms. They showed that models presented by Bertsimas and Sim(2003, 2004) and Bertsimas and Thiele (2006) were easier and more practical than the robust DEA model introduced by Ben-Tal and Nemirovski (2000). Salahi et al. (2016) presented the robust counterpart of the CCR model in the envelopment form and showed that it is the same as the optimistic robust counterpart of the multiplier form of the CCR model. Then they computed robust solutions for common set of weights under interval uncertainties using robust efficiency scores of units considering as ideal solutions. In another research, Wu et al. (2017) transformed a robust DEA optimization model into a second-order cone equivalent to immunize against output perturbation in an uncertainty set. As well, in a recent study, Salahi et al. (2018) proposed equivalent formulizations of the robust Russell measure model and its enhanced model for interval and ellipsoidal uncertainties in their best- and worst-cases. The authors indicated that the built formulizations remain convex for both best- and worst-cases under interval uncertainty as well as worst-case with ellipsoidal uncertainty. The effect of uncertainty also is studied in two-stage models. Kao and Liu (2011) developed a two-stage DEA model from deterministic to uncertain situations, where the observations are represented by fuzzy numbers. In their study, the extension principle is utilized to develop a pair of two-level mathematical program to calculate the lower and upper bounds of the α-cut of the fuzzy efficiency. As well, Liu (2014) proposed a fuzzy two-stage NDEA model with assurance region. A new two-stage Stackelberg fuzzy DEA model with utilizing the Monte Carlo simulation is proposed by Tavana and Khalili-Damghani (2014), that discriminately ranked the efficiency scores in each stage for branches of a commercial bank. In another study, Alimohammadi (2016) proposed a robust two-stage DEA model in order to evaluate the efficiency of the electrical networks under uncertainty. Hatefi et al. (2016) applied an integrated forward-reverse logistics network with hybrid facilities under uncertainty in which the impact of random facility disruptions is relieved. Zhou et al. (2017) suggested stochastic NDEA models for two-stage systems under the centralized control organization mechanism and showed that ignoring the internal structure of the whole process is not convenient. Also, Huang et al. (2018) developed a NDEA model to Copula-Based network stochastic frontier analysis on evidence from the U.S. commercial banks in 2009 and evaluated technical efficiencies of the stochastic production and cost frontiers. Their dynamic model recognized multiple banks production processes that was independent of whether, more or less deposits are consistent with higher bank efficiency.
Another approach to deal with uncertainty is the p-robust approach. It was first introduced to deal with uncertainty in facility layout by Kouvelis et al. (1992) and used subsequently in a network design problem; see, e.g., Gutierrez et al. (1996). Next the p-robustness opinion by Mo and Horrison (2005) was first used in a supply-chain network design to show that the relative regret in each scenario must not be more than constant p. After that, Snyder and Daskin (2006) introduced a new approach for optimizing under uncertainty known as a stochastic p-robust optimization approach. In their approach, the objective function minimizes the expected costs, while the p-robustness condition is incorporated into the model as a constraint and the required decisions are partitioned into two stages. It is a combination of the robust optimization and traditional stochastic approaches, each of which has some disadvantages to cope the uncertainty. The stochastic models search to minimize the total expected cost among all scenarios. The optimal solution obtained using it may be very good for some scenarios but very poor for the others. The robust approach usually seeks min-max regret solutions that appear effective no matter which scenario is realized.
In this paper, we utilize stochastic p-robust approach for the Stackelberg (leader-follower) and centralized game-theoretic DEA models of Liang et al. (2008) to achieve robustness against the existing uncertainty. The developed models are based on the discrete robust and stochastic optimization approaches that apply probabilistic scenarios to obtain the effect of imprecise input and output parameters and calculate the efficiency scores for DMUs. It can overcome the difficulties of models under uncertain parameters and give reliable answers. In fact, the aim of this study is to create a robust system for NDEA models through comparison of game-theoretic models in which large reductions in regret are possible with little increases in the expected efficiency of branches. The proposed models are very sensitive to the parameters change. One of the main advantages of these models is that it enables decision makers to make a trade-off between the expected value and the regret value of the efficiency of DMUs under probable scenarios and also, a trade-off between robustness of the solution and the robustness of the model. Also, the uncertainty under different scenarios is formulated with a specified probability for input and output data instead of using point estimates. Like the fuzzy approach, this approach does not require any membership functions and the α-cut variables (i.e., minimizing the computational efforts). Also, it does not use a Monte Carlo simulation procedure to discriminately rank the efficient DUMs. Therefore, we can obtain the scenario ranking based on the p-values on the mind.
The rest of the paper is organized as follows. The next section reviews a short preliminary to the game-theoretic models utilized in two-stage DEA models. Section 3 presents the stochastic p-robust approach for centralized and non-centralized models. In Section 4, we apply the proposed models to a real numerical example to demonstrate its efficiency. Sensitivity analysis is provided in Section 5 and at the end, concluding remarks and some directions for future research are given in the last section.
In this section, we briefly review the game-theoretic models used in an original two-stage process. Liang et al. (2006) employed the notions of the Stackelberg game (or leader-follower/the seller and buyer) and the cooperative game to extend models for measuring performance in supply chain settings. In their model, the second stage includes both the outputs from the first stage and some additional inputs. Since some of the inputs to the second stage were not from the first stage, one of the DEA models was nonlinear. Although the model was nonlinear, it could be solved as parametric linear programming problems, and the best solution could be found using a heuristic technique.
Liang et al. (2008) applied the model of Liang et al. (2006) for two-stage processes (which includes only intermediate measures joining the to two stages, as illustrated in Figure 1) and then used the overall efficiency definition of Kao and Hwang (2008) to get linear DEA models. In fact, Liang et al. (2008) presented alternative models to address the conflict between stages caused by the intermediate measures, and at the same time provide efficiency scores for both individual stages and the overall process. Their non-cooperative and cooperative models displayed that the overall efficiency of the two-stage process was the product of efficiencies of the two stages.
In general, the two models derived from game-theoretic axioms are the cooperative (centralized) and the non-cooperative (non-centralized) game models; see, e.g., Cook et al. (2010). The non-centralized model considers the two stages as players in a game and pursues a leader-follower model. This model often mentioned to as a Stackelberg game, requires selecting one of the two stages as the leader and then obtaining multipliers for the inputs and outputs that produce the best feasible score for that stage. The efficiency score for the other stage, namely the follower is then attained by detecting the best potential weights for its inputs and outputs, but with the limitation that the score of the leader is not compromised. The centralized game model gains the best overall efficiency score for the two stages incorporated. Consider an original two-stage process as shown in Figure 1. Suppose we have n DMUs, and each DMUj (j = 1, …, n) uses m inputs xij s, (i = 1, …, m) in the first stage to produce D outputs zdjs , (d = 1, …, D) under scenario s = {1, …, S}. Then, these D outputs become the inputs to the second stage and will be referred to as intermediate measures. The outputs from the second stage are yrj s, (r = 1, …, t) under scenario s. Therefore, xijs, zdjs and y rjs show the i th input, the dth intermediate output and the rth output of DMUj based on the sth scenario.
For DMUj we denote the efficiency scores of the first stage as ej1s and the second as ej2s based on the sth scenario. Based upon the radial constant returns to scale (CRS) DEA model of Charnes et al. (1978), we have the following input-oriented DEA models for each stage:
e1sj=max∑Dd=1w1dzsdj0∑mi=1vixsij0 e2sj=max∑tr=1urysrj0∑Dd=1w2dzsdj0s.t. s.t. ∑Dd=1w1dzsdj∑mi=1 vixsij≤1, ∀j,∀sϵS, ∑tr=1urysrj∑Dd=1w2dzsdj≤1, ∀ j,∀sϵS, vi≥0, w1d≥0, ∀i,d. ur≥0, w2d≥0, ∀ r,d. | (1) |
In models (1), vi, wd1, wd2, and ur are non-negative decision variables of inputs, intermediate measures and outputs, respectively. Besides, xijs, zdjs and yrjs show uncertain parameters related to the ith input, the dth intermediate measure and the rth output of DMUj in terms of the sth scenario, respectively. It is noteworthy that, here, we assume the weights related to the intermediate parameters are the same, i.e., wd1 = wd2 regardless of whether they are considered as inputs or outputs; see, e.g., Kao and Hwang (2008) and Liang et al. (2008) for more details on the properties of models. As in Seiford and Zhu (1999), we can use two separate DEA analysis for the two stages, so that if the first stage is efficient and the second stage is not, then the second stage improves its performance by decreasing the inputs zdjs, that the reduced zdjs may make the first stage inefficient. However, to compute the overall efficiency, Chen et al. (2009) proposed an additive or arithmetic mean methodology for incorporating the two stages, as opposed to the geometric-type model of Kao and Hwang (2008).
Definition 2.1 If ej1s and ej2s are the efficiency scores of the first and the second stages under the sth scenario, respectively then the efficiency of the overall two-stage process either is 12(e1sj+e2sj) or e1sj×e2sj.
Definition 2.2 If ej1s≤1 and ej2s≤1 are the efficiency measures of the first and the second stages under the sth scenario, respectively in the input oriented model, then the two-stage process is efficient if and only if ej1s = ej2s = 1.
It is noted that, if esj=∑tr=1urysrj/∑mi=1vixSij is the two-stage overall efficiency score under the sth scenario, then at optimality, in the second stage we have e2s∗0=∑tr=1u∗rysro/e1s0 and ∑mi=1v∗ixsio=1, under the sth scenario. On the other hand, e1s∗0=∑Dd=1w1∗dzsdo therefore, e1s∗0×e2s∗0=∑tr=1u∗rysro/∑mi=1v∗ixsio. As a result, e1s∗0×e2s∗0=∑tr=1u∗rysro, and at optimality our proposed models give eSj=e1sj×e2sj.
As mentioned above, one form of a non-centralized game is the leader-follower model. In the game theory literature, the leader-follower model is also referred to as the Stackelberg model. If we consider the first stage as the leader, then the first stage's performance is more significant, and the efficiency of the second stage (follower) is computed subject to that the leader's efficiency stays constant. By accepting that the first and second stages are corresponding with the leader and the follower, respectively we compute the efficiency for the leader model under the sth scenario, applying the CCR model (2) as follows:
e1s∗0=maxD∑d=1w1dzsdos.t.D∑d=1w1dzsdj−m∑i=1vixsij≤0, ∀j,∀sϵS,m∑i=1vixsio=1, ∀sϵS, vi,w1d≥0, ∀i,d. | (2) |
For computing the second stage's efficiency, namely e02s* the model can be expressed as:
e2s∗0=max∑tr=1urysroe1s∗0s.t.t∑r=1urysrj−D∑d=1w1dzsdj≤0, ∀j,∀sϵS,D∑d=1w1dzsdj−m∑i=1vixsij≤0, ∀j,∀sϵS, m∑i=1vixsio=1, ∀sϵS, D∑d=1w1dzsdo=e1s∗0, ∀sϵS, vi,ur,w1d≥0, ∀i,r,d. | (3) |
At last, in non-centralized model we state the overall efficiency with different scenarios as following. If e01s* and e02s* are the optimal efficiency scores of models (2) and (3), respectively then the overall efficiency is equal to e1s∗0×e2s∗0=∑tr=1u∗rySro. Accordingly, this illustrates that the overall efficiency in non-centralized model in the sth scenario is equal to the product of the efficiencies of individual stages.
Another model for evaluating the efficiency of the two-stage process is the centralized model that specifies a set of optimal weights on the intermediate factors in order to maximize the overall or agammaegate efficiency score.
Remark1. By assuming that in models (1) wd1= wd2, it can be seen that e1s0×e2s0=∑tr=1urysro/∑mi=1vixsio. As a result, instead of maximizing the average of e01s and e02s under the sth scenario, we maximize the product of e01s and e02s of individual stages. Therefore, in the centralized model by letting wd1 = wd2, the efficiency scores of both stages are computed simultaneously. As mentioned, we write the centralized model by replacing wd1 = wd2 in the models (1), as follows:
ec−s0=max e1s0×e2s0=∑tr=1urysro∑mi=1vixsio s.t. e1sj≤1, e2sj≤1, w1d=w2d. | (4) |
It is noted that the e0c-s 1 in model (4) is the optimal efficiency value for the centralized model. Model (4) can be transformed into the linear model (5) as
1 "c" stands for the centralized model.
ec−s0=maxt∑r=1urysros.t.t∑r=1urysrj−D∑d=1w1dzsdj≤0, ∀j,∀sϵS,D∑d=1w1dzsdj−m∑i=1vixsij≤0, ∀j,∀sϵS, m∑i=1vixsio=1, ∀sϵS, vi,ur,w1d≥0, ∀i,r,d. | (5) |
Model (5) gives the overall efficiency of the two-stage process. Nonetheless, it is obvious that, if there is uncertainty in data set, models (2), (3) or (5) might be infeasible at optimal solution of nominal problem. Thus, it is essential to choose an alternative model such that a small variation in data set cannot change the rankings. To tackle this case, we apply the stochastic p-robust optimization approach of Snyder and Daskin (2006) that will be illustrated in the next section.
In this section, first we describe the p-robust concept, and afterwards present the mathematical formulation of two-stage NDEA models under uncertainty based on the stochastic p-robust approach.
Suppose S be a set of scenarios, and let Ps be a deterministic (i.e., single scenario) maximization problem for scenario index s, so that there is a different problem Ps for each scenario s ϵ S. Let Zs* > 0 be the optimal objective value for Ps. Also, let X be the feasible vector in terms of the weights of outputs and inputs, respectively, and Zs(X) be the objective value of problem Ps under solution X. Then X is called p-robust (p≥0 is a non-negative constant) if for all s ϵ S the following inequality holds:
Z∗s−Zs(X) Z∗s≤p. | (6) |
The left hand side of formula (6) shows the relative regret under sth scenario and p≥0 is a parameter that shows the robustness level between different values of each scenario. The relative regret for each scenario is limited by it. We can write inequality (6) as follows:
Zs(X)≥(1−p)Z∗s. | (7) |
Finally, in order to control the relative regret related to the scenarios, the p-robust restrictions are added to the model.
Definition 3.1 A DMUj under evaluation under the different scenarios is stochastic p-robust efficient if its optimal objective function value is one.
As mentioned before, in two-stage NDEA models each DMU is composed of two sub-DMUs in sequences, and the intermediate products of the sub-DMU in the first stage are used as input by the sub-DMU in the second stage. Nonetheless, to cope with uncertainty situations the precise models cannot lead to correct results. In fact, uncertainty can change final results and units rankings. Therefore, the original two-stage NDEA models must be robust upon uncertainty. In this case, we propose two stochastic p-robust two-stage NDEA models to cope with this theme.
Here we propose stochastic p-robust Stackelberg game models or the leader-follower versions of uncertain DEA models (2) and (3). At first, we formulate stochastic p-robust model for the first stage (i.e., the leader problem) as follows:
f1s∗0=maxS∑s=1qsD∑d=1w1dzsdo | (8.a) |
s.t.D∑d=1w1dzsdo≥(1−p)e1s∗0, ∀sϵS, | (8.b) |
D∑d=1w1dzsdj−m∑i=1vixsij≤0, ∀j,∀sϵS, | (8.c) |
m∑i=1vixsio=1,∀sϵS, | (8.d) |
vi,w1d≥0,∀i,d. | (8.e) |
The objective function of model (8) computes the expected efficiency value of DMUs according to the data from each scenario in the leader stage. The first constraints represent the p-robust restrictions. Moreover, as retaining the leader's efficiency fixed, the stochastic p-robust model for the second stage (i.e. the follower problem) for all scenarios can be formulated as follows:
f2s∗0=maxS∑s=1qs(∑tr=1urysrof1s∗0) | (9.a) |
s.t. (∑tr=1urysrof1s∗0)≥(1−p)e2s∗0, ∀sϵS, | (9.b) |
t∑r=1urysrj−D∑d=1w1dzsdj≤0,∀j,∀sϵS, | (9.c) |
D∑d=1w1dzsdj−m∑i=1vixsij≤0,∀j,∀sϵS, | (9.d) |
m∑i=1vixsio=1,∀sϵS, | (9.e) |
D∑d=1w1dzsdo=e1s∗0, ∀sϵS, | (9.f) |
vi,ur,w1d≥0, ∀i,r,d. | (9.g) |
The objective function of model (9) maximizes the expected efficiency value of DMUs according to data from each scenario in the follower stage. In the objective function, qs is the probability that scenario s happens (it is unclear which scenario will happen in the future, in other words, there is no information about the probability of chance of each scenario). In this model, the uncertainty in the parameters is defined by discrete scenarios. The objective function maximizes expected efficiency value of DMUs according to the data from each scenario. The first constraints show the p-robust restrictions and constraints (9.f) measure the efficiency value of the first stage (i.e., leader stage) under scenarios. Moreover, the relation between the overall efficiency and the efficiency score of each stage, i.e., f0s*, f01s* and f02s*, respectively are illustrated in the sequel.
Definition 3.2.1 DMUj under evaluation in the sth scenario is overall efficient if and only fjs = 1, j = 1, …, n.
Definition 3.2.2 The kth stage sub-DMUj, under the sth scenario is efficient if fjks = 1, j = 1, …, n and k = 1, 2.
Proposition 3.2.1 DMU0 in the sth scenario is overall efficient if and only if both stages in the sth scenario is efficient.
Proof. According to Definition 3.2.1, if DMU0 is overall efficient, then f0s = 1. Since f0s = f01s ×f02s, and f01s ≤1, f02s ≤1, therefore, the divisional efficiencies f01s and f02s must satisfy f01s = f02s = 1. On the contrary, if both stages are efficient, i.e., f01s = f02s = 1, then since f0s = f01s ×f02s, so the efficiency value of f0s must be equal to one. Hence, based on to Definition 3.2.1, DMU0 must be overall efficient.
The stochastic p-robust centralized model (5) under uncertainty is as follows:
fc−So=maxS∑s=1qst∑r=1urysro | (10.a) |
s.t. t∑r=1urysro≥(1−p)ec−s∗0 , ∀sϵS, | (10.b) |
m∑i=1vixsio=1,∀sϵS, | (10.c) |
t∑r=1urysrj−D∑d=1w1dzsdj≤0,∀j,∀sϵS, | (10.d) |
D∑d=1w1dzsdj−m∑i=1vixsij≤0,∀j,∀sϵS, | (10.e) |
vi,ur,w1d≥0, ∀i,r,d. | (10.f) |
In model (10), the objective function maximizes expected efficiency value of DMUs according to the data from each scenario. Constraints (10.b) are the p-robust restrictions. This set of restrictions may not allow the scenario efficiency take value more than 100 (1-p%) of the ideal efficiency scores gained by each scenario. The parameter p controls the relative regret between all scenarios. If p = ∞, then the p-robust constraints in models (8), (9) and (10) become redundant. Now we assume xko = max{xio|1≤i≤m}>0, and then setting (w1,…,wD,v1,…,vm)=(0,…,0,…,1/xko,0,…), constraints ∑mi=1vixsio=1 and ∑Dd=1 w1dzsdj−∑mi=1vixsij≤0, imply ∑Dd=1 w1dzsdo≤1. Thus, we get e1s∗0≤11−p. So for very small p's, there may not be p-robust solutions for models (8), (9) and (10), and they may be infeasible. We should note that the p-values can be different for any problem and are determined by the decision-maker. In general, the p-values usually should not be considered smaller than 0.2 and its upper bound is obtained by try and error, and can be increased to one.
Theorem 3.2.1 For a specific DMU0 under different scenarios, foc-S*≥ fo1S*×fo2S* where fo1S* and fo2S* are the optimal values of the non-centralized models (8) and (9), respectively and foc-S* is the optimal value of model (10).
Proof Suppose that the optimal value of model (10) is fc−S∗o=∑Ss=1qs∑tr=1u∗rysro, and the optimal value of models (8) and (9) are f1S∗o=∑Ss=1qs∑Dd=1w1∗dzsdo and f2S∗o=∑Ss=1qS(∑tr=1u∗rysrof1s∗0), respectively. Since ∑mi=1v∗ixsio=1 and ∑Dd=1w1∗dzsdo≤∑mi=1v∗ixsio, we further get ∑Ss=1qs∑mi=1v∗ixsio=1 and ∑Ss=1qs∑Dd=1w1∗dzsdo≤∑Ss=1qs∑mi=1v∗ixsi0, respectively. Then
f1S∗o×f2S∗o=(S∑s=1qsD∑d=1w1∗dzsdo)×S∑s=1qs(∑tr=1u∗rysro∑Ss=1qs∑Dd=1w1∗dzsdo)≤(S∑s=1qsm∑i=1v∗ixsio)×S∑s=1qs(∑tr=1u∗rysro∑Ss=1qs∑mi=1v∗ixsio)=S∑s=1qst∑r=1u∗rysro =fc−S∗o. |
Theorem 3.2.2 The expected efficiency values of the centralized model (5) under different scenarios are greater than those provided by model (10).
Proof. Since the feasible region of model (10) is the subset of the feasible region of model (5) and both models have the same objective function, thus the result follows.
Theorem 3.2.3 The expected regret values of model (5) in different scenarios are greater than those provided by model (10).
Proof. Let the difference between the expected efficiency values of each model with the expected ideal efficiency is
α=∑sϵSqsZs−∑sϵSqsZ∗s. | (11) |
It is clear that the smaller value of α for a model shows that model produces more exact results. According to the Theorem 3.2.2, we have
ϕ∗≤ˉπ | (12) |
in which ˉπ and ϕ∗ are the optimal objective values to dual of the expected model (5) and dual of model (10), respectively. From inequality (12), we further can get
ϕ∗−∑sϵSqsZ∗s≤ ˉπ−∑sϵSqsZ∗s. | (13) |
The left hand side of (13) is the α-value of expected value model (10) and the right hand side shows the α-value of expected value model (5) and thus the result follows.
The proposed models in the previous section are used to evaluate the technical efficiency of an Iranian commercial bank branches. In the realm of performance measurement, banks' performance analysis has been of primary interest due to its socioeconomic importance. Several researchers studied uncertainty subject in the bank (e.g., Kao and Liu, 2009; Paradi and Zhu, 2013). As well, the study of two-stage NDEA models were relatively active in banking industry in recent years and several important works have been reported; see, e.g., Avkiran (2009), Fukuyama and Weber (2010), and Akther et al. (2013) for more details.
It is notable that, on the one hand, due to the existence of some variables, data obtained are not precise and they are estimated with a specific error level (e.g., Zhou et al., 2017). For instance, the earnings quality as a qualitative variable for a bank system is not exactly available; also, the number of customers is not often reported precisely. On the other hand, for the banks, it may be beneficial to conceal real information and reveal deceptive input and output data. Moreover, real and accurate data about key performance criteria of all banks do not always exist. Therefore, it is important to analyze efficiency of banks under uncertainty. Here, we evaluate the presented models under discrete scenarios, provided by the bank network analyzers (i.e., s1 = Pessimistic, s2 = Medium, s3 = Optimistic). We note that the Snyder and Daskin (2006) assumed that all scenarios have the same occurrence probability (i.e. qs=1╱|S|; ∀s∈S), which should be qs = 0.33 for each scenario. But, we considered the average probability of the second and third scenarios, because the data-set in these two scenarios were similar. Therefore, the occurrence probabilities of scenarios are considered as 0.25, 0.5 and 0.25, respectively. Table 1 shows the input, intermediate and output parameters employed in the first and second stages of the proposed models.
Inputs | Intermediates | Outputs | |||
x1 | Operational costs | z1 | Checking deposits | y1 | Return on assets |
x2 | Capital costs | z2 | Saving deposits | y2 | Earnings quality |
x3 | Financing costs | z3 | The number of customers | y3 | Interest income |
As well, the results of the normalized data under three scenarios are provided in Table 2.
x1 | x2 | x3 | y1 | ||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | |||
1 | 0.47 | 0.84 | 0.66 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.22 | 0.24 | 0.23 | |||
2 | 0.74 | 0.53 | 0.64 | 0.67 | 0.67 | 0.78 | 0.90 | 0.75 | 0.71 | 0.13 | 0.41 | 0.27 | |||
3 | 0.58 | 0.69 | 0.63 | 1.00 | 0.73 | 0.78 | 0.82 | 0.50 | 0.75 | 0.77 | 0.07 | 0.42 | |||
4 | 0.70 | 0.57 | 0.63 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.89 | 0.06 | 0.47 | |||
5 | 0.77 | 0.52 | 0.64 | 1.00 | 1.00 | 0.80 | 0.60 | 0.50 | 0.75 | 0.58 | 0.09 | 0.34 | |||
6 | 0.60 | 0.66 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.69 | 0.08 | 0.38 | |||
7 | 0.40 | 1.00 | 0.70 | 0.50 | 0.75 | 0.78 | 0.80 | 1.00 | 0.75 | 0.13 | 0.39 | 0.26 | |||
8 | 0.59 | 0.68 | 0.63 | 0.67 | 0.69 | 0.78 | 0.87 | 0.75 | 0.71 | 0.38 | 0.14 | 0.26 | |||
9 | 0.60 | 0.67 | 0.63 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.11 | 0.45 | 0.28 | |||
10 | 0.44 | 0.91 | 0.67 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.06 | 0.90 | 0.48 | |||
11 | 0.57 | 0.69 | 0.63 | 0.67 | 0.82 | 0.78 | 0.73 | 0.75 | 0.71 | 0.15 | 0.35 | 0.25 | |||
12 | 1.00 | 0.40 | 0.70 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.86 | 0.06 | 0.46 | |||
13 | 0.62 | 0.64 | 0.63 | 0.67 | 0.78 | 0.78 | 0.77 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
14 | 0.65 | 0.61 | 0.63 | 0.83 | 0.60 | 0.80 | 1.00 | 0.60 | 0.72 | 0.10 | 0.54 | 0.32 | |||
15 | 0.72 | 0.55 | 0.64 | 0.83 | 0.77 | 0.78 | 0.78 | 0.60 | 0.72 | 0.71 | 0.07 | 0.39 | |||
16 | 0.78 | 0.51 | 0.65 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.05 | 1.00 | 0.53 | |||
17 | 0.81 | 0.49 | 0.65 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 1.00 | 0.05 | 0.53 | |||
18 | 0.64 | 0.62 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
19 | 0.47 | 0.84 | 0.66 | 0.83 | 0.72 | 0.78 | 0.83 | 0.60 | 0.72 | 0.10 | 0.49 | 0.30 | |||
20 | 0.76 | 0.52 | 0.64 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.31 | 0.17 | 0.24 |
y2 | y3 | z1 | z2 | z3 | |||||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||||
1 | 0.50 | 0.71 | 0.60 | 0.37 | 0.78 | 0.58 | 0.47 | 0.68 | 0.57 | 0.36 | 0.57 | 0.47 | 1.00 | 0.63 | 0.82 | ||||
2 | 0.73 | 0.48 | 0.61 | 0.33 | 0.88 | 0.61 | 0.34 | 0.92 | 0.63 | 0.33 | 0.63 | 0.48 | 0.90 | 0.71 | 0.80 | ||||
3 | 0.51 | 0.69 | 0.60 | 0.58 | 0.50 | 0.54 | 0.62 | 0.51 | 0.56 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
4 | 0.52 | 0.68 | 0.60 | 0.64 | 0.46 | 0.55 | 0.71 | 0.44 | 0.58 | 0.41 | 0.50 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
5 | 0.74 | 0.48 | 0.61 | 1.00 | 0.29 | 0.65 | 0.90 | 0.35 | 0.63 | 0.52 | 0.40 | 0.46 | 0.84 | 0.75 | 0.80 | ||||
6 | 0.61 | 0.58 | 0.59 | 0.68 | 0.43 | 0.55 | 0.58 | 0.54 | 0.56 | 0.21 | 1.00 | 0.60 | 0.87 | 0.73 | 0.80 | ||||
7 | 0.35 | 1.00 | 0.68 | 0.29 | 1.00 | 0.65 | 0.32 | 1.00 | 0.66 | 0.29 | 0.71 | 0.50 | 0.74 | 0.86 | 0.80 | ||||
8 | 0.62 | 0.57 | 0.59 | 0.87 | 0.34 | 0.60 | 0.83 | 0.38 | 0.60 | 0.27 | 0.76 | 0.51 | 0.63 | 1.00 | 0.82 | ||||
9 | 0.60 | 0.58 | 0.59 | 0.43 | 0.68 | 0.56 | 0.51 | 0.61 | 0.56 | 0.46 | 0.45 | 0.45 | 0.90 | 0.71 | 0.80 | ||||
10 | 0.55 | 0.64 | 0.59 | 0.43 | 0.67 | 0.55 | 0.48 | 0.66 | 0.57 | 0.38 | 0.55 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
11 | 0.59 | 0.60 | 0.59 | 0.55 | 0.54 | 0.54 | 0.55 | 0.57 | 0.56 | 0.34 | 0.61 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
12 | 1.00 | 0.35 | 0.68 | 0.68 | 0.43 | 0.56 | 0.76 | 0.41 | 0.59 | 0.77 | 0.27 | 0.52 | 0.95 | 0.67 | 0.81 | ||||
13 | 0.64 | 0.55 | 0.60 | 0.49 | 0.60 | 0.54 | 0.59 | 0.54 | 0.56 | 0.39 | 0.53 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
14 | 0.86 | 0.41 | 0.63 | 0.62 | 0.47 | 0.55 | 0.75 | 0.42 | 0.58 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
15 | 0.68 | 0.52 | 0.60 | 0.89 | 0.33 | 0.61 | 1.00 | 0.32 | 0.66 | 0.28 | 0.74 | 0.51 | 0.79 | 0.80 | 0.80 | ||||
16 | 0.79 | 0.45 | 0.62 | 0.42 | 0.70 | 0.56 | 0.59 | 0.53 | 0.56 | 0.30 | 0.70 | 0.50 | 1.00 | 0.63 | 0.82 | ||||
17 | 0.73 | 0.48 | 0.61 | 0.49 | 0.60 | 0.54 | 0.56 | 0.57 | 0.56 | 0.61 | 0.33 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
18 | 0.65 | 0.54 | 0.60 | 0.64 | 0.46 | 0.55 | 0.60 | 0.52 | 0.56 | 0.49 | 0.42 | 0.45 | 0.76 | 0.83 | 0.80 | ||||
19 | 0.52 | 0.68 | 0.60 | 0.35 | 0.83 | 0.59 | 0.44 | 0.72 | 0.58 | 0.24 | 0.87 | 0.55 | 0.68 | 0.92 | 0.80 | ||||
20 | 0.79 | 0.45 | 0.62 | 0.56 | 0.53 | 0.54 | 0.64 | 0.49 | 0.57 | 1.00 | 0.21 | 0.60 | 0.74 | 0.86 | 0.80 |
First, we obtain the ideal efficiency score of each DMU based on each scenario by applying models (2), (3) and (5). Then we utilize models (8), (9) and (10) for the efficiency analysis of DMUs. The related results are given in Table 3. The columns of Table 3 illustrate the ideal efficiency score according to the values defined under each scenario.
Leader | Follower | Centralized | |||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||
1 | 0.595 | 0.761 | 0.846 | 0.778 | 0.763 | 0.774 | 0.500 | 0.671 | 0.762 | ||
2 | 0.521 | 0.655 | 0.746 | 0.700 | 0.756 | 0.779 | 0.375 | 0.497 | 0.581 | ||
3 | 1.000 | 1.000 | 1.000 | 0.724 | 0.814 | 0.860 | 0.749 | 0.831 | 0.873 | ||
4 | 0.822 | 0.903 | 0.938 | 0.489 | 0.561 | 0.624 | 0.564 | 0.700 | 0.767 | ||
5 | 1.000 | 1.000 | 1.000 | 0.554 | 0.680 | 0.743 | 0.562 | 0.684 | 0.755 | ||
6 | 0.627 | 0.726 | 0.784 | 0.657 | 0.775 | 0.811 | 0.461 | 0.600 | 0.679 | ||
7 | 0.650 | 0.720 | 0.767 | 1.000 | 1.000 | 1.000 | 0.708 | 0.791 | 0.836 | ||
8 | 1.000 | 1.000 | 1.000 | 0.426 | 0.536 | 0.612 | 0.426 | 0.536 | 0.612 | ||
9 | 1.000 | 1.000 | 1.000 | 0.778 | 0.789 | 0.802 | 0.778 | 0.792 | 0.807 | ||
10 | 0.447 | 0.575 | 0.655 | 0.984 | 0.988 | 0.992 | 0.439 | 0.568 | 0.649 | ||
11 | 1.000 | 1.000 | 1.000 | 0.644 | 0.737 | 0.790 | 0.644 | 0.737 | 0.790 | ||
12 | 0.475 | 0.618 | 0.700 | 0.934 | 0.965 | 0.970 | 0.445 | 0.603 | 0.690 | ||
13 | 1.000 | 1.000 | 1.000 | 0.369 | 0.503 | 0.590 | 0.383 | 0.512 | 0.597 | ||
14 | 1.000 | 1.000 | 1.000 | 0.625 | 0.723 | 0.776 | 0.757 | 0.875 | 0.924 | ||
15 | 0.541 | 0.615 | 0.675 | 0.995 | 0.987 | 0.986 | 0.704 | 0.767 | 0.810 | ||
16 | 1.000 | 1.000 | 1.000 | 0.580 | 0.672 | 0.731 | 0.645 | 0.723 | 0.772 | ||
17 | 1.000 | 1.000 | 1.000 | 0.631 | 0.715 | 0.767 | 0.750 | 0.868 | 0.918 | ||
18 | 0.187 | 0.307 | 0.397 | 1.000 | 0.999 | 0.998 | 0.365 | 0.508 | 0.598 | ||
19 | 1.000 | 1.000 | 0.987 | 1.000 | 0.975 | 0.872 | 1.000 | 0.975 | 0.951 | ||
20 | 0.464 | 0.590 | 0.667 | 1.000 | 1.000 | 1.000 | 0.538 | 0.666 | 0.741 |
As can be seen, DMUs #3, 5, 8, 9, 11, 13, 14, 16, 17 and 19 gained the efficiency score 1 for all scenarios in the leader division that is 50 % of total branches; in the follower division, DMUs #7 and 20 obtained the efficiency score 1 for all scenarios that is 0.1 % of total branches and finally, in the centralized model none of the DMUs are efficient in all scenarios. Next, we solved models (8), (9) and (10) to get the efficiency scores for different p-values and probabilities for each scenario that are reported in Tables 4 to 6. According to these results, models (8), (9) and (10) give infeasible results for some DMUs when p is small, e.g., p ≤0.58 here, thus we do not report the corresponding results here.
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.6 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.415 | 0.406 | 0.396 | 0.386 | 0.376 | 0.366 | 0.356 | 0.346 | 0.336 | 0.326 |
2 | 0.370 | 0.361 | 0.352 | 0.344 | 0.335 | 0.326 | 0.317 | 0.308 | 0.300 | 0.291 |
3 | 0.525 | 0.512 | 0.500 | 0.487 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.412 |
4 | 0.454 | 0.452 | 0.441 | 0.430 | 0.419 | 0.408 | 0.397 | 0.386 | 0.375 | 0.364 |
5 | 0.510 | 0.498 | 0.486 | 0.474 | 0.461 | 0.449 | 0.437 | 0.425 | 0.413 | 0.401 |
6 | 0.453 | 0.442 | 0.431 | 0.421 | 0.410 | 0.399 | 0.388 | 0.377 | 0.367 | 0.356 |
7 | 0.462 | 0.434 | 0.434 | 0.429 | 0.418 | 0.407 | 0.396 | 0.385 | 0.374 | 0.363 |
8 | 0.546 | 0.533 | 0.520 | 0.507 | 0.494 | 0.482 | 0.470 | 0.459 | 0.448 | 0.436 |
9 | 0.420 | 0.410 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
10 | 0.351 | 0.342 | 0.334 | 0.326 | 0.317 | 0.309 | 0.301 | 0.292 | 0.284 | 0.275 |
11 | 0.525 | 0.513 | 0.500 | 0.488 | 0.475 | 0.463 | 0.450 | 0.438 | 0.425 | 0.413 |
12 | 0.377 | 0.368 | 0.359 | 0.350 | 0.341 | 0.332 | 0.322 | 0.313 | 0.303 | 0.294 |
13 | 0.536 | 0.523 | 0.411 | 0.411 | 0.411 | 0.468 | 0.454 | 0.441 | 0.427 | 0.413 |
14 | 0.577 | 0.564 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
15 | 0.326 | 0.318 | 0.310 | 0.302 | 0.295 | 0.287 | 0.279 | 0.271 | 0.264 | 0.256 |
16 | INF | INF | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.438 | 0.425 | 0.412 |
17 | 0.525 | 0.512 | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.413 |
18 | INF | 0.262 | 0.256 | 0.250 | 0.242 | 0.236 | 0.229 | 0.225 | 0.217 | 0.211 |
19 | INF | 0.353 | 0.353 | 0.376 | 0.353 | 0.353 | 0.349 | 0.336 | 0.356 | 0.356 |
20 | 0.350 | 0.342 | 0.333 | 0.320 | 0.315 | 0.306 | 0.296 | 0.313 | 0.472 | 0.472 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.317 | 0.307 | 0.297 | 0.287 | 0.277 | 0.271 | 0.257 | 0.257 | 0.257 | 0.257 |
2 | 0.282 | 0.273 | 0.264 | 0.255 | 0.247 | 0.238 | 0.228 | 0.228 | 0.229 | 0.229 |
3 | 0.400 | 0.387 | 0.375 | 0.362 | 0.350 | 0.337 | 0.325 | 0.325 | 0.324 | 0.324 |
4 | 0.353 | 0.342 | 0.331 | 0.320 | 0.309 | 0.298 | 0.286 | 0.286 | 0.286 | 0.286 |
5 | 0.389 | 0.376 | 0.364 | 0.352 | 0.340 | 0.328 | 0.317 | 0.316 | 0.316 | 0.316 |
6 | 0.345 | 0.334 | 0.324 | 0.313 | 0.302 | 0.291 | 0.281 | 0.281 | 0.280 | 0.280 |
7 | 0.352 | 0.341 | 0.330 | 0.319 | 0.308 | 0.297 | 0.286 | 0.286 | 0.286 | 0.286 |
8 | 0.425 | 0.414 | 0.402 | 0.391 | 0.380 | 0.368 | 0.363 | 0.359 | 0.357 | 0.357 |
9 | 0.320 | 0.310 | 0.300 | 0.290 | 0.280 | 0.270 | 0.262 | 0.261 | 0.260 | 0.260 |
10 | 0.267 | 0.259 | 0.250 | 0.242 | 0.234 | 0.225 | 0.217 | 0.217 | 0.217 | 0.217 |
11 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.326 | 0.326 | 0.325 | 0.325 |
12 | 0.285 | 0.275 | 0.266 | 0.257 | 0.247 | 0.238 | 0.234 | 0.228 | 0.228 | 0.228 |
13 | 0.400 | 0.386 | 0.372 | 0.359 | 0.345 | 0.331 | 0.318 | 0.318 | 0.318 | 0.318 |
14 | 0.440 | 0.426 | 0.412 | 0.399 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 |
15 | 0.404 | 0.391 | 0.378 | 0.366 | 0.353 | 0.340 | 0.329 | 0.328 | 0.328 | 0.328 |
16 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.325 | 0.325 | 0.325 | 0.325 |
17 | 0.400 | 0.388 | 0.375 | 0.363 | 0.417 | 0.338 | 0.337 | 0.328 | 0.325 | 0.325 |
18 | 0.205 | 0.199 | 0.193 | 0.187 | 0.180 | 0.174 | 0.167 | 0.167 | 0.167 | 0.167 |
19 | 0.305 | 0.294 | 0.285 | 0.277 | 0.268 | 0.401 | 0.389 | 0.389 | 0.389 | 0.389 |
20 | 0.294 | 0.287 | 0.280 | 0.265 | 0.267 | 0.255 | 0.246 | 0.244 | 0.243 | 0.243 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.229 | 0.222 | 0.216 | 0.209 | 0.202 | 0.196 | 0.190 | 0.185 | 0.180 | 0.174 |
2 | 0.232 | 0.227 | 0.221 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 | 0.182 |
3 | 0.227 | 0.222 | 0.216 | 0.211 | 0.206 | 0.200 | 0.195 | 0.189 | 0.183 | 0.178 |
4 | INF | INF | INF | 0.144 | 0.141 | 0.137 | 0.139 | 0.140 | 0.136 | 0.131 |
5 | 0.346 | 0.340 | 0.333 | 0.327 | 0.320 | 0.314 | 0.263 | 0.256 | 0.248 | 0.288 |
6 | 0.266 | 0.246 | 0.256 | 0.242 | 0.244 | 0.222 | 0.216 | 0.210 | 0.204 | 0.211 |
7 | 0.294 | 0.287 | 0.280 | 0.273 | 0.266 | 0.296 | 0.256 | 0.245 | 0.238 | 0.384 |
8 | 0.299 | 0.298 | 0.291 | 0.285 | 0.278 | 0.271 | 0.264 | 0.258 | 0.251 | 0.244 |
9 | 0.450 | 0.439 | 0.428 | 0.417 | 0.421 | 0.417 | 0.412 | 0.408 | 0.411 | 0.405 |
10 | 0.352 | 0.245 | 0.352 | 0.259 | 0.230 | 0.289 | 0.215 | 0.380 | 0.344 | 0.260 |
11 | 0.361 | 0.353 | 0.345 | 0.336 | 0.327 | 0.319 | 0.310 | 0.302 | 0.293 | 0.285 |
12 | 0.528 | 0.405 | 0.521 | 0.521 | 0.359 | 0.359 | 0.365 | 0.359 | 0.359 | 0.359 |
13 | INF | 0.197 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 | 0.164 | 0.159 |
14 | 0.387 | 0.378 | 0.369 | 0.427 | 0.355 | 0.358 | 0.350 | 0.341 | 0.332 | 0.312 |
15 | 0.454 | 0.444 | 0.433 | 0.513 | 0.412 | 0.405 | 0.393 | 0.382 | 0.372 | 0.361 |
16 | 0.303 | 0.296 | 0.289 | 0.282 | 0.275 | 0.267 | 0.260 | 0.253 | 0.246 | 0.277 |
17 | 0.405 | 0.387 | 0.378 | 0.377 | 0.358 | 0.365 | 0.339 | 0.329 | 0.319 | 0.310 |
18 | 0.466 | 0.430 | 0.427 | 0.542 | 0.432 | 0.564 | 0.380 | 0.385 | 0.352 | 0.346 |
19 | 0.471 | 0.467 | 0.467 | 0.499 | 0.462 | 0.450 | 0.438 | 0.458 | 0.414 | 0.401 |
20 | 0.270 | 0.406 | 0.406 | 0.399 | 0.481 | 0.332 | 0.332 | 0.486 | 0.350 | 0.358 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 |
2 | 0.177 | 0.213 | 0.208 | 0.160 | 0.185 | 0.194 | 0.189 | 0.189 | 0.189 | 0.189 |
3 | 0.172 | 0.166 | 0.161 | 0.155 | 0.150 | 0.149 | 0.147 | 0.143 | 0.143 | 0.143 |
4 | 0.126 | 0.121 | 0.117 | 0.112 | 0.108 | 0.103 | 0.099 | 0.099 | 0.099 | 0.099 |
5 | 0.234 | 0.226 | 0.259 | 0.253 | 0.204 | 0.197 | 0.190 | 0.190 | 0.190 | 0.190 |
6 | 0.192 | 0.186 | 0.196 | 0.174 | 0.168 | 0.162 | 0.157 | 0.157 | 0.157 | 0.157 |
7 | 0.256 | 0.256 | 0.382 | 0.260 | 0.257 | 0.254 | 0.249 | 0.249 | 0.249 | 0.249 |
8 | 0.237 | 0.231 | 0.224 | 0.217 | 0.210 | 0.202 | 0.197 | 0.195 | 0.195 | 0.195 |
9 | 0.405 | 0.382 | 0.380 | 0.417 | 0.329 | 0.358 | 0.359 | 0.358 | 0.357 | 0.357 |
10 | 0.260 | 0.421 | 0.258 | 0.427 | 0.260 | 0.268 | 0.364 | 0.363 | 0.363 | 0.363 |
11 | 0.276 | 0.267 | 0.259 | 0.250 | 0.241 | 0.232 | 0.223 | 0.224 | 0.223 | 0.223 |
12 | 0.359 | 0.359 | 0.362 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 |
13 | 0.154 | 0.153 | 0.144 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 |
14 | 0.315 | 0.293 | 0.285 | 0.284 | 0.276 | 0.268 | 0.263 | 0.260 | 0.257 | 0.256 |
15 | 0.349 | 0.341 | 0.332 | 0.330 | 0.322 | 0.314 | 0.306 | 0.306 | 0.305 | 0.305 |
16 | 0.231 | 0.260 | 0.267 | 0.258 | 0.249 | 0.226 | 0.219 | 0.219 | 0.218 | 0.218 |
17 | 0.304 | 0.307 | 0.293 | 0.284 | 0.275 | 0.274 | 0.269 | 0.264 | 0.261 | 0.260 |
18 | 0.351 | 0.379 | 0.355 | 0.347 | 0.355 | 0.310 | 0.304 | 0.305 | 0.304 | 0.304 |
19 | 0.389 | 0.377 | 0.415 | 0.358 | 0.377 | 0.365 | 0.356 | 0.356 | 0.356 | 0.356 |
20 | 0.350 | 0.350 | 0.626 | 0.558 | 0.553 | 0.543 | 0.540 | 0.537 | 0.534 | 0.534 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.095 | 0.090 | 0.086 | 0.081 | 0.076 | 0.072 | 0.068 | 0.064 | 0.060 | 0.057 |
2 | 0.086 | 0.082 | 0.078 | 0.074 | 0.070 | 0.067 | 0.063 | 0.059 | 0.056 | 0.053 |
3 | 0.119 | 0.114 | 0.108 | 0.103 | 0.098 | 0.092 | 0.088 | 0.083 | 0.078 | 0.073 |
4 | INF | INF | INF | 0.062 | 0.059 | 0.056 | 0.055 | 0.054 | 0.051 | 0.048 |
5 | 0.176 | 0.169 | 0.162 | 0.155 | 0.148 | 0.141 | 0.115 | 0.109 | 0.102 | 0.115 |
6 | 0.120 | 0.109 | 0.110 | 0.102 | 0.100 | 0.089 | 0.084 | 0.079 | 0.075 | 0.075 |
7 | 0.136 | 0.125 | 0.122 | 0.117 | 0.111 | 0.120 | 0.101 | 0.094 | 0.089 | 0.139 |
8 | 0.163 | 0.159 | 0.151 | 0.144 | 0.137 | 0.131 | 0.124 | 0.118 | 0.112 | 0.106 |
9 | 0.189 | 0.180 | 0.171 | 0.163 | 0.160 | 0.154 | 0.148 | 0.143 | 0.140 | 0.134 |
10 | 0.124 | 0.084 | 0.118 | 0.084 | 0.073 | 0.089 | 0.065 | 0.111 | 0.098 | 0.072 |
11 | 0.190 | 0.181 | 0.173 | 0.164 | 0.155 | 0.148 | 0.140 | 0.132 | 0.125 | 0.118 |
12 | 0.199 | 0.149 | 0.187 | 0.182 | 0.122 | 0.119 | 0.118 | 0.112 | 0.109 | 0.106 |
13 | INF | 0.103 | 0.079 | 0.077 | 0.075 | 0.083 | 0.079 | 0.074 | 0.070 | 0.066 |
14 | 0.223 | 0.213 | 0.148 | 0.167 | 0.135 | 0.132 | 0.126 | 0.119 | 0.113 | 0.103 |
15 | 0.148 | 0.141 | 0.134 | 0.155 | 0.122 | 0.116 | 0.110 | 0.104 | 0.098 | 0.092 |
16 | INF | INF | 0.145 | 0.138 | 0.131 | 0.123 | 0.117 | 0.111 | 0.105 | 0.114 |
17 | 0.213 | 0.198 | 0.189 | 0.184 | 0.170 | 0.169 | 0.153 | 0.144 | 0.136 | 0.128 |
18 | INF | 0.113 | 0.109 | 0.136 | 0.105 | 0.133 | 0.087 | 0.087 | 0.076 | 0.073 |
19 | INF | 0.165 | 0.165 | 0.188 | 0.163 | 0.159 | 0.153 | 0.154 | 0.147 | 0.143 |
20 | 0.095 | 0.139 | 0.135 | 0.128 | 0.152 | 0.102 | 0.098 | 0.152 | 0.165 | 0.169 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.054 | 0.052 | 0.050 | 0.049 | 0.047 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
2 | 0.050 | 0.058 | 0.055 | 0.041 | 0.046 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
3 | 0.069 | 0.064 | 0.060 | 0.056 | 0.053 | 0.050 | 0.048 | 0.046 | 0.046 | 0.046 |
4 | 0.044 | 0.041 | 0.039 | 0.036 | 0.033 | 0.031 | 0.028 | 0.028 | 0.028 | 0.028 |
5 | 0.091 | 0.085 | 0.094 | 0.089 | 0.069 | 0.065 | 0.060 | 0.060 | 0.060 | 0.060 |
6 | 0.066 | 0.062 | 0.064 | 0.054 | 0.051 | 0.047 | 0.044 | 0.044 | 0.044 | 0.044 |
7 | 0.090 | 0.087 | 0.126 | 0.083 | 0.079 | 0.075 | 0.071 | 0.071 | 0.071 | 0.071 |
8 | 0.101 | 0.096 | 0.090 | 0.085 | 0.080 | 0.074 | 0.072 | 0.070 | 0.070 | 0.070 |
9 | 0.130 | 0.118 | 0.114 | 0.121 | 0.092 | 0.097 | 0.094 | 0.093 | 0.093 | 0.093 |
10 | 0.069 | 0.109 | 0.065 | 0.103 | 0.061 | 0.060 | 0.079 | 0.079 | 0.079 | 0.079 |
11 | 0.110 | 0.104 | 0.097 | 0.091 | 0.084 | 0.078 | 0.073 | 0.073 | 0.072 | 0.072 |
12 | 0.102 | 0.099 | 0.096 | 0.092 | 0.089 | 0.085 | 0.084 | 0.082 | 0.082 | 0.082 |
13 | 0.062 | 0.059 | 0.054 | 0.055 | 0.052 | 0.050 | 0.048 | 0.048 | 0.048 | 0.048 |
14 | 0.139 | 0.125 | 0.117 | 0.113 | 0.084 | 0.082 | 0.080 | 0.080 | 0.079 | 0.078 |
15 | 0.141 | 0.133 | 0.125 | 0.121 | 0.114 | 0.107 | 0.101 | 0.100 | 0.100 | 0.100 |
16 | 0.092 | 0.101 | 0.100 | 0.094 | 0.087 | 0.076 | 0.071 | 0.071 | 0.071 | 0.071 |
17 | 0.122 | 0.119 | 0.110 | 0.103 | 0.115 | 0.093 | 0.091 | 0.087 | 0.085 | 0.085 |
18 | 0.072 | 0.075 | 0.069 | 0.065 | 0.064 | 0.054 | 0.051 | 0.051 | 0.051 | 0.051 |
19 | 0.119 | 0.111 | 0.118 | 0.099 | 0.101 | 0.146 | 0.138 | 0.138 | 0.138 | 0.138 |
20 | 0.103 | 0.100 | 0.175 | 0.148 | 0.161 | 0.138 | 0.133 | 0.131 | 0.130 | 0.130 |
As mentioned before in Section 3.2.2, the proposed models give infeasible results in some scenarios when small values are considered for p. The p-value is different for each problem and is determined by the decision-maker. Here, by try and error, we conclude that the p-value must not be smaller than 0.55. In this study, on the one hand, when p ≤ 0.55 according to the results, our models gives infeasible results for most of the DMUs. As the p-value increases, the efficiency score is improved and the number of infeasible DMUs gradually decline and we observe feasible results. On the other hand, for p ≥ 0.74 the results do not change i.e., the efficiency scores remain fixed. So we do not continue and stop it for the other p-values. Therefore, here, we only consider p ≥ 0.55 and do not show the results of p < 0.55.
For instance, with increasing the p-value from 0.56 to 0.70, the efficiency score of DMU16 changes. This change also can be seen in other DMUs such as 18 and 19. Models (8), (9) and (10) maximize the expected efficiency scores of a DMU (here, a bank branch) based on each scenario while p-robust constraints control the relative difference between its efficiency score generated by the model and ideal efficiency in each scenario.
It should be noted that the overall efficiency for stochastic p-robust Stackelberg game models (8) and (9) can be determined as f0s* = f01s* ×f02s* . Table 6 shows the product of the efficiency results of first and second stages (i.e., leader and follower models) for three scenarios.
In order to compare models (8), (9) and (10), we consider p = 0.58 and the related results are reported in Tables 6 and 7. After that, we reported the efficiency scores in Table 8 and also illustrated in Figure 2.
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.282 | 0.275 | 0.269 | 0.262 | 0.255 | 0.248 | 0.242 | 0.235 | 0.228 | 0.222 |
2 | INF | 0.205 | 0.199 | 0.194 | 0.189 | 0.184 | 0.179 | 0.174 | 0.170 | 0.165 |
3 | 0.383 | 0.374 | 0.365 | 0.355 | 0.346 | 0.337 | 0.327 | 0.318 | 0.309 | 0.300 |
4 | 0.308 | 0.301 | 0.294 | 0.286 | 0.279 | 0.272 | 0.264 | 0.257 | 0.239 | 0.242 |
5 | 0.307 | 0.307 | 0.320 | 0.304 | 0.296 | 0.287 | 0.278 | 0.270 | 0.261 | 0.252 |
6 | 0.253 | 0.247 | 0.241 | 0.235 | 0.231 | 0.225 | 0.218 | 0.212 | 0.205 | 0.199 |
7 | 0.376 | 0.367 | 0.358 | 0.349 | 0.340 | 0.331 | 0.322 | 0.313 | 0.304 | 0.295 |
8 | 0.225 | 0.180 | 0.176 | 0.172 | 0.167 | 0.198 | 0.161 | 0.161 | 0.161 | 0.177 |
9 | 0.260 | 0.254 | 0.248 | 0.242 | 0.236 | 0.230 | 0.223 | 0.217 | 0.211 | 0.205 |
10 | 0.239 | 0.233 | 0.227 | 0.222 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 |
11 | 0.309 | 0.349 | 0.340 | 0.332 | 0.323 | 0.314 | 0.306 | 0.297 | 0.288 | 0.280 |
12 | 0.253 | 0.247 | 0.241 | 0.235 | 0.229 | 0.223 | 0.217 | 0.211 | 0.205 | 0.199 |
13 | 0.215 | 0.210 | 0.205 | 0.200 | 0.195 | 0.190 | 0.184 | 0.179 | 0.174 | 0.169 |
14 | 0.285 | 0.285 | 0.285 | 0.301 | 0.292 | 0.284 | 0.284 | 0.284 | 0.284 | 0.284 |
15 | 0.322 | 0.314 | 0.307 | 0.299 | 0.291 | 0.284 | 0.276 | 0.268 | 0.261 | 0.253 |
16 | 0.373 | 0.364 | 0.355 | 0.346 | 0.275 | 0.328 | 0.320 | 0.311 | 0.302 | 0.293 |
17 | 0.439 | 0.431 | 0.416 | 0.407 | 0.382 | 0.374 | 0.366 | 0.358 | 0.350 | 0.342 |
18 | 0.213 | 0.208 | 0.203 | 0.198 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 |
19 | 0.312 | 0.304 | 0.297 | 0.290 | 0.286 | 0.284 | 0.281 | 0.278 | 0.278 | 0.278 |
20 | 0.324 | 0.317 | 0.319 | 0.270 | 0.255 | 0.314 | 0.290 | 0.240 | 0.232 | 0.225 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.215 | 0.208 | 0.201 | 0.195 | 0.188 | 0.181 | 0.175 | 0.175 | 0.175 | 0.175 |
2 | 0.160 | 0.154 | 0.149 | 0.144 | 0.140 | 0.135 | 0.132 | 0.130 | 0.130 | 0.130 |
3 | 0.291 | 0.282 | 0.273 | 0.264 | 0.255 | 0.246 | 0.239 | 0.236 | 0.236 | 0.236 |
4 | 0.235 | 0.228 | 0.220 | 0.213 | 0.206 | 0.198 | 0.193 | 0.192 | 0.191 | 0.191 |
5 | 0.244 | 0.235 | 0.227 | 0.219 | 0.211 | 0.204 | 0.196 | 0.196 | 0.196 | 0.196 |
6 | 0.192 | 0.186 | 0.180 | 0.174 | 0.168 | 0.162 | 0.156 | 0.156 | 0.156 | 0.156 |
7 | 0.286 | 0.278 | 0.269 | 0.260 | 0.251 | 0.242 | 0.234 | 0.234 | 0.233 | 0.233 |
8 | 0.161 | 0.161 | 0.197 | 0.156 | 0.150 | 0.148 | 0.148 | 0.148 | 0.148 | 0.148 |
9 | 0.199 | 0.193 | 0.238 | 0.180 | 0.174 | 0.214 | 0.206 | 0.206 | 0.206 | 0.206 |
10 | 0.182 | 0.176 | 0.170 | 0.165 | 0.159 | 0.153 | 0.148 | 0.148 | 0.148 | 0.148 |
11 | 0.271 | 0.263 | 0.254 | 0.246 | 0.237 | 0.229 | 0.220 | 0.220 | 0.220 | 0.220 |
12 | 0.193 | 0.187 | 0.181 | 0.175 | 0.169 | 0.163 | 0.159 | 0.157 | 0.157 | 0.157 |
13 | 0.165 | 0.165 | 0.166 | 0.163 | 0.153 | 0.148 | 0.142 | 0.142 | 0.142 | 0.142 |
14 | 0.284 | 0.284 | 0.283 | 0.274 | 0.264 | 0.254 | 0.245 | 0.245 | 0.245 | 0.245 |
15 | 0.245 | 0.243 | 0.230 | 0.222 | 0.215 | 0.207 | 0.254 | 0.252 | 0.252 | 0.252 |
16 | 0.284 | 0.275 | 0.269 | 0.257 | 0.249 | 0.195 | 0.207 | 0.207 | 0.207 | 0.207 |
17 | 0.334 | 0.305 | 0.286 | 0.305 | 0.276 | 0.272 | 0.251 | 0.249 | 0.249 | 0.249 |
18 | 0.162 | 0.157 | 0.152 | 0.150 | 0.149 | 0.142 | 0.137 | 0.137 | 0.137 | 0.137 |
19 | 0.278 | 0.302 | 0.293 | 0.283 | 0.273 | 0.263 | 0.256 | 0.255 | 0.254 | 0.254 |
20 | 0.219 | 0.239 | 0.207 | 0.209 | 0.202 | 0.186 | 0.185 | 0.184 | 0.184 | 0.184 |
P= 0.58 | f01s | f02s | f0s=f01s*f02s | foc-S |
DMUs | Leader | Follower | leader * follower | Centralized |
1 | 0.386 | 0.209 | 0.081 | 0.262 |
2 | 0.344 | 0.216 | 0.074 | 0.194 |
3 | 0.487 | 0.211 | 0.103 | 0.355 |
4 | 0.430 | 0.144 | 0.062 | 0.286 |
5 | 0.474 | 0.327 | 0.155 | 0.304 |
6 | 0.421 | 0.242 | 0.102 | 0.235 |
7 | 0.429 | 0.273 | 0.117 | 0.349 |
8 | 0.507 | 0.285 | 0.144 | 0.172 |
9 | 0.390 | 0.417 | 0.163 | 0.242 |
10 | 0.326 | 0.259 | 0.084 | 0.222 |
11 | 0.488 | 0.336 | 0.164 | 0.332 |
12 | 0.350 | 0.521 | 0.182 | 0.235 |
13 | 0.411 | 0.188 | 0.077 | 0.200 |
14 | 0.390 | 0.427 | 0.167 | 0.301 |
15 | 0.302 | 0.513 | 0.155 | 0.299 |
16 | 0.488 | 0.282 | 0.138 | 0.346 |
17 | 0.488 | 0.377 | 0.184 | 0.407 |
18 | 0.250 | 0.542 | 0.136 | 0.198 |
19 | 0.376 | 0.499 | 0.188 | 0.290 |
20 | 0.320 | 0.399 | 0.128 | 0.270 |
As shown in the last two columns of Table 8, the efficiency scores of the stochastic p-robust centralized model (10) yields better results for the overall efficiency scores than the stochastic p-robust Stackelberg model. So it can be deduced that selection of the centralized/cooperative strategy is preferable over the non-centralized/non-cooperative (or, Stackelberg) strategy.
Also, Figure 2 represents efficiency scores of stochastic p-robust centralized model and Stackelberg model that is model (10) and the product of models (8) and (9) for each DMUs with p = 0.58 in three scenarios.
As can be seen, for all DMUs (branches) the stochastic p-robust centralized efficiency scores are better than the other one. Therefore, the stochastic p-robust centralized model as the preferred model is selected and to get deep insight from stochastic p-robust NDEA models, we compare model (10) with deterministic model. To this end, we propound two scales as EV=∑sϵSqsZs(X) and Reg=∑sϵSqs(Z∗s−Zs(X))/Z∗s that the first scale calculates the expected efficiency score of all DMUs by taking into account the occurrence probabilities of the each abovementioned scenario i.e., 0.25, 0.5 and 0.25, respectively and the second scale computes the expected relative regret for each DMU. Ultimately, the calculated efficiency scores by the robust model (10) are compared with these two scales for three scenarios. The results are reported in Table 9 and illustrated in Figure 2. In this experiment, we let p = 0.58.
P= 0.58 | Expected | scores | p-robust | centralized |
DMUs | EV | Reg | EV | Reg |
1 | 0.562 | 0.1880 | 0.262 | 0.0809 |
2 | 0.353 | 0.1345 | 0.194 | 0.1295 |
3 | 0.462 | 0.3590 | 0.355 | 0.3430 |
4 | 0.353 | 0.3298 | 0.286 | 0.2968 |
5 | 0.667 | 0.0158 | 0.304 | 0.0043 |
6 | 0.562 | 0.1090 | 0.235 | 0.0230 |
7 | 0.500 | 0.2815 | 0.349 | 0.2505 |
8 | 0.400 | 0.1275 | 0.172 | 0.0845 |
9 | 0.353 | 0.4393 | 0.242 | 0.1413 |
10 | 0.450 | 0.1060 | 0.222 | 0.0950 |
11 | 0.462 | 0.2650 | 0.332 | 0.2450 |
12 | 0.450 | 0.1353 | 0.235 | 0.1253 |
13 | 0.400 | 0.1010 | 0.200 | 0.1010 |
14 | 0.353 | 0.5048 | 0.301 | 0.4868 |
15 | 0.667 | 0.2170 | 0.299 | 0.0100 |
16 | 0.462 | 0.2538 | 0.346 | 0.2268 |
17 | 0.545 | 0.1841 | 0.407 | 0.1840 |
18 | 0.400 | 0.0948 | 0.137 | 0.0948 |
19 | 0.400 | 0.5753 | 0.254 | 0.0893 |
20 | 0.562 | 0.2473 | 0.184 | 0.0908 |
As shown in this Table 9, the efficiency scores of the p-robust centralized model (10) for all DMUs are smaller than the efficiency score of the expected centralized model (5). On the other hand, we indicated that the expected relative regret in both models is not equal. Moreover, from Table 9 we find that, DMU5 and DMU15 have better performance compared with other units in both of them, whereas DMU17 has better performance compared with other units in the P-robust centralized model. Further, in expected model (5), some DMUs have earned a similar rank, in other words, there is no discrimination among some DMUs. For example, according to Table 9, the efficiency scores in DMUs #8, 13, 18 and 19 are equal, while this is not the case in model (10). Therefore, the performance of the model (10) is like a ranking model, and this affirms the superiority of it. Although, it seems that the efficiency scores in the expected model (5) are greater than model (10) but it does not provide a more distinguishing efficiency score among some DMUs. As can be seen, in model (10), none of the DMUs have equal efficiency scores.
Figure 2 shows the expected efficiency scores between the two models based on the EV scale in each scenario. We should note that, EV scale is only defined for the centralized model (5), and it is the efficiency scores in the model (10).
As seen from Figure 3. the EV scale values show that the efficiency scores of p-robust centralized model (10) is less than the other one. Also, the Reg scale values of model (10) is less than or equal the other one. As mentioned before, the relative regret amount shows the relative difference between the ideal efficiency obtained from each scenario and efficiency of each model that showed by Theorem 3.2.2 and Theorem 3.2.3.
In this section, we perform sensitivity analysis for the expected version of the centralized model (5) and model (10) to different probabilities. We ran these models considering a set of different probability vectors. The related results are summarized in Tables 10 and 11, where the first row shows the value of probabilities as qs=(q1,q2,q3) and columns 2–9 present the difference between the expected efficiency values of each model with the expected ideal efficiency score, in the other words, i.e. the α values. As a matter of fact, this difference, for both abovementioned models, shows the amount of error with pertinent probabilities in each scenario. It is clear that the smaller the difference value, the better the result. Since the expected efficiency value of that model is closer to the ideal expected efficiency value, thus it produces more precise results.
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.2108 | 0.1920 | 0.1960 | 0.2182 | 0.2273 | 0.2000 | 0.2017 | 0. 1624 |
2 | 0.1555 | 0.1364 | 0.1383 | 0.1570 | 0.1654 | 0.1402 | 0.1471 | 0.1162 |
3 | 0.3695 | 0.3610 | 0.3630 | 0.3734 | 0.3776 | 0.3650 | 0.3653 | 0.3467 |
4 | 0.3465 | 0.3332 | 0.3367 | 0.3535 | 0.3602 | 0.3401 | 0.3398 | 0.3094 |
5 | 0.0220 | 0.0068 | 0.0094 | 0.0261 | 0.0332 | 0.0119 | 0.0149 | 0.0181 |
6 | 0.1288 | 0.1120 | 0.1150 | 0.1338 | 0.1417 | 0.1180 | 0.1209 | 0. 0882 |
7 | 0.2928 | 0.2834 | 0.2853 | 0.2962 | 0.3007 | 0.2872 | 0.2883 | 0.2691 |
8 | 0.1465 | 0.1292 | 0.1309 | 0.1478 | 0.1554 | 0.1326 | 0.1389 | 0.1110 |
9 | 0.4430 | 0.4392 | 0.4392 | 0.4421 | 0.4436 | 0.4391 | 0.4415 | 0.4372 |
10 | 0.1263 | 0.1084 | 0.1108 | 0.1294 | 0.1375 | 0.1132 | 0.1182 | 0.0867 |
11 | 0.2783 | 0.2670 | 0.2690 | 0.2816 | 0.2869 | 0.2710 | 0.2730 | 0.2511 |
12 | 0.1570 | 0.1388 | 0.1424 | 0.1633 | 0.1720 | 0.1459 | 0.1483 | 0.1116 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.5170 | 0.5082 | 0.5117 | 0.5249 | 0.5298 | 0.5151 | 0.5121 | 0.4871 |
15 | 0.2278 | 0.2180 | 0.2190 | 0.2286 | 0.2329 | 0.2200 | 0.2235 | 0.2076 |
16 | 0.2660 | 0.2552 | 0.2567 | 0.2679 | 0.2728 | 0.2581 | 0.2611 | 0.2421 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.5693 | 0.5752 | 0.5752 | 0.5703 | 0.5679 | 0.5751 | 0.5717 | 0.5790 |
20 | 0.1095 | 0.0934 | 0.0961 | 0.1137 | 0.1212 | 0.0987 | 0.1020 | 0.0716 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.1118 | 0.0930 | 0.0970 | 0.1192 | 0.1283 | 0.1010 | 0.1027 | 0.0634 |
2 | 0.1505 | 0.1314 | 0.1333 | 0.1520 | 0.1604 | 0.1352 | 0.1421 | 0.1112 |
3 | 0.3535 | 0.3450 | 0.3470 | 0.3574 | 0.3616 | 0.3490 | 0.3493 | 0.3307 |
4 | 0.3135 | 0.3002 | 0.3037 | 0.3205 | 0.3272 | 0.3071 | 0.3068 | 0.2764 |
5 | 0.0180 | 0.0028 | 0.0054 | 0.0221 | 0.0292 | 0.0079 | 0.0109 | 0.0141 |
6 | 0.0428 | 0.0260 | 0.0290 | 0.0478 | 0.0557 | 0.0320 | 0.0349 | 0.0021 |
7 | 0.2618 | 0.2524 | 0.2543 | 0.2652 | 0.2697 | 0.2562 | 0.2573 | 0.2381 |
8 | 0.1035 | 0.0862 | 0.0879 | 0.1048 | 0.1124 | 0.0896 | 0.0959 | 0.0680 |
9 | 0.1450 | 0.1412 | 0.1412 | 0.1441 | 0.1456 | 0.1411 | 0.1435 | 0.1392 |
10 | 0.1153 | 0.0974 | 0.0998 | 0.1184 | 0.1265 | 0.1022 | 0.1072 | 0.0757 |
11 | 0.2583 | 0.2470 | 0.2490 | 0.2616 | 0.2669 | 0.2510 | 0.2530 | 0.2311 |
12 | 0.1470 | 0.1288 | 0.1324 | 0.1533 | 0.1620 | 0.1359 | 0.1383 | 0.1016 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.4990 | 0.4902 | 0.4937 | 0.5069 | 0.5118 | 0.4971 | 0.4941 | 0.4691 |
15 | 0.0208 | 0.0110 | 0.0120 | 0.0216 | 0.0259 | 0.0130 | 0.0165 | 0.0005 |
16 | 0.2390 | 0.2282 | 0.2297 | 0.2409 | 0.2458 | 0.2311 | 0.2341 | 0.2151 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.0833 | 0.0892 | 0.0892 | 0.0843 | 0.0819 | 0.0891 | 0.0857 | 0.0930 |
20 | 0.0185 | 0.0024 | 0.0051 | 0.0227 | 0.0302 | 0.0077 | 0.0110 | 0.0195 |
As it can be seen from Tables 10 and 11, our proposed model (10) generates better results compared to the other one. Comparison of the above-mentioned models with varying probabilities corroborates that the stochastic p-robust NDEA model (i.e., model (10)) gives better results than the expected centralized model (5). This supports the advantage of our stochastic p-robust NDEA model (10) in contrast to other NDEA models.
Uncertainty is an inherent part of real performance evaluation problems and protecting versus the worst-case is impossible, intricate, and time-consuming. To tackle this issues, and in order to evaluate the efficiency of the two-stage process, a scenario-based robust optimization model according to the Snyder and Daskin's approach (2006) is designed to develop the two-stage NDEA models dealing with uncertainty. This model incorporates the benefits of original stochastic and robust optimization models, therefore, can dominate the difficulties of models in uncertain parameters and give more acceptable results compared the other existing models. The main contributions of this model are as follows. It is less conservative than the other existence worst-case models and enables decision makers to make a benchmark between the expected efficiency of DMUs in different scenarios, a benchmark between robustness of the solution and the robustness of the model. We presented the stochastic p-robust two-stage NDEA model for both cooperative and non-cooperative forms. Further, in Theorems 3.2.1, 3.2.2 and 3.2.3 in Subsection 3.2 it is proved that the choice of the cooperative model provides better efficiency in comparison with the non-cooperative form.
Moreover, the performance of our proposed cooperative model is like a ranking model, and it provides a more distinguishing efficiency score among DMUs. Also, p-robustness adds a feasibility theme that is not present in most other robustness measures. Sensitivity analysis on different probability vectors can derive a spectrum of solutions that may be helpful for managerial tradeoffs. Finally, the applicability of the proposed models, are discussed for a case study in the banking industry showing their advantages over the other models.
The concept of uncontrollable inputs and undesirable outputs has also widespread applications, thus, including them in the model would be an interesting future research direction. Moreover, the parameters of the proposed model may be changed during the planning. Therefore, we can expand the suggested model into the Malmquist model in dynamic condition. Since the return to scale model is linear, under the uncertainty situations, one can apply the proposed model to analyze the efficiency of DMUs. The combination of stochastic p-robust approach with other NDEA models such as additive and slack based NDEA measures with shared resources could also be considered for future research direction.
The authors are grateful to the anonymous referees for their useful comments and suggestions.
The authors declare no conflicts of interest in this paper.
[1] |
Lee D, Seo J (2017) Magnetic frustration of graphite oxide. Sci Rep 7: 44690. https://doi.org/10.1038/srep44690 doi: 10.1038/srep44690
![]() |
[2] |
Novoselov KS, Geim AK, Morozov SV, et al. (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: 197–200. https://doi.org/10.1038/nature04233 doi: 10.1038/nature04233
![]() |
[3] | Ohta T, Bostwick A, Seyller T, et al. (2006) Controlling the electronic structure of bilayer graphene. Science 313: 951–954. https://www.science.org/doi/10.1126/science.1130681 |
[4] |
Chen H, Müller MB, Gilmore KJ, et al. (2008) Mechanically strong, electrically conductive and biocompatible graphene paper. Adv Mater 20: 3557–3561. https://doi.org/10.1002/adma.200800757 doi: 10.1002/adma.200800757
![]() |
[5] |
Zhang Y, Tan Y-W, Stormer HL, et al. (2005) Experimental observation of the quantum hall effect and Berry's phase in graphene. Nature 438: 201–204. https://doi:10.1038/nature04235 doi: 10.1038/nature04235
![]() |
[6] |
Maher P, Dean CR, Young F, et al. (2013) Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nat Phys 9: 154–158. https://doi:10.1038/nphys2528 doi: 10.1038/nphys2528
![]() |
[7] |
Huang L, Wu B, Yu G, et al. (2011) Graphene: learning from carbon nanotubes. J Mater Chem 21: 919–929. https://doi:10.1039/c0jm02225j doi: 10.1039/c0jm02225j
![]() |
[8] |
Yola ML, Eren T, Atar N (2014) A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125: 38–47. http://dx.doi.org/ 10.1016/j.electacta.2014.01.074 doi: 10.1016/j.electacta.2014.01.074
![]() |
[9] |
Gupta VK, Atar N, Yola ML (2014) A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nano-catalyst for the reduction of nitrophenol compounds. Water Res 48: 210–217. http://dx.doi.org/ 10.1016/j.watres.2013.09.027 doi: 10.1016/j.watres.2013.09.027
![]() |
[10] |
Yola ML, Gupta VK, Eren T, et al. (2014) A novel electro analytical nano-sensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120: 204–211. http://dx.doi.org/ 10.1016/j.electacta.2013.12.086 doi: 10.1016/j.electacta.2013.12.086
![]() |
[11] |
Yola ML, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sensor Actuat B-Chem 210: 149–157. https://doi.org/10.1016/j.snb.2014.12.098 doi: 10.1016/j.snb.2014.12.098
![]() |
[12] |
Yola ML, Atar N, Eren T, et al. (2015) Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 5: 65953–65962. https://doi.org/10.1039/C5RA07443F doi: 10.1039/C5RA07443F
![]() |
[13] |
Yola ML, Atar N (2017) A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr Anal. Chem 13: 13–17. https://doi.org/10.2174/1573411012666160601141018 doi: 10.2174/1573411012666160601141018
![]() |
[14] |
Yola ML, Eren T, Atar N, et al. (2016) Direct-methanol fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28: 570–579. https://doi.org/10.1002/elan.201500381 doi: 10.1002/elan.201500381
![]() |
[15] |
Elçin S, Yola ML, Eren T, et al. (2016) Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis 28: 611–619. https://doi.org/10.1002/elan.201500495 doi: 10.1002/elan.201500495
![]() |
[16] |
Yokuş ÖA, Kardaş F, Akyıldırım O, et al. (2016) Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sensor Actuat B-Chem 233: 47–54. http://dx.doi.org/ 10.1016/j.snb.2016.04.050 doi: 10.1016/j.snb.2016.04.050
![]() |
[17] |
Yola ML, Atar N (2016) Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J Electrochem Soc 163: B718–B725. https://dx.doi.org/10.1149/2.1191614jes doi: 10.1149/2.1191614jes
![]() |
[18] |
Yola ML, Atar N (2017) A highly efficient nanomaterial with molecular imprinting polymer: carbon nitride nanotubes decorated with graphene quantum dots for sensitive electrochemical determination of chlorpyrifos. J Electrochem Soc 164: B223–B229. https://dx.doi.org/10.1149/2.1411706jes doi: 10.1149/2.1411706jes
![]() |
[19] | Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80: 1339. https://pubs.acs.org/sharingguidelines |
[20] |
Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide by modified Hummers method and its Thermal reduction to obtain reduced graphene oxide. Graphene 6: 1–18. https://doi.org/10.4236/graphene.2017.61001 doi: 10.4236/graphene.2017.61001
![]() |
[21] |
Nyangiwe NN, Khenfouch M, Thema FT, et al. (2015) Free-green synthesis and dynamics of reduced graphene sheets via sun light irradiation. Graphene 4: 54–61. https://doi.org/10.4236/graphene.2015.43006 doi: 10.4236/graphene.2015.43006
![]() |
[22] |
Park S, An J, Potts JR. et al. (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49: 3019–3023. https://doi:10.1016/j.carbon.2011.02.071 doi: 10.1016/j.carbon.2011.02.071
![]() |
[23] |
Shin H-J, Kim KK, Benayad A, et al. (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19: 1987–1992. https://doi:10.1002/adfm.200900167 doi: 10.1002/adfm.200900167
![]() |
[24] |
Pei S, Zhao J, Du J, et al. (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48: 4466–4474. https://doi:10.1016/j.carbon.2010.08.006 doi: 10.1016/j.carbon.2010.08.006
![]() |
[25] |
Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93: 267–300. https://doi.org/10.1021/cr00017a013 doi: 10.1021/cr00017a013
![]() |
[26] |
Zhou M, Wang Y, Zhai Y, et al. (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15: 6116–6120. https://doi.org/10.1002/chem.200900596 doi: 10.1002/chem.200900596
![]() |
[27] |
Wang Z, Zhou X, Zhang J, et al. (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113: 14071–14075. https://doi.org/10.1021/jp906348x doi: 10.1021/jp906348x
![]() |
[28] |
Wang H, Robinson JT, Li X, et al. (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131: 9910-9911. https://doi.org/10.1021/ja904251p doi: 10.1021/ja904251p
![]() |
[29] |
Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4: 217–224. https://doi.org/10.1038/nnano.2009.58 doi: 10.1038/nnano.2009.58
![]() |
[30] |
Kan E, Li Z, Yang J (2008) Magnetism in graphene system. Nano 3: 433–442. https://doi.org/10.1142/S1793292008001350 doi: 10.1142/S1793292008001350
![]() |
[31] |
Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73: 056501. https://doi.org/10.1088/0034-4885/73/5/056501 doi: 10.1088/0034-4885/73/5/056501
![]() |
[32] |
Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75: 125408. https://doi.org/10.1103/PhysRevB.75.125408 doi: 10.1103/PhysRevB.75.125408
![]() |
[33] | Yazyev OV, Katsnelson MI (2012) Theory of magnetism in grapheme, Advanced functional materials, Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems, Elsevier, 4: 71–103. https://dx.doi.org/10.1016/B978-0-44-453681-5.00004-2 |
[34] |
Yazyev OV, Katsnelson MI (2008) Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys Rev Lett 100: 047209. https://doi.org/10.1103/PhysRevLett.100.047209 doi: 10.1103/PhysRevLett.100.047209
![]() |
[35] |
Golor M, Wessel S, Schmidt MJ (2014) Quantum nature of edge magnetism in graphene. Phys Rev Lett 112: 46601. https://doi.org/10.1103/PhysRevLett.112.046601 doi: 10.1103/PhysRevLett.112.046601
![]() |
[36] |
Li W, Zhao M, Xia Y, et al. (2009) Covalent-adsorption induced magnetism in graphene J Mater Chem 48: 9274–9282. https://doi.org/10.1039/b908949g doi: 10.1039/b908949g
![]() |
[37] |
Santos EJG, Ayuela A, Sánchez-Portal D (2012) Universal magnetic properties of sp3-type defects in covalently functionalized graphene. New J Phys 14: 43022. https://doi.org/10.1088/1367-2630/14/4/043022 doi: 10.1088/1367-2630/14/4/043022
![]() |
[38] |
Tang T, Tang N, Zheng Y, et al. (2015) Robust magnetic moments on the basal plane of the graphene sheet effectively induced by OH groups. Sci Rep 5: 8448. https://doi.org/10.1038/srep08448 doi: 10.1038/srep08448
![]() |
[39] |
Bagani K, Bhattacharya A, Kaur J (2014) Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide. J Appl Phys 115: 023902. https://doi.org/10.1063/1.4861173 doi: 10.1063/1.4861173
![]() |
[40] |
Tang T, Liu F, Liu Y, et al. (2014) Identifying the magnetic properties of graphene oxide. Appl Phys Lett 104: 123104. https://doi.org/10.1063/1.4869827 doi: 10.1063/1.4869827
![]() |
[41] |
Lee D, Seo J, Zhu XI, et al. (2015) Magnetism in graphene oxide induced by epoxy groups. Appl Phys Lett 106: 172402. https://doi.org/10.1063/1.4919529 doi: 10.1063/1.4919529
![]() |
[42] |
Sinha A, Ali A, Thakur AD (2021) Ferromagnetism in graphene oxide. Mater Today Proceed 46: 6230–6233. https://doi.org/10.1016/j.matpr.2020.04.771 doi: 10.1016/j.matpr.2020.04.771
![]() |
[43] |
Mei X, Ouyang J (2011) Ultra sonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49: 5389–5397. https://doi.org/10.1016/j.carbon.2011.08.019 doi: 10.1016/j.carbon.2011.08.019
![]() |
[44] |
Sun P, Wang K, Wei J, et al. (2014) Magnetic transitions in graphene derivatives. Nano Res 7: 1507–1518. https://doi.org/10.1007/s12274-014-0512-1 doi: 10.1007/s12274-014-0512-1
![]() |
[45] |
Saremi S (2007) RKKY in half-filled bipartite lattices: Graphene as an example. Phys Rev B 76: 184430. https://doi.org/10.1103/PhysRevB.76.184430 doi: 10.1103/PhysRevB.76.184430
![]() |
[46] |
Wang M, Li CM (2010) Magnetism in graphene oxide. New J Phys 12: 083040. https://doi.org/10.1088/1367-2630/12/8/083040 doi: 10.1088/1367-2630/12/8/083040
![]() |
[47] |
Fujii S, Enoki T (2010) Cutting of oxidized graphene into nanosized pieces. J Am Chem Soc 132: 10034–10041. https//doi.org/10.1021/ja101265r doi: 10.1021/ja101265r
![]() |
[48] |
Boukhvalov DW (2010) Modelling of hydrogen and hydroxyl group migration on graphene. Phys Chem Chem Phys 12: 15367–15371. https://doi.org/10.1039/c0cp01009j doi: 10.1039/c0cp01009j
![]() |
[49] |
Ghaderi N, Peressi M (2010) First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide. J Phys Chem C 114: 21625–21630. https://doi.org/10.1021/jp108688m doi: 10.1021/jp108688m
![]() |
[50] |
Boukhvalov DW (2013) DFT modeling of the covalent functionalization of graphene: From ideal to realistic models. RSC Adv 3: 7150–7159. https://doi.org/10.1039/C3RA23372C doi: 10.1039/C3RA23372C
![]() |
[51] |
Santos EJG, Ayuela A, Sánchez-Portal D (2012) Universal magnetic properties of sp3-type defects in covalently functionalized graphene. New J Phys 14: 043022. https://doi.org/10.1088/1367-2630/14/4/043022 doi: 10.1088/1367-2630/14/4/043022
![]() |
[52] |
Wang M, Huang W, Chan-Park MB (2011) Magnetism in oxidized graphene with hydroxyl groups. Nanotechnology 22: 105702. https://doi.org/10.1088/0957-4484/22/10/105702 doi: 10.1088/0957-4484/22/10/105702
![]() |
[53] |
Strzelczyk R, Augustyniak-Jabtokow MA, Fedaruk R, et al. (2022) Edge ferromagnetism of graphene oxide. J Mag Mag Mater 544: 168686. https://doi.org/10.1016/j.jmmm.2021.168686 doi: 10.1016/j.jmmm.2021.168686
![]() |
[54] | Radovic LR, Bockrath B (2005) On the Chemical nature of Graphene edge: origin of stability and potential for magnetism in carbon materials. 127: 5917–5927. https://doi.org/10.1021/ja050124h |
[55] |
Ray SC, Soin N, Makgato T, et al. (2014) Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci Rep 4: 3862. https://doi.org/10.1038/srep03862 doi: 10.1038/srep03862
![]() |
[56] |
Boukhvalov DW, Katsnelson MI (2011) sp-electron magnetic clusters with a large spin in graphene. ACS Nano 5: 2440–2446. https://doi.org/10.1021/nn103510c doi: 10.1021/nn103510c
![]() |
[57] |
Bagani K, Ray MK, Satpati B, et al. (2014) Contrasting magnetic properties of thermally and chemically reduced graphene oxide. J Phys Chem C 118: 13254–13259. https://doi.org/10.1021/jp503034d doi: 10.1021/jp503034d
![]() |
[58] |
Chuang CH, Wang Y-F, Shao Y-C, et al. (2014) The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides. Sci Rep 4: 4525. https://doi.org/10.1038/srep04525 doi: 10.1038/srep04525
![]() |
[59] |
Wang YF, Singh SB, Limaye MV, et al. (2015) Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy. Sci Rep 5: 15439. https://doi.org/10.1038/srep15439 doi: 10.1038/srep15439
![]() |
[60] |
Ferrari AC, Meyer JC, Scardaci V, et al. (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97: 187401. https://doi.org/10.1103/PhysRevLett.97.187401 doi: 10.1103/PhysRevLett.97.187401
![]() |
[61] |
Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61: 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095 doi: 10.1103/PhysRevB.61.14095
![]() |
[62] |
Wang YY, Ni Zh, Yu T, et al. (2008) Raman studies of monolayer graphene: The substrate effect. J Phys Chem C 112: 10637–10640. https://doi.org/10.1021/jp8008404 doi: 10.1021/jp8008404
![]() |
[63] |
Liu Y, Tang N, Wan X, et al. (2013) Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci Rep 3: 2566. https://doi.org/10.1038/srep02566 doi: 10.1038/srep02566
![]() |
[64] |
Zhou JG, Wang J, Sun CL, et al. (2011) Nano-scale chemical imaging of a single sheet of reduced graphene oxide. J Mater Chem 21: 14622–14630. https://doi.org/10.1039/c1jm11071c doi: 10.1039/c1jm11071c
![]() |
[65] |
Schniepp HC, Li JL, McAllister MJ, et al. (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110: 8535–8539. https://doi.org/10.1021/jp060936f doi: 10.1021/jp060936f
![]() |
[66] |
Shen X, Lin X, Yousefi N, et al. (2014) Wrinkling in graphene sheets and graphene oxide papers. Carbon 66: 84–92. https://doi.org/10.1016/j.carbon.2013.08.046 doi: 10.1016/j.carbon.2013.08.046
![]() |
[67] | Hua W, Gao B, Li S, et al. (2010) X-ray absorption spectra of graphene from first-principles simulations. Phys Rev B 82: 155433. https://doi.org/PhysRevB.82.155433 |
[68] |
Jeong HK, Noh H-J, Kim J-Y, et al. (2009) Comment on "Near-edge X-ray absorption fine-structure investigation of graphene". Phys Rev Lett 102: 099701. https://doi.org/http://dx.doi.org/10.1103/PhysRevLett.102.099701 doi: 10.1103/PhysRevLett.102.099701
![]() |
[69] |
Pacilé D, Papagno, Rodríguez AF, et al. (2008) Near-edge X-ray absorption fine-structure investigation of graphene. Phys Rev Lett 101: 066806. https://doi.org/10.1103/PhysRevLett.101.066806 doi: 10.1103/PhysRevLett.101.066806
![]() |
[70] |
Pacilé D, Papagno M, Rodríguez AF, et al. (2009) Comment on "Near-edge X-ray absorption fine-structure investigation of graphene". Phys Rev Lett 102: 099702. https://doi.org/10.1103/PhysRevLett.102.099702 doi: 10.1103/PhysRevLett.102.099702
![]() |
[71] |
Ganguly A, Sharma S, Papakonstantinou P, et al. (2011) Probing the thermal deoxygenation of graphene oxide using high- resolution in situ X-ray-based spectroscopies. J Phys Chem C 115: 17009–17019. https://doi.org/10.1021/jp203741y doi: 10.1021/jp203741y
![]() |
[72] |
Zhou SY, Girit ÇÖ, Scholl A, et al. (2009) Instability of two-dimensional graphene: Breaking sp2 bonds with soft X rays. Phys Rev B 80: 121409. https://doi.org/10.1103/PhysRevB.80.121409 doi: 10.1103/PhysRevB.80.121409
![]() |
[73] |
Idisi DO, Ali H, Oke JA, et al. (2019) Electronic, electrical and magnetic behaviours of reduced graphene-oxide functionalized with silica coated gold nanoparticles. Appl Surf Sci 483: 106–113. https://doi.org/10.1016/j.apsusc.2019.03.271 doi: 10.1016/j.apsusc.2019.03.271
![]() |
[74] |
Mondal A, Saha A, Sinha A, et al. (2012) Tunable catalytic performance and selectivity of a nanoparticle-graphene composite through finely controlled nanoparticle loading. Chem Asian J 7: 2931–2936. https://doi.org/10.1002/asia.201200716 doi: 10.1002/asia.201200716
![]() |
[75] |
Suda M, Kameyama N, Ikegami A, et al. (2009) Size-reduction induced ferromagnetism and photomagnetic effects in azobenzene-thiol- passivated gold nanoparticles. Polyhedron 28: 1868–1874. https://doi.org/10.1016/j.poly.2008.10.021 doi: 10.1016/j.poly.2008.10.021
![]() |
[76] |
Sarma S, Ray SC, Strydom AM (2017) Electronic and magnetic properties of nitrogen functionalized graphene-oxide. Dia Rel Mater 79: 1–6. https://doi.org/10.1016/j.diamond.2017.08.011 doi: 10.1016/j.diamond.2017.08.011
![]() |
[77] |
Ghosh B, Sarma S, Pontsho M, et al. (2018) Tuning of magnetic behaviour in nitrogenated graphene oxide functionalized with iron oxide. Dia Rel Mater 89: 35–42. https://doi.org/10.1016/j.diamond.2018.08.006 doi: 10.1016/j.diamond.2018.08.006
![]() |
[78] |
Bhattacharya G, Kandasamy G, Soin N, et al. (2017) Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical super- capacitors. RSC Adv 7: 327–335. https://doi.org/10.1039/C6RA25630A doi: 10.1039/C6RA25630A
![]() |
[79] |
Zhang X, Liu J, He B, et al. (2014) Magnetic-resonance-based electrical properties tomography: A review. IEEE Rev Biomed Eng 7: 87–96. https://doi.org/10.1109/rbme.2013.2297206 doi: 10.1109/rbme.2013.2297206
![]() |
[80] |
Carmeli I, Skakalova V, Naaman R, et al. (2002) Magnetization of chiral monolayers of polypeptide a possible source of magnetism in some biological membranes. Angew Chemie Int Ed Engl 41: 761–764. https://doi.org/10.1002/1521-3773(20020301)41:5%3C761::AID-ANIE761%3E3.0.CO;2-Z doi: 10.1002/1521-3773(20020301)41:5%3C761::AID-ANIE761%3E3.0.CO;2-Z
![]() |
[81] |
Idisi DO, Oke JA, Sarma S, et al. (2019) Tuning of electronic and magnetic properties of multifunctional r-GO-ATA-Fe2O3-composites for magnetic resonance imaging (MRI) contrast agent. J Appl Phys 126: 035301. https://doi.org/10.1063/1.5099892 doi: 10.1063/1.5099892
![]() |
[82] | Ionov AN, Volkov MP, Nikolaeva MN, et al. (2021) The magnetism of a composite based on reduced graphene oxide and polystyrene. Nanomaterials 11: 403. https://doi.org/10.3390%2Fnano11020403 |
[83] |
Cong CJ, Liao L, Liu QY, et al. (2006) Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related Raman vibration. Nanotechnology 17: 1520–1526. https://doi.org/10.1088/0957-4484/17/5/059 doi: 10.1088/0957-4484/17/5/059
![]() |
[84] | Abdelbasir S, Shalan AE (2019) Intriguing properties and applications of functional magnetic materials, In: Sahu D, Functional Materials, IntechOpen, https://doi.org/10.5772/intechopen.81386 |
[85] |
Goncalves G, Marques PAAP, Granadeiro CM, et al. (2009) Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21: 4796–4802. https://doi.org/10.1021/cm901052s doi: 10.1021/cm901052s
![]() |
[86] |
Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75: 125408. https://doi.org/10.1103/PhysRevB.75.125408 doi: 10.1103/PhysRevB.75.125408
![]() |
[87] | Bozorth RM (1978) Ferromagnetism, Wiley-IEEE Press. |
[88] |
Sahoo PK, Panigrahy B, Li D, et al. (2013) Magnetic behaviour of reduced graphene oxide/metal nanocomposites. J Appl Phys 113: 17B525. https://doi.org/10.1063/1.4799150 doi: 10.1063/1.4799150
![]() |
[89] |
Aktürk OÜ, Tomak M (2009) AunPtn clusters adsorbed on graphene studied by first-principles calculations. Phys Rev B 80: 85417. https://doi.org/10.1103/PhysRevB.80.085417 doi: 10.1103/PhysRevB.80.085417
![]() |
[90] |
Krasheninnikov AV, Lehtinen PO, Foster AS, et al. (2009) Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys Rev Lett 102: 126807. https://doi.org/10.1103/PhysRevLett.102.126807 doi: 10.1103/PhysRevLett.102.126807
![]() |
[91] | Chikazumi S, Charap SH (1964) Physics of Magnetism, New York: John Wiley & Sons. |
[92] |
Danan H, Meyer JP (1968) New determinations of the saturation magnetization of nickel and iron. J Appl Phys 39: 669. https://doi.org/10.1063/1.2163571 doi: 10.1063/1.2163571
![]() |
[93] |
Lin D, Nunes AC, Majkrzak CF, et al. (1995) Polarized neutron study of the magnetization density distribution within a CoFe2O4 colloidal particle Ⅱ. J Magn Magn Mater 145: 343. https://doi.org/10.1016/0304-8853(94)01627-5 doi: 10.1016/0304-8853(94)01627-5
![]() |
[94] |
Lu AH, Salabas EL, Schüth F, et al. (2007) Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed 46: 1222. https://doi.org/10.1002/anie.200602866 doi: 10.1002/anie.200602866
![]() |
[95] |
Sun XC, Dong, XL (2002) Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer. Mater Res Bull 37: 991. https://doi.org/10.1016/S0025-5408(02)00702-X doi: 10.1016/S0025-5408(02)00702-X
![]() |
[96] |
Matte HSSR, Subrahmanyam KS, Rao CNR (2009) Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113: 9982. https://doi.org/10.1021/jp903397u doi: 10.1021/jp903397u
![]() |
[97] |
Dutta S, Lakshmi S, Pati SK (2008) Electron-electron interactions on the edge states of graphene: A many-body configuration interaction study. Phys Rev B 77: 073412. https://doi.org/10.1103/PhysRevB.77.073412 doi: 10.1103/PhysRevB.77.073412
![]() |
[98] |
Chen Y, Peng D-L, Lin D, et al. (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18: 505703. https://doi.org/10.1088/0957-4484/18/50/505703 doi: 10.1088/0957-4484/18/50/505703
![]() |
[99] |
Yang X, Xia H, Qin X, et al. (2009) Correlation between the vacancy defects and ferromagnetism in graphite. Carbon 47: 1399–1406. https://doi.org/10.1016/j.carbon.2009.01.032 doi: 10.1016/j.carbon.2009.01.032
![]() |
[100] |
Novoselov KS, Geim AK, Morozov SV, et al. (2004) Electric field effect in atomically thin carbon films. Science 306: 666–669. https://doi.org/10.1126/science.1102896 doi: 10.1126/science.1102896
![]() |
[101] |
Nigar S, Zhou Z, Wang H, et al. (2017) Modulating the electronic and magnetic properties of graphene. RSC Adv 7: 51546–51580. https://doi.org/10.1039/C7RA08917A doi: 10.1039/C7RA08917A
![]() |
[102] |
Błonśki P, Tucěk J, Sofer Z, et al. (2017) Doping with graphitic nitrogen triggers ferromagnetism in graphene. J Am Chem Soc 139: 3171–3180. https://doi.org/10.1021/jacs.6b12934 doi: 10.1021/jacs.6b12934
![]() |
[103] |
Miao Q, Wang L, Liu Z, et al. (2016) Magnetic properties of N-doped graphene with high curie temperature. Sci Rep 6: 21832. https://doi.org/10.1038/srep21832 doi: 10.1038/srep21832
![]() |
[104] |
Ito Y, Christodoulou C, Nardi MV, et al. (2015) Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains. J Am Chem Soc 137: 7678–7685. https://doi.org/10.1021/ja512897m doi: 10.1021/ja512897m
![]() |
[105] |
Denis PA (2022) Heteroatom co-doped graphene: The importance of nitrogen. ACS Omega 7: 45935–45961. https://doi.org/10.1021/acsomega.2c06010 doi: 10.1021/acsomega.2c06010
![]() |
[106] |
Sun P, Wang K, Wei J, et al. (2014) Magnetic transitions in graphene derivatives. Nano Res 7: 1507–1518. https://doi.org/10.1007/s12274-014-0512-1 doi: 10.1007/s12274-014-0512-1
![]() |
[107] |
Wu Y, Yu D, Feng Y, et al. (2021) Facilely synthesized N-doped graphene sheets and its ferromagnetic origin. Chinese Chem Lett 32: 3841–3846. https://doi.org/10.1016/j.cclet.2021.04.054 doi: 10.1016/j.cclet.2021.04.054
![]() |
[108] |
Talukdar N, Wang Y, Nunna BB, et al. (2021) Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability. Carbon 185: 198–214. https://doi.org/10.1016/j.carbon.2021.09.025 doi: 10.1016/j.carbon.2021.09.025
![]() |
[109] |
Gayan ES, Soin N, Moloi SJ, et al. (2020) Polyacrylate grafted graphene oxide nanocomposites for biomedical applications. J Appl Phys 127: 054302. https://doi.org/10.1063/1.5135572 doi: 10.1063/1.5135572
![]() |
[110] |
Sarkar AK, Bediako JK, Choi J-W, et al. (2019) Functionalized magnetic biopolymeric graphene oxide with outstanding performance in water purification. NPG Asia Mater 11: 4. https://doi.org/10.1038/s41427-018-0104-8 doi: 10.1038/s41427-018-0104-8
![]() |
[111] |
Viswanathan C, Senthilkumar V, Sriranjini R, et al. (2005) Effect of substrate temperature on the properties of vacuum evaporated indium selenide thin films. Cryst Res Technol 40: 658. https://doi.org/10.1002/crat.200410404 doi: 10.1002/crat.200410404
![]() |
[112] |
Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3: 270. https://doi.org/10.1038/nnano.2008.83 doi: 10.1038/nnano.2008.83
![]() |
[113] |
Vozmediano MAH, López-Sancho MP, Stauber T, et al. (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72: 155121. https://doi.org/10.1103/PhysRevB.72.155121 doi: 10.1103/PhysRevB.72.155121
![]() |
[114] |
Li G, Luican A, Lopes de Santos JMB, et al. (2010) Observation of Van Hove singularities in twisted graphene layers. Nat Phys 6: 109–113. https://doi.org/10.1038/NPHYS1463 doi: 10.1038/NPHYS1463
![]() |
[115] |
Eng AYS, Poh HL, Šaněk F, et al. (2013) Searching for magnetism in hydrogenated graphene. ACS Nano 7: 5930–5939. https://doi.org/10.1021/nn4016289 doi: 10.1021/nn4016289
![]() |
[116] |
Qin S, Guo X, Cao Y, et al. (2014) Strong ferromagnetism of reduced graphene oxide. Carbon 78: 559–565. https://doi.org/10.1016/j.carbon.2014.07.039 doi: 10.1016/j.carbon.2014.07.039
![]() |
[117] |
Taniguchi T, Yokoi H, Nagamine M, et al. (2014) Correlated optical and magnetic properties in photo-reduced graphene oxide. J Phys Chem C 118: 28258–28265. https://dx.doi.org/10.1021/jp509399x doi: 10.1021/jp509399x
![]() |
[118] |
Enayati M, Nemati A, Zarrabi A, et al. (2019) The role of oxygen defects in magnetic properties of gamma-irradiated reduced graphene oxide. J Alloys Compd 784: 134–148. https://doi.org/10.1016/j.jallcom.2018.12.363 doi: 10.1016/j.jallcom.2018.12.363
![]() |
[119] |
Enayati M, Nemati A, Zarrabi A, et al. (2018) Reduced graphene oxide: An alternative for magnetic resonance imaging contrast agent. Mater Lett 233: 363–366. https://doi.org/10.1016/j.matlet.2018.09.044 doi: 10.1016/j.matlet.2018.09.044
![]() |
[120] |
He Z, Yang X, Xia H, et al. (2011) Enhancing the ferro-magnetization of graphite by successive 12C+ ion implantation steps. Carbon 49: 1931–1938. https://doi.org/10.1016/j.carbon.2011.01.018 doi: 10.1016/j.carbon.2011.01.018
![]() |
[121] |
Soin N, Ray SC, Sarma S, et al. (2017) Tuning the electronic and magnetic properties of nitrogen functionalized few-layered graphene nanoflakes. J Phys Chem C 121: 14073. https://doi.org/10.1021/acs.jpcc.7b01645 doi: 10.1021/acs.jpcc.7b01645
![]() |
[122] |
Chuang C-H, Ray SC, Mazumder D, et al. (2017) Chemical modification of graphene oxide by nitrogenation: An x-ray absorption and emission spectroscopy study. Sci Rep 7: 42235. https://doi.org/10.1038/srep42235 doi: 10.1038/srep42235
![]() |
[123] |
Zhang K-C, Li Y-F, Liu Y, et al. (2016) Density-functional study on the structural and magnetic properties of N-doped graphene oxide. Carbon 102: 39–50. https://doi.org/10.1016/j.carbon.2016.02.030 doi: 10.1016/j.carbon.2016.02.030
![]() |
[124] |
Araki H, Yoshino K (1992) Preparation, molecular structures and novel magnetic properties of organic ferromagnetic compounds by pyrolysis of triphenoxy-triazine and benzoguanamine. J Phys Condens Matter 4: L119–L123. https://doi.org/10.1088/0953-8984/4/8/003 doi: 10.1088/0953-8984/4/8/003
![]() |
[125] |
Ganya ES, Moloi SJ, Ray SC, et al. (2020) Tuning the electronic and magnetic properties of PEDOT-PSS-coated graphene oxide nanocomposites for biomedical applications. J Mater Res 35: 2478–2490. https://doi.org/10.1557/jmr.2020.236 doi: 10.1557/jmr.2020.236
![]() |
[126] |
Ray SC, Bhunia SK, Saha A, et al. (2015) Graphene oxide (GO)/reduced-GO and their composite with conducting polymer nanostructure thin films for non-volatile memory device. Microelectron Eng 146: 48–52. https://doi.org/10.1016/j.mee.2015.04.001 doi: 10.1016/j.mee.2015.04.001
![]() |
[127] |
Eluyemi MS, Eleruja MA, Adedeji AV, et al. (2016) Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method. Graphene 5: 143–154. http://dx.doi.org/ 10.4236/graphene.2016.53012 doi: 10.4236/graphene.2016.53012
![]() |
[128] |
Roy S, Soin N, Bajpai R, et al. (2011) Graphene oxide for electrochemical sensing applications. J Mater Chem 21: 14725–14731. https://doi.org/10.1039/C1JM12028J doi: 10.1039/C1JM12028J
![]() |
[129] |
Ganguly A, Sharma S, Papakonstantinou P, et al. (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019. https://doi.org/10.1021/jp203741y doi: 10.1021/jp203741y
![]() |
[130] |
Roy S, Soin N, Bajpai R, et al. (2011) Graphene oxide for electrochemical sensing applications. J Mater Chem 21: 14725-14731. https://doi.org/10.1039/c1jm12028j doi: 10.1039/c1jm12028j
![]() |
[131] | Chang Y-S, Chen F-K, Tsai D-C, et al. (2021) N-doped reduced graphene oxide for room-temperature NO gas sensors. Sci Rep 11: 20719. https://doi.org/10.1038%2Fs41598-021-99883-9 |
[132] |
Singh K, Ohlan A, Saini P, et al. (2008) Poly(3, 4-ethylenedioxythiophene)γ-Fe2O3 polymer composite–super paramagnetic behavior and variable range hopping 1D conduction mechanism–synthesis and characterization. Polym Adv Technol 19: 229–236. https://doi.org/10.1002/pat.1003 doi: 10.1002/pat.1003
![]() |
[133] |
Geng D, Yang S, Zhang Y, et al. (2011) Nitrogen doping effects on the structure of graphene. Appl Surf Sci 257: 9193–9198. https://doi.org/10.1016/j.apsusc.2011.05.131 doi: 10.1016/j.apsusc.2011.05.131
![]() |
[134] |
Elk K, Richter J, Christoph V (1979) Density of states and electrical conductivity of disordered alloys with strong electron correlation. J Phys F Met Phys 9: 307–316. https://doi.org/10.1088/0305-4608/9/2/019 doi: 10.1088/0305-4608/9/2/019
![]() |
[135] |
See TP, Pandikumar A, Ngee LH, et al. (2014) Magnetically separable reduced graphene oxide/iron oxide nanocomposite materials for environmental remediation. Catal Sci Technol 4: 4396–4405. https://doi.org/10.1039/C4CY00806E doi: 10.1039/C4CY00806E
![]() |
[136] |
Ren LL, Huang S, Fan W, et al. (2011) One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Appl Surf Sci 258: 1132–1138. https://doi.org/10.1016/j.apsusc.2011.09.049 doi: 10.1016/j.apsusc.2011.09.049
![]() |
[137] |
Tanwar S, Mathur D (2020) Magnetite-graphene oxide nanocomposites: Facile synthesis and characterization of optical and magnetic property. Mater Today Proc 30: 17–22. https://doi.org/10.1016/j.matpr.2020.03.745 doi: 10.1016/j.matpr.2020.03.745
![]() |
[138] |
Sepioni M, Nair RR, Rablen S, et al. (2010) Limits on intrinsic magnetism in graphene. Phys Rev Lett 105: 207205. https://doi.org/10.1103/PhysRevLett.105.207205 doi: 10.1103/PhysRevLett.105.207205
![]() |
[139] |
Popplewell J, Sakhnini L (1995) The dependence of the physical and magnetic properties of magnetic fluids on particle size. J Magn Mater 149: 72–78. https://doi.org/10.1016/0304-8853(95)00341-X doi: 10.1016/0304-8853(95)00341-X
![]() |
[140] |
Thapa B, Diaz-Diestra D, Badillo-Diaz D, et al. (2029) Controlling the transverse proton relaxivity of Magnetic graphene-oxide. Sci Rep 9: 5633. https://doi.org/10.1038/s41598-019-42093-1 doi: 10.1038/s41598-019-42093-1
![]() |
[141] |
Wang GS, Chen GY, Wei ZY, et al. (2013) Multifunctional Fe3O4/graphene oxide nanocomposites for magnetic resonance imaging and drug delivery. Mater Chem Phys 141: 997–1004. https://doi.org/10.1016/j.matchemphys.2013.06.054 doi: 10.1016/j.matchemphys.2013.06.054
![]() |
[142] |
Cong HP, He JJ, Lu Y, et al. (2010) Water-soluble magnetic-functionalized reduced graphene oxide sheets: situ synthesis and magnetic resonance imaging applications. Small 6: 169–171. https://doi.org/10.1002/smll.200901360 doi: 10.1002/smll.200901360
![]() |
[143] |
Zhou GM, Wang DW, Zhang LL, et al. (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22: 5306–5313. https://doi.org/10.1021/cm101532x doi: 10.1021/cm101532x
![]() |
[144] |
Zhang M, Lei DN, Yin XM, et al. (2010) Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. Mater Chem 20: 5538–5543. https://doi.org/10.1039/C0JM00638F doi: 10.1039/C0JM00638F
![]() |
[145] |
Koo HY, Lee HJ, Go HA, et al. (2011) Graphene-based multifunctional iron oxide nanosheets with tuneable properties. Eur J 17: 1214–1219. https://doi.org/10.1002/chem.201002252 doi: 10.1002/chem.201002252
![]() |
[146] |
Ray SC, Pong WF (2022) Possible Ferro-electro-magnetic performance of "reduced graphene oxide" deposited on "ZnO-nanorod (NR) decorated with nanocrystalline (nc) Au particles". AIP Adv 12: 055008. https://doi.org/10.1063/5.0091852 doi: 10.1063/5.0091852
![]() |
[147] |
Ghosh B, Benecha EM, Ray SC, et al. (2019) ZnO nanorods decorated with nanocrystalline (nc) Au Particles: Electronic structure and magnetic behaviours. J Alloys Compd 797: 74–82. https://doi.org/10.1016/j.jallcom.2019.05.062 doi: 10.1016/j.jallcom.2019.05.062
![]() |
[148] |
Qin S, Sun P, Di Q, et al. (2015) Ferromagnetism of three-dimensional graphene framework. RSC Adv 5: 92899–92904. https://doi.org/10.1039/c5ra14377b doi: 10.1039/c5ra14377b
![]() |
[149] |
Sun Z, Yang X, Wang C, et al. (2014) Graphene activating room-temperature ferromagnetic exchange in cobalt-doped ZnO dilute magnetic semiconductor quantum dots. ACS Nano 8: 10589–10596. https://doi.org/10.1021/nn5040845 doi: 10.1021/nn5040845
![]() |
[150] |
Liu W, Speranza G (2021) Tuning the oxygen content of reduced graphene oxide and effects on its properties. ACS Omega 6: 6195–6205. https://doi.org/10.1021/acsomega.0c05578 doi: 10.1021/acsomega.0c05578
![]() |
[151] |
Chen J, Zhang W, Sun Y, et al. (2016) Creation of localized spins in graphene by ring-opening of epoxy derived hydroxyl. Sci Rep 6: 26862. https://doi.org/10.1038/srep26862 doi: 10.1038/srep26862
![]() |
[152] |
Thiyagarajan K, Muralidharan M, Sivakumar K (2018) Interfacial ferromagnetism in reduced graphene oxide-ZnO nanocomposites. J Mater Sci-Mater El 29: 7442–7452. https://doi.org/10.1007/s10854-018-8735-7 doi: 10.1007/s10854-018-8735-7
![]() |
[153] |
Ray SC, Mishra DK, Wang HT, et al. (2022) Effects of electronic structure and magnetic performance at the surface/interface of r-GO and TiO2 in r-GO/TiO2 composite thin films: X-ray absorption near-edge structure and x-ray photoelectron spectroscopy. AIP Adv 12: 075101. https://doi.org/10.1063/5.0096305 doi: 10.1063/5.0096305
![]() |
[154] |
Sarma S, Ray SC (2021) Low Temperature ferromagnetic behavior of graphene oxide (GO) and molybdenum disulphide (MoS2) hybrid nanocomposite. J Nanosci Nanotech 21: 3320–3324. https://doi.org/10.1166/jnn.2021.19286 doi: 10.1166/jnn.2021.19286
![]() |
[155] |
Ma J, Chen K (2017) Modulated self-reversed magnetic hysteresis in iron oxides. Sci Rep 7: 42312. https://doi.org/10.1038/srep42312 doi: 10.1038/srep42312
![]() |
[156] |
Yoshikazu I, Yasuhiko S (1963) Order-disorder transformation and reverse the remnant magnetism in the FeTiO3-Fe2O3 system. J Phys Chem Solids 24: 517–528. https://doi.org/10.1016/0022-3697(63)90147-1 doi: 10.1016/0022-3697(63)90147-1
![]() |
[157] |
Nord GL, Lawson CA (1992) Magnetic properties of ilmenite70–hematite30: Effect of transformation-induced twin boundaries. J Geophys Res 97: 10897–10910. https://doi.org/10.1029/91JB02259 doi: 10.1029/91JB02259
![]() |
[158] |
Hoffman KA (1992) Self-reversal of thermoremanent magnetization in the ilmenite-hematite system: Order-disorder, symmetry and spin alignment. J Geophys Res 97: 10883–10895. https://doi.org/10.1029/91JB02846 doi: 10.1029/91JB02846
![]() |
[159] | Dunin-Borkowski RE, Kasama T, Harrison RJ (2015) Electron Holography of nanostructured materials, In: Kirkland AI, Haigh SJ, Nanocharacterisation, The Royal Society of Chemistry, 2Eds., 158–210. http://dx.doi.org/10.1039/9781782621867-00158 |
[160] |
Ghosh B, Ray SC, Pattanaik S, et al. (2018) Tuning of electronic structure and magnetic properties of Xenon ion implanted zinc oxide. J Phys D-Appl Phys 51: 095304. https://doi.org/10.1088/1361-6463/aaa832 doi: 10.1088/1361-6463/aaa832
![]() |
[161] |
Matte HSSR, Maitra U, Kumar P, et al. (2012) Synthesis, characterization, and proper- ties of few-layer metal dichalcogenides and their nanocomposites with noble metal particles polyaniline, and reduced graphene oxide. ZAAC 638: 2617–2624. https://doi.org/10.1002/zaac.201200283 doi: 10.1002/zaac.201200283
![]() |
[162] |
Matte HSSR, Subrahmanyam KS, Rao CNR (2009) Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113:9982–9985. https://doi.org/10.1021/jp903397u doi: 10.1021/jp903397u
![]() |
[163] |
Rao CNR, Matte HSSR, Subrahmanyam KS, et al. (2012) Unusual magnetic properties of graphene and related materials. Chem Sci 3: 45–52. https://doi.org/10.1039/C1SC00726B doi: 10.1039/C1SC00726B
![]() |
[164] |
Nurhafizah MD (2020) Magnetic properties of graphene oxide vis a simple mixing with waste engine oil-based carbon nanotubes. SN Appl Sci 2: 534. https://doi.org/10.1007/s42452-020-2361-8 doi: 10.1007/s42452-020-2361-8
![]() |
[165] |
El-Khawas EH, Azab AA, Mansour AM (2020) Structural, magnetic and dielectric properties of reduced graphene oxide/La0.9Bi0.1FeO3 nanocomposites. Mater Chem Phys 241: 122335. https://doi.org/10.1016/j.matchemphys.2019.122335 doi: 10.1016/j.matchemphys.2019.122335
![]() |
[166] |
Tepel M, Nesbit O, Tokmak F, et al. (1998) Sodium-dependent Cl–/HCO3– exchange in patients with chronic renal failure: correlation with renal function. Kidney Int 53: 432–438. https://doi.org/10.1046/j.1523-1755.1998.00776.x doi: 10.1046/j.1523-1755.1998.00776.x
![]() |
[167] |
Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101: 1981–2017. https://doi.org/10.1021/cr980129f doi: 10.1021/cr980129f
![]() |
[168] |
Xia Z, Poeppelmeier KR (2017) Chemistry-inspired adaptable framework structures. Acc Chem Res 50: 1222–1230. https://doi.org/10.1021/acs.accounts.7b00033 doi: 10.1021/acs.accounts.7b00033
![]() |
[169] |
Li T, Shen J, Li N, et al. (2013) Hydrothermal preparation, characterization and enhanced properties of reduced graphene-BiFeO3 nanocomposite. Mater Lett 91: 42–44. https://doi.org/10.1016/j.matlet.2012.09.045 doi: 10.1016/j.matlet.2012.09.045
![]() |
[170] |
Hu J, Wang L, Shi L, et al. (2014) Preparation of La1–xCaxMnO3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium. J Power Sources 269: 144–151. https://doi.org/10.1016/j.jpowsour.2014.07.004 doi: 10.1016/j.jpowsour.2014.07.004
![]() |
[171] |
Molina-García MA, Rees NV (2017) Dual-doped graphene/perovskite bifunctional catalysts and the oxygen reduction reaction. Electrochem. Commun 84: 65–70. https://doi.org/10.1016/j.elecom.2017.10.004 doi: 10.1016/j.elecom.2017.10.004
![]() |
[172] |
Dreyer DR, Park S, Bielawski CW and Ruoff RS (2010) The chemistry of graphite oxide. Chem Soc Rev 39: 228–240. https://doi.org/10.1039/B917103G doi: 10.1039/B917103G
![]() |
[173] | Nair RR, Sepioni M, Tsai IL, et al. (2012) Spin-half paramagnetism in graphene induced by point defects. Nat Phys 8: 199–202. https://www.nature.com/articles/nphys2183#Sec1 |
[174] |
Bhowmick S, Shenoy VB (2008) Edge state magnetism of single layer graphene nanostructures. J Chem Phys 128: 244717. https://doi.org/10.1063/1.2943678 doi: 10.1063/1.2943678
![]() |
[175] |
Chen L, Guo L, Li Z, et al. (2013) Towards intrinsic magnetism of graphene sheets with irregular zigzag edges. Sci Rep 3: 2599. https://doi.org/10.1038/srep02599 doi: 10.1038/srep02599
![]() |
[176] |
López-Sancho MP, De Juan F, Vozmediano MAH (2009) Magnetic moments in the presence of topological defects in graphene. Phys Rev B-Condens Matter Mater Phys 79: 075413. https://doi.org/10.1103/PhysRevB.79.075413 doi: 10.1103/PhysRevB.79.075413
![]() |
[177] |
Krishnamoorthy K, Veerapandian M, Yun K, et al. (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53: 38–49. https://doi.org/10.1016/j.carbon.2012.10.013 doi: 10.1016/j.carbon.2012.10.013
![]() |
[178] |
Thompson-Flagg RC, Moura MJB, Marder M (2009) Rippling of graphene. Epl 85: 46002. https://doi.org/10.1209/0295-5075/85/46002 doi: 10.1209/0295-5075/85/46002
![]() |
[179] |
Bagani K, Bhattacharya A, Kaur J, et al. (2014) Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide. J Appl Phys 115: 023902. https://doi.org/10.1063/1.4861173 doi: 10.1063/1.4861173
![]() |
[180] |
Kumazaki H, Hirashima D (2008) Nonmagnetic-defect-induced magnetism in graphene. Physica E 40: 1703–1705. https://doi.org/10.1016/j.physe.2007.10.112 doi: 10.1016/j.physe.2007.10.112
![]() |
[181] |
Li W, Zhao M, Xia Y, et al. (2009) Covalent adsorption induced magnetism in graphene. J Mater Chem 19: 9274–9282. https://doi.org/10.1039/B908949G doi: 10.1039/B908949G
![]() |
[182] |
Tang T, Liu F, Liu Y, et al. (2014) Identifying the magnetic properties of graphene oxide. Appl Phys Lett 104/12: 123104. https://doi.org/10.1063/1.4869827 doi: 10.1063/1.4869827
![]() |
[183] |
Bedanta S, Kleemann W (2009) Topical review supermagnetism. J Phys D-Appl Phys 42: 013001. https://doi.org/10.1088/0022-3727/42/1/013001 doi: 10.1088/0022-3727/42/1/013001
![]() |
[184] |
Fujii S, Enoki T (2010) Cutting of oxidized graphene into nanosized pieces. J Am Chem Soc 132: 10034–10041. https://doi.org/10.1021/ja101265r doi: 10.1021/ja101265r
![]() |
[185] |
Hernández Rosas JJ, Ramírez Gutiérrez RE, Escobedo-Morales A, et al. (2011) First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. J Mol Model 17: 1133–1139. https://doi.org/10.1007/s00894-010-0818-1 doi: 10.1007/s00894-010-0818-1
![]() |
[186] |
Li W, Zhao M, Xia Y, et al. (2009) Covalent-adsorption induced magnetism in graphene. J Mater Chem 19: 9274–9282. https://doi.org/10.1039/b908949g doi: 10.1039/b908949g
![]() |
1. | Pejman Peykani, Emran Mohammadi, Reza Farzipoor Saen, Seyed Jafar Sadjadi, Mohsen Rostamy-Malkhalifeh, Data envelopment analysis and robust optimization: A review, 2020, 37, 02664720, e12534, 10.1111/exsy.12534 | |
2. | Peirong Chen, Ruhe Xie, Mingxuan Lu, “Resource Conservation” or “Environmental Friendliness”: How do Urban Clusters Affect Total-Factor Ecological Performance in China?, 2020, 17, 1660-4601, 4361, 10.3390/ijerph17124361 | |
3. | Emmanuel Kwasi Mensah, Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry, 2020, 43, 1593-8883, 491, 10.1007/s10203-020-00299-3 | |
4. | Mohammad Izadikhah, Elnaz Azadi, Majid Azadi, Reza Farzipoor Saen, Mehdi Toloo, Developing a new chance constrained NDEA model to measure performance of sustainable supply chains, 2020, 0254-5330, 10.1007/s10479-020-03765-8 | |
5. | Sa Xu, Zejun Li, The Impact of Innovation Activities, Foreign Direct Investment on Improved Green Productivity: Evidence From Developing Countries, 2021, 9, 2296-665X, 10.3389/fenvs.2021.635261 | |
6. | Maziar Salahi, Mehdi Toloo, Narges Torabi, A new robust optimization approach to common weights formulation in DEA, 2020, 0160-5682, 1, 10.1080/01605682.2020.1718016 | |
7. | Mengxin Wang, Yanling Li, Gaoke Liao, Spatial Spillover and Interaction Between High-Tech Industrial Agglomeration and Urban Ecological Efficiency, 2022, 10, 2296-665X, 10.3389/fenvs.2022.829851 | |
8. | Rita Shakouri, Maziar Salahi, Zeljko Stevic, Stochastic P-Robust Approach to a Centralized Two-Stage DEA System with Resource Waste, 2022, 2022, 1687-9155, 1, 10.1155/2022/1133882 | |
9. | Rita Shakouri, Maziar Salahi, Performance measurement and resource sharing among business sub-units in the presence of non-discretionary factors, 2022, 17, 1746-5664, 100, 10.1108/JM2-09-2020-0249 | |
10. | Shuai Wang, Cunyi Yang, Zhenghui Li, Spatio-Temporal Evolution Characteristics and Spatial Interaction Spillover Effects of New-Urbanization and Green Land Utilization Efficiency, 2021, 10, 2073-445X, 1105, 10.3390/land10101105 | |
11. | Pejman Peykani, Ali Emrouznejad, Emran Mohammadi, Jafar Gheidar-Kheljani, A novel robust network data envelopment analysis approach for performance assessment of mutual funds under uncertainty, 2022, 0254-5330, 10.1007/s10479-022-04625-3 | |
12. | Ulaş Ünlü, Neşe Yalçın, Nuri Avşarlıgil, Analysis of Efficiency and Productivity of Commercial Banks in Turkey Pre- and during COVID-19 with an Integrated MCDM Approach, 2022, 10, 2227-7390, 2300, 10.3390/math10132300 | |
13. | Alireza Amirteimoori, Leila Khoshandam, Sohrab Kordrostami, Monireh Jahani Sayyad Noveiri, Reza Kazemi Matin, Performance analysis in a stochastic supply chain with reverse flows: a DEA-based approach, 2022, 33, 1471-678X, 433, 10.1093/imaman/dpab018 | |
14. | M. Salahi, A. Jamalian, R. Shakouri, K. Asanimoghadam, Bikash Koli Dey, Additive Slack-Based Measure for a Two-Stage Structure with Shared Inputs and Undesirable Feedback, 2022, 2022, 1687-9155, 1, 10.1155/2022/7596736 | |
15. | Yi Sima, Jizheng Yi, Aibin Chen, Ze Jin, Automatic expression recognition of face image sequence based on key-frame generation and differential emotion feature, 2021, 113, 15684946, 108029, 10.1016/j.asoc.2021.108029 | |
16. | Saeed Yousefi, Hadi Shabanpour, Kian Ghods, Reza Farzipoor Saen, How to improve the future efficiency of Covid-19 treatment centers? A hybrid framework combining artificial neural network and congestion approach of data envelopment analysis, 2023, 176, 03608352, 108933, 10.1016/j.cie.2022.108933 | |
17. | Eleni-Maria Vretta, Kyriakos Bitsis, Konstantinos Kaparis, Georgios Paltayian, Andreas C. Georgiou, 2023, A Stochastic Bilevel DEA-Based Model for Resource Allocation, 40, 10.3390/IOCMA2023-14594 | |
18. | Andreas C. Georgiou, Konstantinos Kaparis, Eleni-Maria Vretta, Kyriakos Bitsis, George Paltayian, A Bilevel DEA Model for Efficiency Evaluation and Target Setting with Stochastic Conditions, 2024, 12, 2227-7390, 529, 10.3390/math12040529 | |
19. | Fatemeh Sadat Seyed Esmaeili, Emran Mohammadi, Amin Mostafaee, Z-number network data envelopment analysis approach: A case study on the Iranian insurance industry, 2024, 19, 1932-6203, e0306876, 10.1371/journal.pone.0306876 | |
20. | Rita Shakouri, Maziar Salahi, Yi-Kuei Lin, Malmquist–Luenberger Productivity Index for a Two-Stage Structure in the Presence of Undesirable Outputs and Uncertainty, 2024, 2024, 1687-9155, 1, 10.1155/2024/6905897 |
Inputs | Intermediates | Outputs | |||
x1 | Operational costs | z1 | Checking deposits | y1 | Return on assets |
x2 | Capital costs | z2 | Saving deposits | y2 | Earnings quality |
x3 | Financing costs | z3 | The number of customers | y3 | Interest income |
x1 | x2 | x3 | y1 | ||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | |||
1 | 0.47 | 0.84 | 0.66 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.22 | 0.24 | 0.23 | |||
2 | 0.74 | 0.53 | 0.64 | 0.67 | 0.67 | 0.78 | 0.90 | 0.75 | 0.71 | 0.13 | 0.41 | 0.27 | |||
3 | 0.58 | 0.69 | 0.63 | 1.00 | 0.73 | 0.78 | 0.82 | 0.50 | 0.75 | 0.77 | 0.07 | 0.42 | |||
4 | 0.70 | 0.57 | 0.63 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.89 | 0.06 | 0.47 | |||
5 | 0.77 | 0.52 | 0.64 | 1.00 | 1.00 | 0.80 | 0.60 | 0.50 | 0.75 | 0.58 | 0.09 | 0.34 | |||
6 | 0.60 | 0.66 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.69 | 0.08 | 0.38 | |||
7 | 0.40 | 1.00 | 0.70 | 0.50 | 0.75 | 0.78 | 0.80 | 1.00 | 0.75 | 0.13 | 0.39 | 0.26 | |||
8 | 0.59 | 0.68 | 0.63 | 0.67 | 0.69 | 0.78 | 0.87 | 0.75 | 0.71 | 0.38 | 0.14 | 0.26 | |||
9 | 0.60 | 0.67 | 0.63 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.11 | 0.45 | 0.28 | |||
10 | 0.44 | 0.91 | 0.67 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.06 | 0.90 | 0.48 | |||
11 | 0.57 | 0.69 | 0.63 | 0.67 | 0.82 | 0.78 | 0.73 | 0.75 | 0.71 | 0.15 | 0.35 | 0.25 | |||
12 | 1.00 | 0.40 | 0.70 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.86 | 0.06 | 0.46 | |||
13 | 0.62 | 0.64 | 0.63 | 0.67 | 0.78 | 0.78 | 0.77 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
14 | 0.65 | 0.61 | 0.63 | 0.83 | 0.60 | 0.80 | 1.00 | 0.60 | 0.72 | 0.10 | 0.54 | 0.32 | |||
15 | 0.72 | 0.55 | 0.64 | 0.83 | 0.77 | 0.78 | 0.78 | 0.60 | 0.72 | 0.71 | 0.07 | 0.39 | |||
16 | 0.78 | 0.51 | 0.65 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.05 | 1.00 | 0.53 | |||
17 | 0.81 | 0.49 | 0.65 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 1.00 | 0.05 | 0.53 | |||
18 | 0.64 | 0.62 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
19 | 0.47 | 0.84 | 0.66 | 0.83 | 0.72 | 0.78 | 0.83 | 0.60 | 0.72 | 0.10 | 0.49 | 0.30 | |||
20 | 0.76 | 0.52 | 0.64 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.31 | 0.17 | 0.24 |
y2 | y3 | z1 | z2 | z3 | |||||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||||
1 | 0.50 | 0.71 | 0.60 | 0.37 | 0.78 | 0.58 | 0.47 | 0.68 | 0.57 | 0.36 | 0.57 | 0.47 | 1.00 | 0.63 | 0.82 | ||||
2 | 0.73 | 0.48 | 0.61 | 0.33 | 0.88 | 0.61 | 0.34 | 0.92 | 0.63 | 0.33 | 0.63 | 0.48 | 0.90 | 0.71 | 0.80 | ||||
3 | 0.51 | 0.69 | 0.60 | 0.58 | 0.50 | 0.54 | 0.62 | 0.51 | 0.56 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
4 | 0.52 | 0.68 | 0.60 | 0.64 | 0.46 | 0.55 | 0.71 | 0.44 | 0.58 | 0.41 | 0.50 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
5 | 0.74 | 0.48 | 0.61 | 1.00 | 0.29 | 0.65 | 0.90 | 0.35 | 0.63 | 0.52 | 0.40 | 0.46 | 0.84 | 0.75 | 0.80 | ||||
6 | 0.61 | 0.58 | 0.59 | 0.68 | 0.43 | 0.55 | 0.58 | 0.54 | 0.56 | 0.21 | 1.00 | 0.60 | 0.87 | 0.73 | 0.80 | ||||
7 | 0.35 | 1.00 | 0.68 | 0.29 | 1.00 | 0.65 | 0.32 | 1.00 | 0.66 | 0.29 | 0.71 | 0.50 | 0.74 | 0.86 | 0.80 | ||||
8 | 0.62 | 0.57 | 0.59 | 0.87 | 0.34 | 0.60 | 0.83 | 0.38 | 0.60 | 0.27 | 0.76 | 0.51 | 0.63 | 1.00 | 0.82 | ||||
9 | 0.60 | 0.58 | 0.59 | 0.43 | 0.68 | 0.56 | 0.51 | 0.61 | 0.56 | 0.46 | 0.45 | 0.45 | 0.90 | 0.71 | 0.80 | ||||
10 | 0.55 | 0.64 | 0.59 | 0.43 | 0.67 | 0.55 | 0.48 | 0.66 | 0.57 | 0.38 | 0.55 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
11 | 0.59 | 0.60 | 0.59 | 0.55 | 0.54 | 0.54 | 0.55 | 0.57 | 0.56 | 0.34 | 0.61 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
12 | 1.00 | 0.35 | 0.68 | 0.68 | 0.43 | 0.56 | 0.76 | 0.41 | 0.59 | 0.77 | 0.27 | 0.52 | 0.95 | 0.67 | 0.81 | ||||
13 | 0.64 | 0.55 | 0.60 | 0.49 | 0.60 | 0.54 | 0.59 | 0.54 | 0.56 | 0.39 | 0.53 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
14 | 0.86 | 0.41 | 0.63 | 0.62 | 0.47 | 0.55 | 0.75 | 0.42 | 0.58 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
15 | 0.68 | 0.52 | 0.60 | 0.89 | 0.33 | 0.61 | 1.00 | 0.32 | 0.66 | 0.28 | 0.74 | 0.51 | 0.79 | 0.80 | 0.80 | ||||
16 | 0.79 | 0.45 | 0.62 | 0.42 | 0.70 | 0.56 | 0.59 | 0.53 | 0.56 | 0.30 | 0.70 | 0.50 | 1.00 | 0.63 | 0.82 | ||||
17 | 0.73 | 0.48 | 0.61 | 0.49 | 0.60 | 0.54 | 0.56 | 0.57 | 0.56 | 0.61 | 0.33 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
18 | 0.65 | 0.54 | 0.60 | 0.64 | 0.46 | 0.55 | 0.60 | 0.52 | 0.56 | 0.49 | 0.42 | 0.45 | 0.76 | 0.83 | 0.80 | ||||
19 | 0.52 | 0.68 | 0.60 | 0.35 | 0.83 | 0.59 | 0.44 | 0.72 | 0.58 | 0.24 | 0.87 | 0.55 | 0.68 | 0.92 | 0.80 | ||||
20 | 0.79 | 0.45 | 0.62 | 0.56 | 0.53 | 0.54 | 0.64 | 0.49 | 0.57 | 1.00 | 0.21 | 0.60 | 0.74 | 0.86 | 0.80 |
Leader | Follower | Centralized | |||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||
1 | 0.595 | 0.761 | 0.846 | 0.778 | 0.763 | 0.774 | 0.500 | 0.671 | 0.762 | ||
2 | 0.521 | 0.655 | 0.746 | 0.700 | 0.756 | 0.779 | 0.375 | 0.497 | 0.581 | ||
3 | 1.000 | 1.000 | 1.000 | 0.724 | 0.814 | 0.860 | 0.749 | 0.831 | 0.873 | ||
4 | 0.822 | 0.903 | 0.938 | 0.489 | 0.561 | 0.624 | 0.564 | 0.700 | 0.767 | ||
5 | 1.000 | 1.000 | 1.000 | 0.554 | 0.680 | 0.743 | 0.562 | 0.684 | 0.755 | ||
6 | 0.627 | 0.726 | 0.784 | 0.657 | 0.775 | 0.811 | 0.461 | 0.600 | 0.679 | ||
7 | 0.650 | 0.720 | 0.767 | 1.000 | 1.000 | 1.000 | 0.708 | 0.791 | 0.836 | ||
8 | 1.000 | 1.000 | 1.000 | 0.426 | 0.536 | 0.612 | 0.426 | 0.536 | 0.612 | ||
9 | 1.000 | 1.000 | 1.000 | 0.778 | 0.789 | 0.802 | 0.778 | 0.792 | 0.807 | ||
10 | 0.447 | 0.575 | 0.655 | 0.984 | 0.988 | 0.992 | 0.439 | 0.568 | 0.649 | ||
11 | 1.000 | 1.000 | 1.000 | 0.644 | 0.737 | 0.790 | 0.644 | 0.737 | 0.790 | ||
12 | 0.475 | 0.618 | 0.700 | 0.934 | 0.965 | 0.970 | 0.445 | 0.603 | 0.690 | ||
13 | 1.000 | 1.000 | 1.000 | 0.369 | 0.503 | 0.590 | 0.383 | 0.512 | 0.597 | ||
14 | 1.000 | 1.000 | 1.000 | 0.625 | 0.723 | 0.776 | 0.757 | 0.875 | 0.924 | ||
15 | 0.541 | 0.615 | 0.675 | 0.995 | 0.987 | 0.986 | 0.704 | 0.767 | 0.810 | ||
16 | 1.000 | 1.000 | 1.000 | 0.580 | 0.672 | 0.731 | 0.645 | 0.723 | 0.772 | ||
17 | 1.000 | 1.000 | 1.000 | 0.631 | 0.715 | 0.767 | 0.750 | 0.868 | 0.918 | ||
18 | 0.187 | 0.307 | 0.397 | 1.000 | 0.999 | 0.998 | 0.365 | 0.508 | 0.598 | ||
19 | 1.000 | 1.000 | 0.987 | 1.000 | 0.975 | 0.872 | 1.000 | 0.975 | 0.951 | ||
20 | 0.464 | 0.590 | 0.667 | 1.000 | 1.000 | 1.000 | 0.538 | 0.666 | 0.741 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.6 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.415 | 0.406 | 0.396 | 0.386 | 0.376 | 0.366 | 0.356 | 0.346 | 0.336 | 0.326 |
2 | 0.370 | 0.361 | 0.352 | 0.344 | 0.335 | 0.326 | 0.317 | 0.308 | 0.300 | 0.291 |
3 | 0.525 | 0.512 | 0.500 | 0.487 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.412 |
4 | 0.454 | 0.452 | 0.441 | 0.430 | 0.419 | 0.408 | 0.397 | 0.386 | 0.375 | 0.364 |
5 | 0.510 | 0.498 | 0.486 | 0.474 | 0.461 | 0.449 | 0.437 | 0.425 | 0.413 | 0.401 |
6 | 0.453 | 0.442 | 0.431 | 0.421 | 0.410 | 0.399 | 0.388 | 0.377 | 0.367 | 0.356 |
7 | 0.462 | 0.434 | 0.434 | 0.429 | 0.418 | 0.407 | 0.396 | 0.385 | 0.374 | 0.363 |
8 | 0.546 | 0.533 | 0.520 | 0.507 | 0.494 | 0.482 | 0.470 | 0.459 | 0.448 | 0.436 |
9 | 0.420 | 0.410 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
10 | 0.351 | 0.342 | 0.334 | 0.326 | 0.317 | 0.309 | 0.301 | 0.292 | 0.284 | 0.275 |
11 | 0.525 | 0.513 | 0.500 | 0.488 | 0.475 | 0.463 | 0.450 | 0.438 | 0.425 | 0.413 |
12 | 0.377 | 0.368 | 0.359 | 0.350 | 0.341 | 0.332 | 0.322 | 0.313 | 0.303 | 0.294 |
13 | 0.536 | 0.523 | 0.411 | 0.411 | 0.411 | 0.468 | 0.454 | 0.441 | 0.427 | 0.413 |
14 | 0.577 | 0.564 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
15 | 0.326 | 0.318 | 0.310 | 0.302 | 0.295 | 0.287 | 0.279 | 0.271 | 0.264 | 0.256 |
16 | INF | INF | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.438 | 0.425 | 0.412 |
17 | 0.525 | 0.512 | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.413 |
18 | INF | 0.262 | 0.256 | 0.250 | 0.242 | 0.236 | 0.229 | 0.225 | 0.217 | 0.211 |
19 | INF | 0.353 | 0.353 | 0.376 | 0.353 | 0.353 | 0.349 | 0.336 | 0.356 | 0.356 |
20 | 0.350 | 0.342 | 0.333 | 0.320 | 0.315 | 0.306 | 0.296 | 0.313 | 0.472 | 0.472 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.317 | 0.307 | 0.297 | 0.287 | 0.277 | 0.271 | 0.257 | 0.257 | 0.257 | 0.257 |
2 | 0.282 | 0.273 | 0.264 | 0.255 | 0.247 | 0.238 | 0.228 | 0.228 | 0.229 | 0.229 |
3 | 0.400 | 0.387 | 0.375 | 0.362 | 0.350 | 0.337 | 0.325 | 0.325 | 0.324 | 0.324 |
4 | 0.353 | 0.342 | 0.331 | 0.320 | 0.309 | 0.298 | 0.286 | 0.286 | 0.286 | 0.286 |
5 | 0.389 | 0.376 | 0.364 | 0.352 | 0.340 | 0.328 | 0.317 | 0.316 | 0.316 | 0.316 |
6 | 0.345 | 0.334 | 0.324 | 0.313 | 0.302 | 0.291 | 0.281 | 0.281 | 0.280 | 0.280 |
7 | 0.352 | 0.341 | 0.330 | 0.319 | 0.308 | 0.297 | 0.286 | 0.286 | 0.286 | 0.286 |
8 | 0.425 | 0.414 | 0.402 | 0.391 | 0.380 | 0.368 | 0.363 | 0.359 | 0.357 | 0.357 |
9 | 0.320 | 0.310 | 0.300 | 0.290 | 0.280 | 0.270 | 0.262 | 0.261 | 0.260 | 0.260 |
10 | 0.267 | 0.259 | 0.250 | 0.242 | 0.234 | 0.225 | 0.217 | 0.217 | 0.217 | 0.217 |
11 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.326 | 0.326 | 0.325 | 0.325 |
12 | 0.285 | 0.275 | 0.266 | 0.257 | 0.247 | 0.238 | 0.234 | 0.228 | 0.228 | 0.228 |
13 | 0.400 | 0.386 | 0.372 | 0.359 | 0.345 | 0.331 | 0.318 | 0.318 | 0.318 | 0.318 |
14 | 0.440 | 0.426 | 0.412 | 0.399 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 |
15 | 0.404 | 0.391 | 0.378 | 0.366 | 0.353 | 0.340 | 0.329 | 0.328 | 0.328 | 0.328 |
16 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.325 | 0.325 | 0.325 | 0.325 |
17 | 0.400 | 0.388 | 0.375 | 0.363 | 0.417 | 0.338 | 0.337 | 0.328 | 0.325 | 0.325 |
18 | 0.205 | 0.199 | 0.193 | 0.187 | 0.180 | 0.174 | 0.167 | 0.167 | 0.167 | 0.167 |
19 | 0.305 | 0.294 | 0.285 | 0.277 | 0.268 | 0.401 | 0.389 | 0.389 | 0.389 | 0.389 |
20 | 0.294 | 0.287 | 0.280 | 0.265 | 0.267 | 0.255 | 0.246 | 0.244 | 0.243 | 0.243 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.229 | 0.222 | 0.216 | 0.209 | 0.202 | 0.196 | 0.190 | 0.185 | 0.180 | 0.174 |
2 | 0.232 | 0.227 | 0.221 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 | 0.182 |
3 | 0.227 | 0.222 | 0.216 | 0.211 | 0.206 | 0.200 | 0.195 | 0.189 | 0.183 | 0.178 |
4 | INF | INF | INF | 0.144 | 0.141 | 0.137 | 0.139 | 0.140 | 0.136 | 0.131 |
5 | 0.346 | 0.340 | 0.333 | 0.327 | 0.320 | 0.314 | 0.263 | 0.256 | 0.248 | 0.288 |
6 | 0.266 | 0.246 | 0.256 | 0.242 | 0.244 | 0.222 | 0.216 | 0.210 | 0.204 | 0.211 |
7 | 0.294 | 0.287 | 0.280 | 0.273 | 0.266 | 0.296 | 0.256 | 0.245 | 0.238 | 0.384 |
8 | 0.299 | 0.298 | 0.291 | 0.285 | 0.278 | 0.271 | 0.264 | 0.258 | 0.251 | 0.244 |
9 | 0.450 | 0.439 | 0.428 | 0.417 | 0.421 | 0.417 | 0.412 | 0.408 | 0.411 | 0.405 |
10 | 0.352 | 0.245 | 0.352 | 0.259 | 0.230 | 0.289 | 0.215 | 0.380 | 0.344 | 0.260 |
11 | 0.361 | 0.353 | 0.345 | 0.336 | 0.327 | 0.319 | 0.310 | 0.302 | 0.293 | 0.285 |
12 | 0.528 | 0.405 | 0.521 | 0.521 | 0.359 | 0.359 | 0.365 | 0.359 | 0.359 | 0.359 |
13 | INF | 0.197 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 | 0.164 | 0.159 |
14 | 0.387 | 0.378 | 0.369 | 0.427 | 0.355 | 0.358 | 0.350 | 0.341 | 0.332 | 0.312 |
15 | 0.454 | 0.444 | 0.433 | 0.513 | 0.412 | 0.405 | 0.393 | 0.382 | 0.372 | 0.361 |
16 | 0.303 | 0.296 | 0.289 | 0.282 | 0.275 | 0.267 | 0.260 | 0.253 | 0.246 | 0.277 |
17 | 0.405 | 0.387 | 0.378 | 0.377 | 0.358 | 0.365 | 0.339 | 0.329 | 0.319 | 0.310 |
18 | 0.466 | 0.430 | 0.427 | 0.542 | 0.432 | 0.564 | 0.380 | 0.385 | 0.352 | 0.346 |
19 | 0.471 | 0.467 | 0.467 | 0.499 | 0.462 | 0.450 | 0.438 | 0.458 | 0.414 | 0.401 |
20 | 0.270 | 0.406 | 0.406 | 0.399 | 0.481 | 0.332 | 0.332 | 0.486 | 0.350 | 0.358 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 |
2 | 0.177 | 0.213 | 0.208 | 0.160 | 0.185 | 0.194 | 0.189 | 0.189 | 0.189 | 0.189 |
3 | 0.172 | 0.166 | 0.161 | 0.155 | 0.150 | 0.149 | 0.147 | 0.143 | 0.143 | 0.143 |
4 | 0.126 | 0.121 | 0.117 | 0.112 | 0.108 | 0.103 | 0.099 | 0.099 | 0.099 | 0.099 |
5 | 0.234 | 0.226 | 0.259 | 0.253 | 0.204 | 0.197 | 0.190 | 0.190 | 0.190 | 0.190 |
6 | 0.192 | 0.186 | 0.196 | 0.174 | 0.168 | 0.162 | 0.157 | 0.157 | 0.157 | 0.157 |
7 | 0.256 | 0.256 | 0.382 | 0.260 | 0.257 | 0.254 | 0.249 | 0.249 | 0.249 | 0.249 |
8 | 0.237 | 0.231 | 0.224 | 0.217 | 0.210 | 0.202 | 0.197 | 0.195 | 0.195 | 0.195 |
9 | 0.405 | 0.382 | 0.380 | 0.417 | 0.329 | 0.358 | 0.359 | 0.358 | 0.357 | 0.357 |
10 | 0.260 | 0.421 | 0.258 | 0.427 | 0.260 | 0.268 | 0.364 | 0.363 | 0.363 | 0.363 |
11 | 0.276 | 0.267 | 0.259 | 0.250 | 0.241 | 0.232 | 0.223 | 0.224 | 0.223 | 0.223 |
12 | 0.359 | 0.359 | 0.362 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 |
13 | 0.154 | 0.153 | 0.144 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 |
14 | 0.315 | 0.293 | 0.285 | 0.284 | 0.276 | 0.268 | 0.263 | 0.260 | 0.257 | 0.256 |
15 | 0.349 | 0.341 | 0.332 | 0.330 | 0.322 | 0.314 | 0.306 | 0.306 | 0.305 | 0.305 |
16 | 0.231 | 0.260 | 0.267 | 0.258 | 0.249 | 0.226 | 0.219 | 0.219 | 0.218 | 0.218 |
17 | 0.304 | 0.307 | 0.293 | 0.284 | 0.275 | 0.274 | 0.269 | 0.264 | 0.261 | 0.260 |
18 | 0.351 | 0.379 | 0.355 | 0.347 | 0.355 | 0.310 | 0.304 | 0.305 | 0.304 | 0.304 |
19 | 0.389 | 0.377 | 0.415 | 0.358 | 0.377 | 0.365 | 0.356 | 0.356 | 0.356 | 0.356 |
20 | 0.350 | 0.350 | 0.626 | 0.558 | 0.553 | 0.543 | 0.540 | 0.537 | 0.534 | 0.534 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.095 | 0.090 | 0.086 | 0.081 | 0.076 | 0.072 | 0.068 | 0.064 | 0.060 | 0.057 |
2 | 0.086 | 0.082 | 0.078 | 0.074 | 0.070 | 0.067 | 0.063 | 0.059 | 0.056 | 0.053 |
3 | 0.119 | 0.114 | 0.108 | 0.103 | 0.098 | 0.092 | 0.088 | 0.083 | 0.078 | 0.073 |
4 | INF | INF | INF | 0.062 | 0.059 | 0.056 | 0.055 | 0.054 | 0.051 | 0.048 |
5 | 0.176 | 0.169 | 0.162 | 0.155 | 0.148 | 0.141 | 0.115 | 0.109 | 0.102 | 0.115 |
6 | 0.120 | 0.109 | 0.110 | 0.102 | 0.100 | 0.089 | 0.084 | 0.079 | 0.075 | 0.075 |
7 | 0.136 | 0.125 | 0.122 | 0.117 | 0.111 | 0.120 | 0.101 | 0.094 | 0.089 | 0.139 |
8 | 0.163 | 0.159 | 0.151 | 0.144 | 0.137 | 0.131 | 0.124 | 0.118 | 0.112 | 0.106 |
9 | 0.189 | 0.180 | 0.171 | 0.163 | 0.160 | 0.154 | 0.148 | 0.143 | 0.140 | 0.134 |
10 | 0.124 | 0.084 | 0.118 | 0.084 | 0.073 | 0.089 | 0.065 | 0.111 | 0.098 | 0.072 |
11 | 0.190 | 0.181 | 0.173 | 0.164 | 0.155 | 0.148 | 0.140 | 0.132 | 0.125 | 0.118 |
12 | 0.199 | 0.149 | 0.187 | 0.182 | 0.122 | 0.119 | 0.118 | 0.112 | 0.109 | 0.106 |
13 | INF | 0.103 | 0.079 | 0.077 | 0.075 | 0.083 | 0.079 | 0.074 | 0.070 | 0.066 |
14 | 0.223 | 0.213 | 0.148 | 0.167 | 0.135 | 0.132 | 0.126 | 0.119 | 0.113 | 0.103 |
15 | 0.148 | 0.141 | 0.134 | 0.155 | 0.122 | 0.116 | 0.110 | 0.104 | 0.098 | 0.092 |
16 | INF | INF | 0.145 | 0.138 | 0.131 | 0.123 | 0.117 | 0.111 | 0.105 | 0.114 |
17 | 0.213 | 0.198 | 0.189 | 0.184 | 0.170 | 0.169 | 0.153 | 0.144 | 0.136 | 0.128 |
18 | INF | 0.113 | 0.109 | 0.136 | 0.105 | 0.133 | 0.087 | 0.087 | 0.076 | 0.073 |
19 | INF | 0.165 | 0.165 | 0.188 | 0.163 | 0.159 | 0.153 | 0.154 | 0.147 | 0.143 |
20 | 0.095 | 0.139 | 0.135 | 0.128 | 0.152 | 0.102 | 0.098 | 0.152 | 0.165 | 0.169 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.054 | 0.052 | 0.050 | 0.049 | 0.047 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
2 | 0.050 | 0.058 | 0.055 | 0.041 | 0.046 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
3 | 0.069 | 0.064 | 0.060 | 0.056 | 0.053 | 0.050 | 0.048 | 0.046 | 0.046 | 0.046 |
4 | 0.044 | 0.041 | 0.039 | 0.036 | 0.033 | 0.031 | 0.028 | 0.028 | 0.028 | 0.028 |
5 | 0.091 | 0.085 | 0.094 | 0.089 | 0.069 | 0.065 | 0.060 | 0.060 | 0.060 | 0.060 |
6 | 0.066 | 0.062 | 0.064 | 0.054 | 0.051 | 0.047 | 0.044 | 0.044 | 0.044 | 0.044 |
7 | 0.090 | 0.087 | 0.126 | 0.083 | 0.079 | 0.075 | 0.071 | 0.071 | 0.071 | 0.071 |
8 | 0.101 | 0.096 | 0.090 | 0.085 | 0.080 | 0.074 | 0.072 | 0.070 | 0.070 | 0.070 |
9 | 0.130 | 0.118 | 0.114 | 0.121 | 0.092 | 0.097 | 0.094 | 0.093 | 0.093 | 0.093 |
10 | 0.069 | 0.109 | 0.065 | 0.103 | 0.061 | 0.060 | 0.079 | 0.079 | 0.079 | 0.079 |
11 | 0.110 | 0.104 | 0.097 | 0.091 | 0.084 | 0.078 | 0.073 | 0.073 | 0.072 | 0.072 |
12 | 0.102 | 0.099 | 0.096 | 0.092 | 0.089 | 0.085 | 0.084 | 0.082 | 0.082 | 0.082 |
13 | 0.062 | 0.059 | 0.054 | 0.055 | 0.052 | 0.050 | 0.048 | 0.048 | 0.048 | 0.048 |
14 | 0.139 | 0.125 | 0.117 | 0.113 | 0.084 | 0.082 | 0.080 | 0.080 | 0.079 | 0.078 |
15 | 0.141 | 0.133 | 0.125 | 0.121 | 0.114 | 0.107 | 0.101 | 0.100 | 0.100 | 0.100 |
16 | 0.092 | 0.101 | 0.100 | 0.094 | 0.087 | 0.076 | 0.071 | 0.071 | 0.071 | 0.071 |
17 | 0.122 | 0.119 | 0.110 | 0.103 | 0.115 | 0.093 | 0.091 | 0.087 | 0.085 | 0.085 |
18 | 0.072 | 0.075 | 0.069 | 0.065 | 0.064 | 0.054 | 0.051 | 0.051 | 0.051 | 0.051 |
19 | 0.119 | 0.111 | 0.118 | 0.099 | 0.101 | 0.146 | 0.138 | 0.138 | 0.138 | 0.138 |
20 | 0.103 | 0.100 | 0.175 | 0.148 | 0.161 | 0.138 | 0.133 | 0.131 | 0.130 | 0.130 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.282 | 0.275 | 0.269 | 0.262 | 0.255 | 0.248 | 0.242 | 0.235 | 0.228 | 0.222 |
2 | INF | 0.205 | 0.199 | 0.194 | 0.189 | 0.184 | 0.179 | 0.174 | 0.170 | 0.165 |
3 | 0.383 | 0.374 | 0.365 | 0.355 | 0.346 | 0.337 | 0.327 | 0.318 | 0.309 | 0.300 |
4 | 0.308 | 0.301 | 0.294 | 0.286 | 0.279 | 0.272 | 0.264 | 0.257 | 0.239 | 0.242 |
5 | 0.307 | 0.307 | 0.320 | 0.304 | 0.296 | 0.287 | 0.278 | 0.270 | 0.261 | 0.252 |
6 | 0.253 | 0.247 | 0.241 | 0.235 | 0.231 | 0.225 | 0.218 | 0.212 | 0.205 | 0.199 |
7 | 0.376 | 0.367 | 0.358 | 0.349 | 0.340 | 0.331 | 0.322 | 0.313 | 0.304 | 0.295 |
8 | 0.225 | 0.180 | 0.176 | 0.172 | 0.167 | 0.198 | 0.161 | 0.161 | 0.161 | 0.177 |
9 | 0.260 | 0.254 | 0.248 | 0.242 | 0.236 | 0.230 | 0.223 | 0.217 | 0.211 | 0.205 |
10 | 0.239 | 0.233 | 0.227 | 0.222 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 |
11 | 0.309 | 0.349 | 0.340 | 0.332 | 0.323 | 0.314 | 0.306 | 0.297 | 0.288 | 0.280 |
12 | 0.253 | 0.247 | 0.241 | 0.235 | 0.229 | 0.223 | 0.217 | 0.211 | 0.205 | 0.199 |
13 | 0.215 | 0.210 | 0.205 | 0.200 | 0.195 | 0.190 | 0.184 | 0.179 | 0.174 | 0.169 |
14 | 0.285 | 0.285 | 0.285 | 0.301 | 0.292 | 0.284 | 0.284 | 0.284 | 0.284 | 0.284 |
15 | 0.322 | 0.314 | 0.307 | 0.299 | 0.291 | 0.284 | 0.276 | 0.268 | 0.261 | 0.253 |
16 | 0.373 | 0.364 | 0.355 | 0.346 | 0.275 | 0.328 | 0.320 | 0.311 | 0.302 | 0.293 |
17 | 0.439 | 0.431 | 0.416 | 0.407 | 0.382 | 0.374 | 0.366 | 0.358 | 0.350 | 0.342 |
18 | 0.213 | 0.208 | 0.203 | 0.198 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 |
19 | 0.312 | 0.304 | 0.297 | 0.290 | 0.286 | 0.284 | 0.281 | 0.278 | 0.278 | 0.278 |
20 | 0.324 | 0.317 | 0.319 | 0.270 | 0.255 | 0.314 | 0.290 | 0.240 | 0.232 | 0.225 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.215 | 0.208 | 0.201 | 0.195 | 0.188 | 0.181 | 0.175 | 0.175 | 0.175 | 0.175 |
2 | 0.160 | 0.154 | 0.149 | 0.144 | 0.140 | 0.135 | 0.132 | 0.130 | 0.130 | 0.130 |
3 | 0.291 | 0.282 | 0.273 | 0.264 | 0.255 | 0.246 | 0.239 | 0.236 | 0.236 | 0.236 |
4 | 0.235 | 0.228 | 0.220 | 0.213 | 0.206 | 0.198 | 0.193 | 0.192 | 0.191 | 0.191 |
5 | 0.244 | 0.235 | 0.227 | 0.219 | 0.211 | 0.204 | 0.196 | 0.196 | 0.196 | 0.196 |
6 | 0.192 | 0.186 | 0.180 | 0.174 | 0.168 | 0.162 | 0.156 | 0.156 | 0.156 | 0.156 |
7 | 0.286 | 0.278 | 0.269 | 0.260 | 0.251 | 0.242 | 0.234 | 0.234 | 0.233 | 0.233 |
8 | 0.161 | 0.161 | 0.197 | 0.156 | 0.150 | 0.148 | 0.148 | 0.148 | 0.148 | 0.148 |
9 | 0.199 | 0.193 | 0.238 | 0.180 | 0.174 | 0.214 | 0.206 | 0.206 | 0.206 | 0.206 |
10 | 0.182 | 0.176 | 0.170 | 0.165 | 0.159 | 0.153 | 0.148 | 0.148 | 0.148 | 0.148 |
11 | 0.271 | 0.263 | 0.254 | 0.246 | 0.237 | 0.229 | 0.220 | 0.220 | 0.220 | 0.220 |
12 | 0.193 | 0.187 | 0.181 | 0.175 | 0.169 | 0.163 | 0.159 | 0.157 | 0.157 | 0.157 |
13 | 0.165 | 0.165 | 0.166 | 0.163 | 0.153 | 0.148 | 0.142 | 0.142 | 0.142 | 0.142 |
14 | 0.284 | 0.284 | 0.283 | 0.274 | 0.264 | 0.254 | 0.245 | 0.245 | 0.245 | 0.245 |
15 | 0.245 | 0.243 | 0.230 | 0.222 | 0.215 | 0.207 | 0.254 | 0.252 | 0.252 | 0.252 |
16 | 0.284 | 0.275 | 0.269 | 0.257 | 0.249 | 0.195 | 0.207 | 0.207 | 0.207 | 0.207 |
17 | 0.334 | 0.305 | 0.286 | 0.305 | 0.276 | 0.272 | 0.251 | 0.249 | 0.249 | 0.249 |
18 | 0.162 | 0.157 | 0.152 | 0.150 | 0.149 | 0.142 | 0.137 | 0.137 | 0.137 | 0.137 |
19 | 0.278 | 0.302 | 0.293 | 0.283 | 0.273 | 0.263 | 0.256 | 0.255 | 0.254 | 0.254 |
20 | 0.219 | 0.239 | 0.207 | 0.209 | 0.202 | 0.186 | 0.185 | 0.184 | 0.184 | 0.184 |
P= 0.58 | f01s | f02s | f0s=f01s*f02s | foc-S |
DMUs | Leader | Follower | leader * follower | Centralized |
1 | 0.386 | 0.209 | 0.081 | 0.262 |
2 | 0.344 | 0.216 | 0.074 | 0.194 |
3 | 0.487 | 0.211 | 0.103 | 0.355 |
4 | 0.430 | 0.144 | 0.062 | 0.286 |
5 | 0.474 | 0.327 | 0.155 | 0.304 |
6 | 0.421 | 0.242 | 0.102 | 0.235 |
7 | 0.429 | 0.273 | 0.117 | 0.349 |
8 | 0.507 | 0.285 | 0.144 | 0.172 |
9 | 0.390 | 0.417 | 0.163 | 0.242 |
10 | 0.326 | 0.259 | 0.084 | 0.222 |
11 | 0.488 | 0.336 | 0.164 | 0.332 |
12 | 0.350 | 0.521 | 0.182 | 0.235 |
13 | 0.411 | 0.188 | 0.077 | 0.200 |
14 | 0.390 | 0.427 | 0.167 | 0.301 |
15 | 0.302 | 0.513 | 0.155 | 0.299 |
16 | 0.488 | 0.282 | 0.138 | 0.346 |
17 | 0.488 | 0.377 | 0.184 | 0.407 |
18 | 0.250 | 0.542 | 0.136 | 0.198 |
19 | 0.376 | 0.499 | 0.188 | 0.290 |
20 | 0.320 | 0.399 | 0.128 | 0.270 |
P= 0.58 | Expected | scores | p-robust | centralized |
DMUs | EV | Reg | EV | Reg |
1 | 0.562 | 0.1880 | 0.262 | 0.0809 |
2 | 0.353 | 0.1345 | 0.194 | 0.1295 |
3 | 0.462 | 0.3590 | 0.355 | 0.3430 |
4 | 0.353 | 0.3298 | 0.286 | 0.2968 |
5 | 0.667 | 0.0158 | 0.304 | 0.0043 |
6 | 0.562 | 0.1090 | 0.235 | 0.0230 |
7 | 0.500 | 0.2815 | 0.349 | 0.2505 |
8 | 0.400 | 0.1275 | 0.172 | 0.0845 |
9 | 0.353 | 0.4393 | 0.242 | 0.1413 |
10 | 0.450 | 0.1060 | 0.222 | 0.0950 |
11 | 0.462 | 0.2650 | 0.332 | 0.2450 |
12 | 0.450 | 0.1353 | 0.235 | 0.1253 |
13 | 0.400 | 0.1010 | 0.200 | 0.1010 |
14 | 0.353 | 0.5048 | 0.301 | 0.4868 |
15 | 0.667 | 0.2170 | 0.299 | 0.0100 |
16 | 0.462 | 0.2538 | 0.346 | 0.2268 |
17 | 0.545 | 0.1841 | 0.407 | 0.1840 |
18 | 0.400 | 0.0948 | 0.137 | 0.0948 |
19 | 0.400 | 0.5753 | 0.254 | 0.0893 |
20 | 0.562 | 0.2473 | 0.184 | 0.0908 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.2108 | 0.1920 | 0.1960 | 0.2182 | 0.2273 | 0.2000 | 0.2017 | 0. 1624 |
2 | 0.1555 | 0.1364 | 0.1383 | 0.1570 | 0.1654 | 0.1402 | 0.1471 | 0.1162 |
3 | 0.3695 | 0.3610 | 0.3630 | 0.3734 | 0.3776 | 0.3650 | 0.3653 | 0.3467 |
4 | 0.3465 | 0.3332 | 0.3367 | 0.3535 | 0.3602 | 0.3401 | 0.3398 | 0.3094 |
5 | 0.0220 | 0.0068 | 0.0094 | 0.0261 | 0.0332 | 0.0119 | 0.0149 | 0.0181 |
6 | 0.1288 | 0.1120 | 0.1150 | 0.1338 | 0.1417 | 0.1180 | 0.1209 | 0. 0882 |
7 | 0.2928 | 0.2834 | 0.2853 | 0.2962 | 0.3007 | 0.2872 | 0.2883 | 0.2691 |
8 | 0.1465 | 0.1292 | 0.1309 | 0.1478 | 0.1554 | 0.1326 | 0.1389 | 0.1110 |
9 | 0.4430 | 0.4392 | 0.4392 | 0.4421 | 0.4436 | 0.4391 | 0.4415 | 0.4372 |
10 | 0.1263 | 0.1084 | 0.1108 | 0.1294 | 0.1375 | 0.1132 | 0.1182 | 0.0867 |
11 | 0.2783 | 0.2670 | 0.2690 | 0.2816 | 0.2869 | 0.2710 | 0.2730 | 0.2511 |
12 | 0.1570 | 0.1388 | 0.1424 | 0.1633 | 0.1720 | 0.1459 | 0.1483 | 0.1116 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.5170 | 0.5082 | 0.5117 | 0.5249 | 0.5298 | 0.5151 | 0.5121 | 0.4871 |
15 | 0.2278 | 0.2180 | 0.2190 | 0.2286 | 0.2329 | 0.2200 | 0.2235 | 0.2076 |
16 | 0.2660 | 0.2552 | 0.2567 | 0.2679 | 0.2728 | 0.2581 | 0.2611 | 0.2421 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.5693 | 0.5752 | 0.5752 | 0.5703 | 0.5679 | 0.5751 | 0.5717 | 0.5790 |
20 | 0.1095 | 0.0934 | 0.0961 | 0.1137 | 0.1212 | 0.0987 | 0.1020 | 0.0716 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.1118 | 0.0930 | 0.0970 | 0.1192 | 0.1283 | 0.1010 | 0.1027 | 0.0634 |
2 | 0.1505 | 0.1314 | 0.1333 | 0.1520 | 0.1604 | 0.1352 | 0.1421 | 0.1112 |
3 | 0.3535 | 0.3450 | 0.3470 | 0.3574 | 0.3616 | 0.3490 | 0.3493 | 0.3307 |
4 | 0.3135 | 0.3002 | 0.3037 | 0.3205 | 0.3272 | 0.3071 | 0.3068 | 0.2764 |
5 | 0.0180 | 0.0028 | 0.0054 | 0.0221 | 0.0292 | 0.0079 | 0.0109 | 0.0141 |
6 | 0.0428 | 0.0260 | 0.0290 | 0.0478 | 0.0557 | 0.0320 | 0.0349 | 0.0021 |
7 | 0.2618 | 0.2524 | 0.2543 | 0.2652 | 0.2697 | 0.2562 | 0.2573 | 0.2381 |
8 | 0.1035 | 0.0862 | 0.0879 | 0.1048 | 0.1124 | 0.0896 | 0.0959 | 0.0680 |
9 | 0.1450 | 0.1412 | 0.1412 | 0.1441 | 0.1456 | 0.1411 | 0.1435 | 0.1392 |
10 | 0.1153 | 0.0974 | 0.0998 | 0.1184 | 0.1265 | 0.1022 | 0.1072 | 0.0757 |
11 | 0.2583 | 0.2470 | 0.2490 | 0.2616 | 0.2669 | 0.2510 | 0.2530 | 0.2311 |
12 | 0.1470 | 0.1288 | 0.1324 | 0.1533 | 0.1620 | 0.1359 | 0.1383 | 0.1016 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.4990 | 0.4902 | 0.4937 | 0.5069 | 0.5118 | 0.4971 | 0.4941 | 0.4691 |
15 | 0.0208 | 0.0110 | 0.0120 | 0.0216 | 0.0259 | 0.0130 | 0.0165 | 0.0005 |
16 | 0.2390 | 0.2282 | 0.2297 | 0.2409 | 0.2458 | 0.2311 | 0.2341 | 0.2151 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.0833 | 0.0892 | 0.0892 | 0.0843 | 0.0819 | 0.0891 | 0.0857 | 0.0930 |
20 | 0.0185 | 0.0024 | 0.0051 | 0.0227 | 0.0302 | 0.0077 | 0.0110 | 0.0195 |
Inputs | Intermediates | Outputs | |||
x1 | Operational costs | z1 | Checking deposits | y1 | Return on assets |
x2 | Capital costs | z2 | Saving deposits | y2 | Earnings quality |
x3 | Financing costs | z3 | The number of customers | y3 | Interest income |
x1 | x2 | x3 | y1 | ||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | |||
1 | 0.47 | 0.84 | 0.66 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.22 | 0.24 | 0.23 | |||
2 | 0.74 | 0.53 | 0.64 | 0.67 | 0.67 | 0.78 | 0.90 | 0.75 | 0.71 | 0.13 | 0.41 | 0.27 | |||
3 | 0.58 | 0.69 | 0.63 | 1.00 | 0.73 | 0.78 | 0.82 | 0.50 | 0.75 | 0.77 | 0.07 | 0.42 | |||
4 | 0.70 | 0.57 | 0.63 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.89 | 0.06 | 0.47 | |||
5 | 0.77 | 0.52 | 0.64 | 1.00 | 1.00 | 0.80 | 0.60 | 0.50 | 0.75 | 0.58 | 0.09 | 0.34 | |||
6 | 0.60 | 0.66 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.69 | 0.08 | 0.38 | |||
7 | 0.40 | 1.00 | 0.70 | 0.50 | 0.75 | 0.78 | 0.80 | 1.00 | 0.75 | 0.13 | 0.39 | 0.26 | |||
8 | 0.59 | 0.68 | 0.63 | 0.67 | 0.69 | 0.78 | 0.87 | 0.75 | 0.71 | 0.38 | 0.14 | 0.26 | |||
9 | 0.60 | 0.67 | 0.63 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.11 | 0.45 | 0.28 | |||
10 | 0.44 | 0.91 | 0.67 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.06 | 0.90 | 0.48 | |||
11 | 0.57 | 0.69 | 0.63 | 0.67 | 0.82 | 0.78 | 0.73 | 0.75 | 0.71 | 0.15 | 0.35 | 0.25 | |||
12 | 1.00 | 0.40 | 0.70 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.86 | 0.06 | 0.46 | |||
13 | 0.62 | 0.64 | 0.63 | 0.67 | 0.78 | 0.78 | 0.77 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
14 | 0.65 | 0.61 | 0.63 | 0.83 | 0.60 | 0.80 | 1.00 | 0.60 | 0.72 | 0.10 | 0.54 | 0.32 | |||
15 | 0.72 | 0.55 | 0.64 | 0.83 | 0.77 | 0.78 | 0.78 | 0.60 | 0.72 | 0.71 | 0.07 | 0.39 | |||
16 | 0.78 | 0.51 | 0.65 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.05 | 1.00 | 0.53 | |||
17 | 0.81 | 0.49 | 0.65 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 1.00 | 0.05 | 0.53 | |||
18 | 0.64 | 0.62 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
19 | 0.47 | 0.84 | 0.66 | 0.83 | 0.72 | 0.78 | 0.83 | 0.60 | 0.72 | 0.10 | 0.49 | 0.30 | |||
20 | 0.76 | 0.52 | 0.64 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.31 | 0.17 | 0.24 |
y2 | y3 | z1 | z2 | z3 | |||||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||||
1 | 0.50 | 0.71 | 0.60 | 0.37 | 0.78 | 0.58 | 0.47 | 0.68 | 0.57 | 0.36 | 0.57 | 0.47 | 1.00 | 0.63 | 0.82 | ||||
2 | 0.73 | 0.48 | 0.61 | 0.33 | 0.88 | 0.61 | 0.34 | 0.92 | 0.63 | 0.33 | 0.63 | 0.48 | 0.90 | 0.71 | 0.80 | ||||
3 | 0.51 | 0.69 | 0.60 | 0.58 | 0.50 | 0.54 | 0.62 | 0.51 | 0.56 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
4 | 0.52 | 0.68 | 0.60 | 0.64 | 0.46 | 0.55 | 0.71 | 0.44 | 0.58 | 0.41 | 0.50 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
5 | 0.74 | 0.48 | 0.61 | 1.00 | 0.29 | 0.65 | 0.90 | 0.35 | 0.63 | 0.52 | 0.40 | 0.46 | 0.84 | 0.75 | 0.80 | ||||
6 | 0.61 | 0.58 | 0.59 | 0.68 | 0.43 | 0.55 | 0.58 | 0.54 | 0.56 | 0.21 | 1.00 | 0.60 | 0.87 | 0.73 | 0.80 | ||||
7 | 0.35 | 1.00 | 0.68 | 0.29 | 1.00 | 0.65 | 0.32 | 1.00 | 0.66 | 0.29 | 0.71 | 0.50 | 0.74 | 0.86 | 0.80 | ||||
8 | 0.62 | 0.57 | 0.59 | 0.87 | 0.34 | 0.60 | 0.83 | 0.38 | 0.60 | 0.27 | 0.76 | 0.51 | 0.63 | 1.00 | 0.82 | ||||
9 | 0.60 | 0.58 | 0.59 | 0.43 | 0.68 | 0.56 | 0.51 | 0.61 | 0.56 | 0.46 | 0.45 | 0.45 | 0.90 | 0.71 | 0.80 | ||||
10 | 0.55 | 0.64 | 0.59 | 0.43 | 0.67 | 0.55 | 0.48 | 0.66 | 0.57 | 0.38 | 0.55 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
11 | 0.59 | 0.60 | 0.59 | 0.55 | 0.54 | 0.54 | 0.55 | 0.57 | 0.56 | 0.34 | 0.61 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
12 | 1.00 | 0.35 | 0.68 | 0.68 | 0.43 | 0.56 | 0.76 | 0.41 | 0.59 | 0.77 | 0.27 | 0.52 | 0.95 | 0.67 | 0.81 | ||||
13 | 0.64 | 0.55 | 0.60 | 0.49 | 0.60 | 0.54 | 0.59 | 0.54 | 0.56 | 0.39 | 0.53 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
14 | 0.86 | 0.41 | 0.63 | 0.62 | 0.47 | 0.55 | 0.75 | 0.42 | 0.58 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
15 | 0.68 | 0.52 | 0.60 | 0.89 | 0.33 | 0.61 | 1.00 | 0.32 | 0.66 | 0.28 | 0.74 | 0.51 | 0.79 | 0.80 | 0.80 | ||||
16 | 0.79 | 0.45 | 0.62 | 0.42 | 0.70 | 0.56 | 0.59 | 0.53 | 0.56 | 0.30 | 0.70 | 0.50 | 1.00 | 0.63 | 0.82 | ||||
17 | 0.73 | 0.48 | 0.61 | 0.49 | 0.60 | 0.54 | 0.56 | 0.57 | 0.56 | 0.61 | 0.33 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
18 | 0.65 | 0.54 | 0.60 | 0.64 | 0.46 | 0.55 | 0.60 | 0.52 | 0.56 | 0.49 | 0.42 | 0.45 | 0.76 | 0.83 | 0.80 | ||||
19 | 0.52 | 0.68 | 0.60 | 0.35 | 0.83 | 0.59 | 0.44 | 0.72 | 0.58 | 0.24 | 0.87 | 0.55 | 0.68 | 0.92 | 0.80 | ||||
20 | 0.79 | 0.45 | 0.62 | 0.56 | 0.53 | 0.54 | 0.64 | 0.49 | 0.57 | 1.00 | 0.21 | 0.60 | 0.74 | 0.86 | 0.80 |
Leader | Follower | Centralized | |||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||
1 | 0.595 | 0.761 | 0.846 | 0.778 | 0.763 | 0.774 | 0.500 | 0.671 | 0.762 | ||
2 | 0.521 | 0.655 | 0.746 | 0.700 | 0.756 | 0.779 | 0.375 | 0.497 | 0.581 | ||
3 | 1.000 | 1.000 | 1.000 | 0.724 | 0.814 | 0.860 | 0.749 | 0.831 | 0.873 | ||
4 | 0.822 | 0.903 | 0.938 | 0.489 | 0.561 | 0.624 | 0.564 | 0.700 | 0.767 | ||
5 | 1.000 | 1.000 | 1.000 | 0.554 | 0.680 | 0.743 | 0.562 | 0.684 | 0.755 | ||
6 | 0.627 | 0.726 | 0.784 | 0.657 | 0.775 | 0.811 | 0.461 | 0.600 | 0.679 | ||
7 | 0.650 | 0.720 | 0.767 | 1.000 | 1.000 | 1.000 | 0.708 | 0.791 | 0.836 | ||
8 | 1.000 | 1.000 | 1.000 | 0.426 | 0.536 | 0.612 | 0.426 | 0.536 | 0.612 | ||
9 | 1.000 | 1.000 | 1.000 | 0.778 | 0.789 | 0.802 | 0.778 | 0.792 | 0.807 | ||
10 | 0.447 | 0.575 | 0.655 | 0.984 | 0.988 | 0.992 | 0.439 | 0.568 | 0.649 | ||
11 | 1.000 | 1.000 | 1.000 | 0.644 | 0.737 | 0.790 | 0.644 | 0.737 | 0.790 | ||
12 | 0.475 | 0.618 | 0.700 | 0.934 | 0.965 | 0.970 | 0.445 | 0.603 | 0.690 | ||
13 | 1.000 | 1.000 | 1.000 | 0.369 | 0.503 | 0.590 | 0.383 | 0.512 | 0.597 | ||
14 | 1.000 | 1.000 | 1.000 | 0.625 | 0.723 | 0.776 | 0.757 | 0.875 | 0.924 | ||
15 | 0.541 | 0.615 | 0.675 | 0.995 | 0.987 | 0.986 | 0.704 | 0.767 | 0.810 | ||
16 | 1.000 | 1.000 | 1.000 | 0.580 | 0.672 | 0.731 | 0.645 | 0.723 | 0.772 | ||
17 | 1.000 | 1.000 | 1.000 | 0.631 | 0.715 | 0.767 | 0.750 | 0.868 | 0.918 | ||
18 | 0.187 | 0.307 | 0.397 | 1.000 | 0.999 | 0.998 | 0.365 | 0.508 | 0.598 | ||
19 | 1.000 | 1.000 | 0.987 | 1.000 | 0.975 | 0.872 | 1.000 | 0.975 | 0.951 | ||
20 | 0.464 | 0.590 | 0.667 | 1.000 | 1.000 | 1.000 | 0.538 | 0.666 | 0.741 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.6 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.415 | 0.406 | 0.396 | 0.386 | 0.376 | 0.366 | 0.356 | 0.346 | 0.336 | 0.326 |
2 | 0.370 | 0.361 | 0.352 | 0.344 | 0.335 | 0.326 | 0.317 | 0.308 | 0.300 | 0.291 |
3 | 0.525 | 0.512 | 0.500 | 0.487 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.412 |
4 | 0.454 | 0.452 | 0.441 | 0.430 | 0.419 | 0.408 | 0.397 | 0.386 | 0.375 | 0.364 |
5 | 0.510 | 0.498 | 0.486 | 0.474 | 0.461 | 0.449 | 0.437 | 0.425 | 0.413 | 0.401 |
6 | 0.453 | 0.442 | 0.431 | 0.421 | 0.410 | 0.399 | 0.388 | 0.377 | 0.367 | 0.356 |
7 | 0.462 | 0.434 | 0.434 | 0.429 | 0.418 | 0.407 | 0.396 | 0.385 | 0.374 | 0.363 |
8 | 0.546 | 0.533 | 0.520 | 0.507 | 0.494 | 0.482 | 0.470 | 0.459 | 0.448 | 0.436 |
9 | 0.420 | 0.410 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
10 | 0.351 | 0.342 | 0.334 | 0.326 | 0.317 | 0.309 | 0.301 | 0.292 | 0.284 | 0.275 |
11 | 0.525 | 0.513 | 0.500 | 0.488 | 0.475 | 0.463 | 0.450 | 0.438 | 0.425 | 0.413 |
12 | 0.377 | 0.368 | 0.359 | 0.350 | 0.341 | 0.332 | 0.322 | 0.313 | 0.303 | 0.294 |
13 | 0.536 | 0.523 | 0.411 | 0.411 | 0.411 | 0.468 | 0.454 | 0.441 | 0.427 | 0.413 |
14 | 0.577 | 0.564 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
15 | 0.326 | 0.318 | 0.310 | 0.302 | 0.295 | 0.287 | 0.279 | 0.271 | 0.264 | 0.256 |
16 | INF | INF | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.438 | 0.425 | 0.412 |
17 | 0.525 | 0.512 | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.413 |
18 | INF | 0.262 | 0.256 | 0.250 | 0.242 | 0.236 | 0.229 | 0.225 | 0.217 | 0.211 |
19 | INF | 0.353 | 0.353 | 0.376 | 0.353 | 0.353 | 0.349 | 0.336 | 0.356 | 0.356 |
20 | 0.350 | 0.342 | 0.333 | 0.320 | 0.315 | 0.306 | 0.296 | 0.313 | 0.472 | 0.472 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.317 | 0.307 | 0.297 | 0.287 | 0.277 | 0.271 | 0.257 | 0.257 | 0.257 | 0.257 |
2 | 0.282 | 0.273 | 0.264 | 0.255 | 0.247 | 0.238 | 0.228 | 0.228 | 0.229 | 0.229 |
3 | 0.400 | 0.387 | 0.375 | 0.362 | 0.350 | 0.337 | 0.325 | 0.325 | 0.324 | 0.324 |
4 | 0.353 | 0.342 | 0.331 | 0.320 | 0.309 | 0.298 | 0.286 | 0.286 | 0.286 | 0.286 |
5 | 0.389 | 0.376 | 0.364 | 0.352 | 0.340 | 0.328 | 0.317 | 0.316 | 0.316 | 0.316 |
6 | 0.345 | 0.334 | 0.324 | 0.313 | 0.302 | 0.291 | 0.281 | 0.281 | 0.280 | 0.280 |
7 | 0.352 | 0.341 | 0.330 | 0.319 | 0.308 | 0.297 | 0.286 | 0.286 | 0.286 | 0.286 |
8 | 0.425 | 0.414 | 0.402 | 0.391 | 0.380 | 0.368 | 0.363 | 0.359 | 0.357 | 0.357 |
9 | 0.320 | 0.310 | 0.300 | 0.290 | 0.280 | 0.270 | 0.262 | 0.261 | 0.260 | 0.260 |
10 | 0.267 | 0.259 | 0.250 | 0.242 | 0.234 | 0.225 | 0.217 | 0.217 | 0.217 | 0.217 |
11 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.326 | 0.326 | 0.325 | 0.325 |
12 | 0.285 | 0.275 | 0.266 | 0.257 | 0.247 | 0.238 | 0.234 | 0.228 | 0.228 | 0.228 |
13 | 0.400 | 0.386 | 0.372 | 0.359 | 0.345 | 0.331 | 0.318 | 0.318 | 0.318 | 0.318 |
14 | 0.440 | 0.426 | 0.412 | 0.399 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 |
15 | 0.404 | 0.391 | 0.378 | 0.366 | 0.353 | 0.340 | 0.329 | 0.328 | 0.328 | 0.328 |
16 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.325 | 0.325 | 0.325 | 0.325 |
17 | 0.400 | 0.388 | 0.375 | 0.363 | 0.417 | 0.338 | 0.337 | 0.328 | 0.325 | 0.325 |
18 | 0.205 | 0.199 | 0.193 | 0.187 | 0.180 | 0.174 | 0.167 | 0.167 | 0.167 | 0.167 |
19 | 0.305 | 0.294 | 0.285 | 0.277 | 0.268 | 0.401 | 0.389 | 0.389 | 0.389 | 0.389 |
20 | 0.294 | 0.287 | 0.280 | 0.265 | 0.267 | 0.255 | 0.246 | 0.244 | 0.243 | 0.243 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.229 | 0.222 | 0.216 | 0.209 | 0.202 | 0.196 | 0.190 | 0.185 | 0.180 | 0.174 |
2 | 0.232 | 0.227 | 0.221 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 | 0.182 |
3 | 0.227 | 0.222 | 0.216 | 0.211 | 0.206 | 0.200 | 0.195 | 0.189 | 0.183 | 0.178 |
4 | INF | INF | INF | 0.144 | 0.141 | 0.137 | 0.139 | 0.140 | 0.136 | 0.131 |
5 | 0.346 | 0.340 | 0.333 | 0.327 | 0.320 | 0.314 | 0.263 | 0.256 | 0.248 | 0.288 |
6 | 0.266 | 0.246 | 0.256 | 0.242 | 0.244 | 0.222 | 0.216 | 0.210 | 0.204 | 0.211 |
7 | 0.294 | 0.287 | 0.280 | 0.273 | 0.266 | 0.296 | 0.256 | 0.245 | 0.238 | 0.384 |
8 | 0.299 | 0.298 | 0.291 | 0.285 | 0.278 | 0.271 | 0.264 | 0.258 | 0.251 | 0.244 |
9 | 0.450 | 0.439 | 0.428 | 0.417 | 0.421 | 0.417 | 0.412 | 0.408 | 0.411 | 0.405 |
10 | 0.352 | 0.245 | 0.352 | 0.259 | 0.230 | 0.289 | 0.215 | 0.380 | 0.344 | 0.260 |
11 | 0.361 | 0.353 | 0.345 | 0.336 | 0.327 | 0.319 | 0.310 | 0.302 | 0.293 | 0.285 |
12 | 0.528 | 0.405 | 0.521 | 0.521 | 0.359 | 0.359 | 0.365 | 0.359 | 0.359 | 0.359 |
13 | INF | 0.197 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 | 0.164 | 0.159 |
14 | 0.387 | 0.378 | 0.369 | 0.427 | 0.355 | 0.358 | 0.350 | 0.341 | 0.332 | 0.312 |
15 | 0.454 | 0.444 | 0.433 | 0.513 | 0.412 | 0.405 | 0.393 | 0.382 | 0.372 | 0.361 |
16 | 0.303 | 0.296 | 0.289 | 0.282 | 0.275 | 0.267 | 0.260 | 0.253 | 0.246 | 0.277 |
17 | 0.405 | 0.387 | 0.378 | 0.377 | 0.358 | 0.365 | 0.339 | 0.329 | 0.319 | 0.310 |
18 | 0.466 | 0.430 | 0.427 | 0.542 | 0.432 | 0.564 | 0.380 | 0.385 | 0.352 | 0.346 |
19 | 0.471 | 0.467 | 0.467 | 0.499 | 0.462 | 0.450 | 0.438 | 0.458 | 0.414 | 0.401 |
20 | 0.270 | 0.406 | 0.406 | 0.399 | 0.481 | 0.332 | 0.332 | 0.486 | 0.350 | 0.358 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 |
2 | 0.177 | 0.213 | 0.208 | 0.160 | 0.185 | 0.194 | 0.189 | 0.189 | 0.189 | 0.189 |
3 | 0.172 | 0.166 | 0.161 | 0.155 | 0.150 | 0.149 | 0.147 | 0.143 | 0.143 | 0.143 |
4 | 0.126 | 0.121 | 0.117 | 0.112 | 0.108 | 0.103 | 0.099 | 0.099 | 0.099 | 0.099 |
5 | 0.234 | 0.226 | 0.259 | 0.253 | 0.204 | 0.197 | 0.190 | 0.190 | 0.190 | 0.190 |
6 | 0.192 | 0.186 | 0.196 | 0.174 | 0.168 | 0.162 | 0.157 | 0.157 | 0.157 | 0.157 |
7 | 0.256 | 0.256 | 0.382 | 0.260 | 0.257 | 0.254 | 0.249 | 0.249 | 0.249 | 0.249 |
8 | 0.237 | 0.231 | 0.224 | 0.217 | 0.210 | 0.202 | 0.197 | 0.195 | 0.195 | 0.195 |
9 | 0.405 | 0.382 | 0.380 | 0.417 | 0.329 | 0.358 | 0.359 | 0.358 | 0.357 | 0.357 |
10 | 0.260 | 0.421 | 0.258 | 0.427 | 0.260 | 0.268 | 0.364 | 0.363 | 0.363 | 0.363 |
11 | 0.276 | 0.267 | 0.259 | 0.250 | 0.241 | 0.232 | 0.223 | 0.224 | 0.223 | 0.223 |
12 | 0.359 | 0.359 | 0.362 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 |
13 | 0.154 | 0.153 | 0.144 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 |
14 | 0.315 | 0.293 | 0.285 | 0.284 | 0.276 | 0.268 | 0.263 | 0.260 | 0.257 | 0.256 |
15 | 0.349 | 0.341 | 0.332 | 0.330 | 0.322 | 0.314 | 0.306 | 0.306 | 0.305 | 0.305 |
16 | 0.231 | 0.260 | 0.267 | 0.258 | 0.249 | 0.226 | 0.219 | 0.219 | 0.218 | 0.218 |
17 | 0.304 | 0.307 | 0.293 | 0.284 | 0.275 | 0.274 | 0.269 | 0.264 | 0.261 | 0.260 |
18 | 0.351 | 0.379 | 0.355 | 0.347 | 0.355 | 0.310 | 0.304 | 0.305 | 0.304 | 0.304 |
19 | 0.389 | 0.377 | 0.415 | 0.358 | 0.377 | 0.365 | 0.356 | 0.356 | 0.356 | 0.356 |
20 | 0.350 | 0.350 | 0.626 | 0.558 | 0.553 | 0.543 | 0.540 | 0.537 | 0.534 | 0.534 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.095 | 0.090 | 0.086 | 0.081 | 0.076 | 0.072 | 0.068 | 0.064 | 0.060 | 0.057 |
2 | 0.086 | 0.082 | 0.078 | 0.074 | 0.070 | 0.067 | 0.063 | 0.059 | 0.056 | 0.053 |
3 | 0.119 | 0.114 | 0.108 | 0.103 | 0.098 | 0.092 | 0.088 | 0.083 | 0.078 | 0.073 |
4 | INF | INF | INF | 0.062 | 0.059 | 0.056 | 0.055 | 0.054 | 0.051 | 0.048 |
5 | 0.176 | 0.169 | 0.162 | 0.155 | 0.148 | 0.141 | 0.115 | 0.109 | 0.102 | 0.115 |
6 | 0.120 | 0.109 | 0.110 | 0.102 | 0.100 | 0.089 | 0.084 | 0.079 | 0.075 | 0.075 |
7 | 0.136 | 0.125 | 0.122 | 0.117 | 0.111 | 0.120 | 0.101 | 0.094 | 0.089 | 0.139 |
8 | 0.163 | 0.159 | 0.151 | 0.144 | 0.137 | 0.131 | 0.124 | 0.118 | 0.112 | 0.106 |
9 | 0.189 | 0.180 | 0.171 | 0.163 | 0.160 | 0.154 | 0.148 | 0.143 | 0.140 | 0.134 |
10 | 0.124 | 0.084 | 0.118 | 0.084 | 0.073 | 0.089 | 0.065 | 0.111 | 0.098 | 0.072 |
11 | 0.190 | 0.181 | 0.173 | 0.164 | 0.155 | 0.148 | 0.140 | 0.132 | 0.125 | 0.118 |
12 | 0.199 | 0.149 | 0.187 | 0.182 | 0.122 | 0.119 | 0.118 | 0.112 | 0.109 | 0.106 |
13 | INF | 0.103 | 0.079 | 0.077 | 0.075 | 0.083 | 0.079 | 0.074 | 0.070 | 0.066 |
14 | 0.223 | 0.213 | 0.148 | 0.167 | 0.135 | 0.132 | 0.126 | 0.119 | 0.113 | 0.103 |
15 | 0.148 | 0.141 | 0.134 | 0.155 | 0.122 | 0.116 | 0.110 | 0.104 | 0.098 | 0.092 |
16 | INF | INF | 0.145 | 0.138 | 0.131 | 0.123 | 0.117 | 0.111 | 0.105 | 0.114 |
17 | 0.213 | 0.198 | 0.189 | 0.184 | 0.170 | 0.169 | 0.153 | 0.144 | 0.136 | 0.128 |
18 | INF | 0.113 | 0.109 | 0.136 | 0.105 | 0.133 | 0.087 | 0.087 | 0.076 | 0.073 |
19 | INF | 0.165 | 0.165 | 0.188 | 0.163 | 0.159 | 0.153 | 0.154 | 0.147 | 0.143 |
20 | 0.095 | 0.139 | 0.135 | 0.128 | 0.152 | 0.102 | 0.098 | 0.152 | 0.165 | 0.169 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.054 | 0.052 | 0.050 | 0.049 | 0.047 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
2 | 0.050 | 0.058 | 0.055 | 0.041 | 0.046 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
3 | 0.069 | 0.064 | 0.060 | 0.056 | 0.053 | 0.050 | 0.048 | 0.046 | 0.046 | 0.046 |
4 | 0.044 | 0.041 | 0.039 | 0.036 | 0.033 | 0.031 | 0.028 | 0.028 | 0.028 | 0.028 |
5 | 0.091 | 0.085 | 0.094 | 0.089 | 0.069 | 0.065 | 0.060 | 0.060 | 0.060 | 0.060 |
6 | 0.066 | 0.062 | 0.064 | 0.054 | 0.051 | 0.047 | 0.044 | 0.044 | 0.044 | 0.044 |
7 | 0.090 | 0.087 | 0.126 | 0.083 | 0.079 | 0.075 | 0.071 | 0.071 | 0.071 | 0.071 |
8 | 0.101 | 0.096 | 0.090 | 0.085 | 0.080 | 0.074 | 0.072 | 0.070 | 0.070 | 0.070 |
9 | 0.130 | 0.118 | 0.114 | 0.121 | 0.092 | 0.097 | 0.094 | 0.093 | 0.093 | 0.093 |
10 | 0.069 | 0.109 | 0.065 | 0.103 | 0.061 | 0.060 | 0.079 | 0.079 | 0.079 | 0.079 |
11 | 0.110 | 0.104 | 0.097 | 0.091 | 0.084 | 0.078 | 0.073 | 0.073 | 0.072 | 0.072 |
12 | 0.102 | 0.099 | 0.096 | 0.092 | 0.089 | 0.085 | 0.084 | 0.082 | 0.082 | 0.082 |
13 | 0.062 | 0.059 | 0.054 | 0.055 | 0.052 | 0.050 | 0.048 | 0.048 | 0.048 | 0.048 |
14 | 0.139 | 0.125 | 0.117 | 0.113 | 0.084 | 0.082 | 0.080 | 0.080 | 0.079 | 0.078 |
15 | 0.141 | 0.133 | 0.125 | 0.121 | 0.114 | 0.107 | 0.101 | 0.100 | 0.100 | 0.100 |
16 | 0.092 | 0.101 | 0.100 | 0.094 | 0.087 | 0.076 | 0.071 | 0.071 | 0.071 | 0.071 |
17 | 0.122 | 0.119 | 0.110 | 0.103 | 0.115 | 0.093 | 0.091 | 0.087 | 0.085 | 0.085 |
18 | 0.072 | 0.075 | 0.069 | 0.065 | 0.064 | 0.054 | 0.051 | 0.051 | 0.051 | 0.051 |
19 | 0.119 | 0.111 | 0.118 | 0.099 | 0.101 | 0.146 | 0.138 | 0.138 | 0.138 | 0.138 |
20 | 0.103 | 0.100 | 0.175 | 0.148 | 0.161 | 0.138 | 0.133 | 0.131 | 0.130 | 0.130 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.282 | 0.275 | 0.269 | 0.262 | 0.255 | 0.248 | 0.242 | 0.235 | 0.228 | 0.222 |
2 | INF | 0.205 | 0.199 | 0.194 | 0.189 | 0.184 | 0.179 | 0.174 | 0.170 | 0.165 |
3 | 0.383 | 0.374 | 0.365 | 0.355 | 0.346 | 0.337 | 0.327 | 0.318 | 0.309 | 0.300 |
4 | 0.308 | 0.301 | 0.294 | 0.286 | 0.279 | 0.272 | 0.264 | 0.257 | 0.239 | 0.242 |
5 | 0.307 | 0.307 | 0.320 | 0.304 | 0.296 | 0.287 | 0.278 | 0.270 | 0.261 | 0.252 |
6 | 0.253 | 0.247 | 0.241 | 0.235 | 0.231 | 0.225 | 0.218 | 0.212 | 0.205 | 0.199 |
7 | 0.376 | 0.367 | 0.358 | 0.349 | 0.340 | 0.331 | 0.322 | 0.313 | 0.304 | 0.295 |
8 | 0.225 | 0.180 | 0.176 | 0.172 | 0.167 | 0.198 | 0.161 | 0.161 | 0.161 | 0.177 |
9 | 0.260 | 0.254 | 0.248 | 0.242 | 0.236 | 0.230 | 0.223 | 0.217 | 0.211 | 0.205 |
10 | 0.239 | 0.233 | 0.227 | 0.222 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 |
11 | 0.309 | 0.349 | 0.340 | 0.332 | 0.323 | 0.314 | 0.306 | 0.297 | 0.288 | 0.280 |
12 | 0.253 | 0.247 | 0.241 | 0.235 | 0.229 | 0.223 | 0.217 | 0.211 | 0.205 | 0.199 |
13 | 0.215 | 0.210 | 0.205 | 0.200 | 0.195 | 0.190 | 0.184 | 0.179 | 0.174 | 0.169 |
14 | 0.285 | 0.285 | 0.285 | 0.301 | 0.292 | 0.284 | 0.284 | 0.284 | 0.284 | 0.284 |
15 | 0.322 | 0.314 | 0.307 | 0.299 | 0.291 | 0.284 | 0.276 | 0.268 | 0.261 | 0.253 |
16 | 0.373 | 0.364 | 0.355 | 0.346 | 0.275 | 0.328 | 0.320 | 0.311 | 0.302 | 0.293 |
17 | 0.439 | 0.431 | 0.416 | 0.407 | 0.382 | 0.374 | 0.366 | 0.358 | 0.350 | 0.342 |
18 | 0.213 | 0.208 | 0.203 | 0.198 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 |
19 | 0.312 | 0.304 | 0.297 | 0.290 | 0.286 | 0.284 | 0.281 | 0.278 | 0.278 | 0.278 |
20 | 0.324 | 0.317 | 0.319 | 0.270 | 0.255 | 0.314 | 0.290 | 0.240 | 0.232 | 0.225 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.215 | 0.208 | 0.201 | 0.195 | 0.188 | 0.181 | 0.175 | 0.175 | 0.175 | 0.175 |
2 | 0.160 | 0.154 | 0.149 | 0.144 | 0.140 | 0.135 | 0.132 | 0.130 | 0.130 | 0.130 |
3 | 0.291 | 0.282 | 0.273 | 0.264 | 0.255 | 0.246 | 0.239 | 0.236 | 0.236 | 0.236 |
4 | 0.235 | 0.228 | 0.220 | 0.213 | 0.206 | 0.198 | 0.193 | 0.192 | 0.191 | 0.191 |
5 | 0.244 | 0.235 | 0.227 | 0.219 | 0.211 | 0.204 | 0.196 | 0.196 | 0.196 | 0.196 |
6 | 0.192 | 0.186 | 0.180 | 0.174 | 0.168 | 0.162 | 0.156 | 0.156 | 0.156 | 0.156 |
7 | 0.286 | 0.278 | 0.269 | 0.260 | 0.251 | 0.242 | 0.234 | 0.234 | 0.233 | 0.233 |
8 | 0.161 | 0.161 | 0.197 | 0.156 | 0.150 | 0.148 | 0.148 | 0.148 | 0.148 | 0.148 |
9 | 0.199 | 0.193 | 0.238 | 0.180 | 0.174 | 0.214 | 0.206 | 0.206 | 0.206 | 0.206 |
10 | 0.182 | 0.176 | 0.170 | 0.165 | 0.159 | 0.153 | 0.148 | 0.148 | 0.148 | 0.148 |
11 | 0.271 | 0.263 | 0.254 | 0.246 | 0.237 | 0.229 | 0.220 | 0.220 | 0.220 | 0.220 |
12 | 0.193 | 0.187 | 0.181 | 0.175 | 0.169 | 0.163 | 0.159 | 0.157 | 0.157 | 0.157 |
13 | 0.165 | 0.165 | 0.166 | 0.163 | 0.153 | 0.148 | 0.142 | 0.142 | 0.142 | 0.142 |
14 | 0.284 | 0.284 | 0.283 | 0.274 | 0.264 | 0.254 | 0.245 | 0.245 | 0.245 | 0.245 |
15 | 0.245 | 0.243 | 0.230 | 0.222 | 0.215 | 0.207 | 0.254 | 0.252 | 0.252 | 0.252 |
16 | 0.284 | 0.275 | 0.269 | 0.257 | 0.249 | 0.195 | 0.207 | 0.207 | 0.207 | 0.207 |
17 | 0.334 | 0.305 | 0.286 | 0.305 | 0.276 | 0.272 | 0.251 | 0.249 | 0.249 | 0.249 |
18 | 0.162 | 0.157 | 0.152 | 0.150 | 0.149 | 0.142 | 0.137 | 0.137 | 0.137 | 0.137 |
19 | 0.278 | 0.302 | 0.293 | 0.283 | 0.273 | 0.263 | 0.256 | 0.255 | 0.254 | 0.254 |
20 | 0.219 | 0.239 | 0.207 | 0.209 | 0.202 | 0.186 | 0.185 | 0.184 | 0.184 | 0.184 |
P= 0.58 | f01s | f02s | f0s=f01s*f02s | foc-S |
DMUs | Leader | Follower | leader * follower | Centralized |
1 | 0.386 | 0.209 | 0.081 | 0.262 |
2 | 0.344 | 0.216 | 0.074 | 0.194 |
3 | 0.487 | 0.211 | 0.103 | 0.355 |
4 | 0.430 | 0.144 | 0.062 | 0.286 |
5 | 0.474 | 0.327 | 0.155 | 0.304 |
6 | 0.421 | 0.242 | 0.102 | 0.235 |
7 | 0.429 | 0.273 | 0.117 | 0.349 |
8 | 0.507 | 0.285 | 0.144 | 0.172 |
9 | 0.390 | 0.417 | 0.163 | 0.242 |
10 | 0.326 | 0.259 | 0.084 | 0.222 |
11 | 0.488 | 0.336 | 0.164 | 0.332 |
12 | 0.350 | 0.521 | 0.182 | 0.235 |
13 | 0.411 | 0.188 | 0.077 | 0.200 |
14 | 0.390 | 0.427 | 0.167 | 0.301 |
15 | 0.302 | 0.513 | 0.155 | 0.299 |
16 | 0.488 | 0.282 | 0.138 | 0.346 |
17 | 0.488 | 0.377 | 0.184 | 0.407 |
18 | 0.250 | 0.542 | 0.136 | 0.198 |
19 | 0.376 | 0.499 | 0.188 | 0.290 |
20 | 0.320 | 0.399 | 0.128 | 0.270 |
P= 0.58 | Expected | scores | p-robust | centralized |
DMUs | EV | Reg | EV | Reg |
1 | 0.562 | 0.1880 | 0.262 | 0.0809 |
2 | 0.353 | 0.1345 | 0.194 | 0.1295 |
3 | 0.462 | 0.3590 | 0.355 | 0.3430 |
4 | 0.353 | 0.3298 | 0.286 | 0.2968 |
5 | 0.667 | 0.0158 | 0.304 | 0.0043 |
6 | 0.562 | 0.1090 | 0.235 | 0.0230 |
7 | 0.500 | 0.2815 | 0.349 | 0.2505 |
8 | 0.400 | 0.1275 | 0.172 | 0.0845 |
9 | 0.353 | 0.4393 | 0.242 | 0.1413 |
10 | 0.450 | 0.1060 | 0.222 | 0.0950 |
11 | 0.462 | 0.2650 | 0.332 | 0.2450 |
12 | 0.450 | 0.1353 | 0.235 | 0.1253 |
13 | 0.400 | 0.1010 | 0.200 | 0.1010 |
14 | 0.353 | 0.5048 | 0.301 | 0.4868 |
15 | 0.667 | 0.2170 | 0.299 | 0.0100 |
16 | 0.462 | 0.2538 | 0.346 | 0.2268 |
17 | 0.545 | 0.1841 | 0.407 | 0.1840 |
18 | 0.400 | 0.0948 | 0.137 | 0.0948 |
19 | 0.400 | 0.5753 | 0.254 | 0.0893 |
20 | 0.562 | 0.2473 | 0.184 | 0.0908 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.2108 | 0.1920 | 0.1960 | 0.2182 | 0.2273 | 0.2000 | 0.2017 | 0. 1624 |
2 | 0.1555 | 0.1364 | 0.1383 | 0.1570 | 0.1654 | 0.1402 | 0.1471 | 0.1162 |
3 | 0.3695 | 0.3610 | 0.3630 | 0.3734 | 0.3776 | 0.3650 | 0.3653 | 0.3467 |
4 | 0.3465 | 0.3332 | 0.3367 | 0.3535 | 0.3602 | 0.3401 | 0.3398 | 0.3094 |
5 | 0.0220 | 0.0068 | 0.0094 | 0.0261 | 0.0332 | 0.0119 | 0.0149 | 0.0181 |
6 | 0.1288 | 0.1120 | 0.1150 | 0.1338 | 0.1417 | 0.1180 | 0.1209 | 0. 0882 |
7 | 0.2928 | 0.2834 | 0.2853 | 0.2962 | 0.3007 | 0.2872 | 0.2883 | 0.2691 |
8 | 0.1465 | 0.1292 | 0.1309 | 0.1478 | 0.1554 | 0.1326 | 0.1389 | 0.1110 |
9 | 0.4430 | 0.4392 | 0.4392 | 0.4421 | 0.4436 | 0.4391 | 0.4415 | 0.4372 |
10 | 0.1263 | 0.1084 | 0.1108 | 0.1294 | 0.1375 | 0.1132 | 0.1182 | 0.0867 |
11 | 0.2783 | 0.2670 | 0.2690 | 0.2816 | 0.2869 | 0.2710 | 0.2730 | 0.2511 |
12 | 0.1570 | 0.1388 | 0.1424 | 0.1633 | 0.1720 | 0.1459 | 0.1483 | 0.1116 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.5170 | 0.5082 | 0.5117 | 0.5249 | 0.5298 | 0.5151 | 0.5121 | 0.4871 |
15 | 0.2278 | 0.2180 | 0.2190 | 0.2286 | 0.2329 | 0.2200 | 0.2235 | 0.2076 |
16 | 0.2660 | 0.2552 | 0.2567 | 0.2679 | 0.2728 | 0.2581 | 0.2611 | 0.2421 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.5693 | 0.5752 | 0.5752 | 0.5703 | 0.5679 | 0.5751 | 0.5717 | 0.5790 |
20 | 0.1095 | 0.0934 | 0.0961 | 0.1137 | 0.1212 | 0.0987 | 0.1020 | 0.0716 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.1118 | 0.0930 | 0.0970 | 0.1192 | 0.1283 | 0.1010 | 0.1027 | 0.0634 |
2 | 0.1505 | 0.1314 | 0.1333 | 0.1520 | 0.1604 | 0.1352 | 0.1421 | 0.1112 |
3 | 0.3535 | 0.3450 | 0.3470 | 0.3574 | 0.3616 | 0.3490 | 0.3493 | 0.3307 |
4 | 0.3135 | 0.3002 | 0.3037 | 0.3205 | 0.3272 | 0.3071 | 0.3068 | 0.2764 |
5 | 0.0180 | 0.0028 | 0.0054 | 0.0221 | 0.0292 | 0.0079 | 0.0109 | 0.0141 |
6 | 0.0428 | 0.0260 | 0.0290 | 0.0478 | 0.0557 | 0.0320 | 0.0349 | 0.0021 |
7 | 0.2618 | 0.2524 | 0.2543 | 0.2652 | 0.2697 | 0.2562 | 0.2573 | 0.2381 |
8 | 0.1035 | 0.0862 | 0.0879 | 0.1048 | 0.1124 | 0.0896 | 0.0959 | 0.0680 |
9 | 0.1450 | 0.1412 | 0.1412 | 0.1441 | 0.1456 | 0.1411 | 0.1435 | 0.1392 |
10 | 0.1153 | 0.0974 | 0.0998 | 0.1184 | 0.1265 | 0.1022 | 0.1072 | 0.0757 |
11 | 0.2583 | 0.2470 | 0.2490 | 0.2616 | 0.2669 | 0.2510 | 0.2530 | 0.2311 |
12 | 0.1470 | 0.1288 | 0.1324 | 0.1533 | 0.1620 | 0.1359 | 0.1383 | 0.1016 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.4990 | 0.4902 | 0.4937 | 0.5069 | 0.5118 | 0.4971 | 0.4941 | 0.4691 |
15 | 0.0208 | 0.0110 | 0.0120 | 0.0216 | 0.0259 | 0.0130 | 0.0165 | 0.0005 |
16 | 0.2390 | 0.2282 | 0.2297 | 0.2409 | 0.2458 | 0.2311 | 0.2341 | 0.2151 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.0833 | 0.0892 | 0.0892 | 0.0843 | 0.0819 | 0.0891 | 0.0857 | 0.0930 |
20 | 0.0185 | 0.0024 | 0.0051 | 0.0227 | 0.0302 | 0.0077 | 0.0110 | 0.0195 |