Citation: Gülserim Özcan. The amplification of the New Keynesian models and robust optimal monetary policy[J]. Quantitative Finance and Economics, 2020, 4(1): 36-65. doi: 10.3934/QFE.2020003
[1] | Venkatarajan Subbarayalu, Subbu Chinnaraman, Athijayamani Ayyanar, Jayaseelan Chinnapalanisamy . Mechanical properties of vinyl ester hybrid composite laminates reinforced with screw pine and glass fiber. AIMS Materials Science, 2024, 11(1): 114-128. doi: 10.3934/matersci.2024007 |
[2] | Mohd Shahneel Saharudin, Rasheed Atif, Syafawati Hasbi, Muhammad Naguib Ahmad Nazri, Nur Ubaidah Saidin, Yusof Abdullah . Synergistic effects of halloysite and carbon nanotubes (HNTs + CNTs) on the mechanical properties of epoxy nanocomposites. AIMS Materials Science, 2019, 6(6): 900-910. doi: 10.3934/matersci.2019.6.900 |
[3] | Saif S. Irhayyim, Hashim Sh. Hammood, Hassan A. Abdulhadi . Effect of nano-TiO2 particles on mechanical performance of Al–CNT matrix composite. AIMS Materials Science, 2019, 6(6): 1124-1134. doi: 10.3934/matersci.2019.6.1124 |
[4] | Prashant Tripathi, Vivek Kumar Gupta, Anurag Dixit, Raghvendra Kumar Mishra, Satpal Sharma . Development and characterization of low cost jute, bagasse and glass fiber reinforced advanced hybrid epoxy composites. AIMS Materials Science, 2018, 5(2): 320-337. doi: 10.3934/matersci.2018.2.320 |
[5] | Robiul Islam Rubel, Md. Hasan Ali, Md. Abu Jafor, Md. Mahmodul Alam . Carbon nanotubes agglomeration in reinforced composites: A review. AIMS Materials Science, 2019, 6(5): 756-780. doi: 10.3934/matersci.2019.5.756 |
[6] | D. M. S. Costa, M. A. R. Loja . Assessing the static behavior of hybrid CNT-metal-ceramic composite plates. AIMS Materials Science, 2016, 3(3): 808-831. doi: 10.3934/matersci.2016.3.808 |
[7] | Elena Kossovich . Theoretical study of chitosan-graphene and other chitosan-based nanocomposites stability. AIMS Materials Science, 2017, 4(2): 317-327. doi: 10.3934/matersci.2017.2.317 |
[8] | M. Rajanish, N. V. Nanjundaradhya, Ramesh S. Sharma, H. K. Shivananda, Alok Hegde . Directional Interlaminar Shear Strength (ILSS) of nano-modified epoxy/unidirectional glass fibre composite. AIMS Materials Science, 2018, 5(4): 603-613. doi: 10.3934/matersci.2018.4.603 |
[9] | Ahmed Ali Farhan Ogaili, Ehsan S. Al-Ameen, Mohammed Salman Kadhim, Muhanad Nazar Mustafa . Evaluation of mechanical and electrical properties of GFRP composite strengthened with hybrid nanomaterial fillers. AIMS Materials Science, 2020, 7(1): 93-102. doi: 10.3934/matersci.2020.1.93 |
[10] | Nataliya A. Sakharova, Jorge M. Antunes, Andre F. G. Pereira, Jose V. Fernandes . Developments in the evaluation of elastic properties of carbon nanotubes and their heterojunctions by numerical simulation. AIMS Materials Science, 2017, 4(3): 706-737. doi: 10.3934/matersci.2017.3.706 |
The notion of a pre-Lie algebra has been introduced independently by M. Gerstenhaber in deformation theory of rings and algebras [1] and by Vinberg, under the name of left-symmetric algebra, in his theory of homogeneous convex cones [2]. Its defining identity is weaker than associativity and lead also to a Lie algebra using commutators. This algebraic structure describes some properties of cochain spaces in Hochschild cohomology of an associative algebra, rooted trees and vector fields on affine spaces. Moreover, it is playing an increasing role in algebra, geometry and physics due to their applications in nonassociative algebras, combinatorics, numerical analysis and quantum field theory, see [3,4,5,6].
Hom-type algebras appeared naturally when studying q-deformations of some algebras of vector fields, like Witt and Virasoro algebras. It turns out that the Jacobi identity is no longer satisfied, these new structures involving a bracket and a linear map satisfy a twisted version of the Jacobi identity and define a so called Hom-Lie algebras which form a wider class, see [7,8]. Hom-pre-Lie algebras were introduced in [9] as a class of Hom-Lie admissible algebras, and play important roles in the study of Hom-Lie bialgebras and Hom-Lie 2-algebras [10,11,12]. Recently Hom-pre-Lie algebras were studied from several aspects. Cohomologies of Hom-pre-Lie algebras were studied in [13]; The geometrization of Hom-pre-Lie algebras was studied in [14]; Universal α-central extensions of Hom-pre-Lie algebras were studied in [15]; Hom-pre-Lie bialgebras were studied in [16,17]. Furthermore, connections between (Hom-)pre-Lie algebras and various algebraic structures have been established and discussed; like with Rota-Baxter operators, O-operators, (Hom-)dendriform algebras, (Hom-)associative algebras and Yang-Baxter equation, see [5,18,19,20,21,22].
The cohomology of pre-Lie algebras was defined in [23] and generalized in a straightforward way to Hom-pre-Lie algebras in [13]. Note that the cohomology given there has some restrictions: the second cohomology group can only control deformations of the multiplication, and it can not be applied to study simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. The main purpose of this paper is to define a new type of cohomology of Hom-pre-Lie algebras which is richer than the previous one. The obtained cohomology is called the full cohomology and allows to control simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. This type of cohomology was established for Hom-associative algebras and Hom-Lie algebras in [24,25], and called respectively α-type Hochschild cohomology and α-type Chevalley-Eilenberg cohomology. See [26,27,28] for more studies on deformations and extensions of Hom-Lie algebras.
The paper is organized as follows. In Section 2, first we recall some basics of Hom-Lie algebras, Hom-pre-Lie algebras and representations, and then provide our main result defining the full cohomology of a Hom-pre-Lie algebra with coefficients in a given representation. In Section 3, we study one parameter formal deformations of a Hom-pre-Lie algebra, where both the defining multiplication and homomorphism are deformed, using formal power series. We show that the full cohomology of Hom-pre-Lie algebras controls these simultaneous deformations. Moreover, a relationship between deformations of a Hom-pre-Lie algebra and deformations of its sub-adjacent Lie algebra is established. Section 4 deals with abelian extensions of Hom-pre-Lie algebras. We show that the full cohomology fits perfectly and its second cohomology group classifies abelian extensions of a Hom-pre-Lie algebra by a given representation. The proof of the key Lemma to show that the four operators define a cochain complex is lengthy and it is given in the Appendix.
In this section, first we recall some basic facts about Hom-Lie algebras and Hom-pre-Lie algebras. Then we introduce the full cohomology of Hom-pre-Lie algebras, which will be used to classify infinitesimal deformations and abelian extensions of Hom-pre-Lie algebras.
Definition 2.1. (see [7]) A Hom-Lie algebra is a triple (g,[⋅,⋅]g,ϕg) consisting of a vector space g, a skew-symmetric bilinear map [⋅,⋅]g:∧2g⟶g and a homomorphism ϕg:g⟶g, satisfying ϕg[x,y]=[ϕg(x),ϕg(y)] and
[ϕg(x),[y,z]g]g+[ϕg(y),[z,x]g]g+[ϕg(z),[x,y]g]g=0,∀x,y,z∈g. | (2.1) |
A Hom-Lie algebra (g,[⋅,⋅]g,ϕg) is said to be regular if ϕg is invertible.
Definition 2.2. (see [29]) A representation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg) on a vector space V with respect to β∈gl(V) is a linear map ρ:g⟶gl(V), such that for all x,y∈g, the following equalities are satisfied:
ρ(ϕg(x))∘β=β∘ρ(x), | (2.2) |
ρ([x,y]g)∘β=ρ(ϕg(x))∘ρ(y)−ρ(ϕg(y))∘ρ(x). | (2.3) |
We denote a representation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg) by a triple (V,β,ρ).
Definition 2.3. (see [9]) A Hom-pre-Lie algebra (A,⋅,α) is a vector space A equipped with a bilinear product ⋅:A⊗A⟶A, and α∈gl(A), such that for all x,y,z∈A, α(x⋅y)=α(x)⋅α(y) and the following equality is satisfied:
(x⋅y)⋅α(z)−α(x)⋅(y⋅z)=(y⋅x)⋅α(z)−α(y)⋅(x⋅z). | (2.4) |
A Hom-pre-Lie algebra (A,⋅,α) is said to be regular if α is invertible.
Let (A,⋅,α) be a Hom-pre-Lie algebra. The commutator [x,y]C=x⋅y−y⋅x defines a Hom-Lie algebra (A,[⋅,⋅]C,α), which is denoted by AC and called the sub-adjacent Hom-Lie algebra of (A,⋅,α).
Definition 2.4. (see [13]) A morphism from a Hom-pre-Lie algebra (A,⋅,α) to a Hom-pre-Lie algebra (A′,⋅′,α′) is a linear map f:A⟶A′ such that for all x,y∈A, the following equalities are satisfied:
f(x⋅y)=f(x)⋅′f(y),∀x,y∈A, | (2.5) |
f∘α=α′∘f. | (2.6) |
Definition 2.5. (see [17]) A representation of a Hom-pre-Lie algebra (A,⋅,α) on a vector space V with respect to β∈gl(V) consists of a pair (ρ,μ), where ρ:A⟶gl(V) is a representation of the sub-adjacent Hom-Lie algebra AC on V with respect to β∈gl(V), and μ:A⟶gl(V) is a linear map, satisfying, for all x,y∈A:
β∘μ(x)=μ(α(x))∘β, | (2.7) |
μ(α(y))∘μ(x)−μ(x⋅y)∘β=μ(α(y))∘ρ(x)−ρ(α(x))∘μ(y). | (2.8) |
We denote a representation of a Hom-pre-Lie algebra (A,⋅,α) by a quadruple (V,β,ρ,μ). Furthermore, Let L,R:A⟶gl(A) be linear maps, where Lxy=x⋅y,Rxy=y⋅x. Then (A,α,L,R) is also a representation, which we call the regular representation.
Let (A,⋅,α) be a Hom-pre-Lie algebra. In the sequel, we will also denote the Hom-pre-Lie algebra multiplication ⋅ by ω.
Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,ω,α). We define Cnω(A;V) and Cnα(A;V) respectively by
Cnω(A;V)=Hom(∧n−1A⊗A,V),Cnα(A;V)=Hom(∧n−2A⊗A,V),∀n≥2. |
Define the set of cochains ˜Cn(A;V) by
{˜Cn(A;V)=Cnω(A;V)⊕Cnα(A;V),∀n≥2,˜C1(A;V)=Hom(A,V). | (2.9) |
For all (φ,ψ)∈˜Cn(A;V),x1,…,xn+1∈A, we define ∂ωω:Cnω(A;V)⟶Cn+1ω(A;V) by
(∂ωωφ)(x1,…,xn+1)=n∑i=1(−1)i+1ρ(αn−1(xi))φ(x1,…,^xi,…,xn+1)+n∑i=1(−1)i+1μ(αn−1(xn+1))φ(x1,…,^xi,…,xn,xi)−n∑i=1(−1)i+1φ(α(x1),…,^α(xi)…,α(xn),xi⋅xn+1)+∑1≤i<j≤n(−1)i+jφ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+1)), |
where the hat corresponds to deleting the element, define ∂αα:Cnα(A;V)⟶Cn+1α(A;V) by
(∂ααψ)(x1,…,xn)=n−1∑i=1(−1)iρ(αn−1(xi))ψ(x1,…,^xi,…,xn)+n−1∑i=1(−1)iμ(αn−1(xn))ψ(x1,…,^xi,…,xn−1,xi)−n−1∑i=1(−1)iψ(α(x1),…,^α(xi),…,α(xn−1),xi⋅xn)+∑1≤i<j≤n−1(−1)i+j−1ψ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn)), |
define ∂ωα:Cnω(A;V)⟶Cn+1α(A;V) by
(∂ωαφ)(x1,…,xn)=βφ(x1,…,xn)−φ(α(x1),…,α(xn)), |
and define ∂αω:Cnα(A;V)⟶Cn+1ω(A;V) by
(∂αωψ)(x1,…,xn+1)=∑1≤i<j≤n(−1)i+jρ([αn−2(xi),αn−2(xj)]C)ψ(x1,…,^xi,…,^xj,…,xn+1)+∑1≤i<j≤n(−1)i+jμ(αn−2(xi)⋅αn−2(xn+1))ψ(x1,…,^xi,…,^xj,…,xn,xj)−∑1≤i<j≤n(−1)i+jμ(αn−2(xj)⋅αn−2(xn+1))ψ(x1,…,^xi,…,^xj,…,xn,xi). |
Define the operator ˜∂:˜Cn(A;V)⟶˜Cn+1(A;V) by
˜∂(φ,ψ)=(∂ωωφ+∂αωψ,∂ωαφ+∂ααψ),∀φ∈Cnω(A;V),ψ∈Cnα(A;V),n≥2, | (2.10) |
˜∂(φ)=(∂ωωφ,∂ωαφ),∀φ∈Hom(A,V). | (2.11) |
The following diagram will explain the above operators:
![]() |
Lemma 2.6. With the above notations, we have
∂ωω∘∂ωω+∂αω∘∂ωα=0, | (2.12) |
∂ωω∘∂αω+∂αω∘∂αα=0, | (2.13) |
∂ωα∘∂ωω+∂αα∘∂ωα=0, | (2.14) |
∂ωα∘∂αω+∂αα∘∂αα=0. | (2.15) |
Proof. The proof is given in the Appendix.
Theorem 2.7. The operator ˜∂:˜Cn(A;V)⟶˜Cn+1(A;V) defined as above satisfies ˜∂∘˜∂=0.
Proof. When n≥2, for all (φ,ψ)∈˜Cn(A;V), by (2.10) and Lemma 2.6, we have
˜∂∘˜∂(φ,ψ)=˜∂(∂ωωφ+∂αωψ,∂ωαφ+∂ααψ)=(∂ωω∂ωωφ+∂ωω∂αωψ+∂αω∂ωαφ+∂αω∂ααψ,∂ωα∂ωωφ+∂ωα∂αωψ+∂αα∂ωαφ+∂αα∂ααψ)=0. |
When n=1, for all φ∈Hom(A,V), by (2.11) and Lemma 2.6, we have
˜∂∘˜∂(φ)=˜∂(∂ωωφ,∂ωαφ)=(∂ωω∂ωωφ+∂αω∂ωαφ,∂ωα∂ωωφ+∂αα∂ωαφ)=0. |
This finishes the proof.
We denote the set of closed n-cochains by ˜Zn(A;V) and the set of exact n-cochains by ˜Bn(A;V). We denote by ˜Hn(A;V)=˜Zn(A;V)/˜Bn(A;V) the corresponding cohomology groups.
Definition 2.8. Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,⋅,α). The cohomology of the cochain complex (⊕∞n=1˜Cn(A;V),∂) is called the full cohomology of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the representation (V,β,ρ,μ).
We use ˜∂reg to denote the coboundary operator of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the regular representation. The corresponding cohomology group will be denoted by ˜Hn(A;A).
Remark 2.9. Compared with the cohomology theory of Hom-pre-Lie algebras studied in [13], the above full cohomology contains more informations. In the next section, we will see that the second cohomology group can control simultaneous deformations of the multiplication and the homomorphism in a Hom-pre-Lie algebra.
In this section, we study formal deformations of Hom-pre-Lie algebras using the cohomology theory established in the last section. We show that the infinitesimal of a formal deformation is a 2-cocycle and depends only on its cohomology class. Moreover, if the cohomology group ˜H2(A;A) is trivial, then the Hom-pre-Lie algebra is rigid.
Definition 3.1. Let (A,ω,α) be a Hom-pre-Lie algebra, ωt=ω+∑+∞i=1ωiti:A[[t]]⊗A[[t]]⟶A[[t]] be a K[[t]]-bilinear map and αt=α+∑+∞i=1αiti:A[[t]]⟶A[[t]] be a K[[t]]-linear map, where ωi:A⊗A⟶A and αi:A⟶A are linear maps. If (A[[t]],ωt,αt) is still a Hom-pre-Lie algebra, we say that {ωi,αi}i≥1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α).
If {ωi,αi}i≥1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), for all x,y,z∈A and n=1,2,…, we then have
∑i+j+k=ni,j,k≥0ωi(ωj(x,y),αk(z))−ωi(αj(x),ωk(y,z))−ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=0. | (3.1) |
Moreover, we have
∑i+j+k=n0<i,j,k≤n−1ωi(ωj(x,y),αk(z))−ωi(αj(x),ωk(y,z))−ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=(∂ωωωn+∂αωαn)(x,y,z). | (3.2) |
For all x,y∈A and n=1,2,…, we have
∑i+j+k=ni,j,k≥0ωi(αj(x),αk(y))−∑i+j=ni,j≥0αi(ωj(x,y))=0. | (3.3) |
Moreover, we have
∑i+j+k=n0<i,j,k≤n−1ωi(αj(x),αk(y))−∑i+j=ni,j>0αi(ωj(x,y))=(∂ωαωn+∂αααn)(x,y). | (3.4) |
Proposition 3.2. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). Then (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α) with coefficients in the regular representation.
Proof. When n=1, by (3.1), we have
0=(x⋅y)⋅α1(z)+ω1(x,y)⋅α(z)+ω1(x⋅y,α(z))−α(x)⋅ω1(y,z)−α1(x)⋅(y⋅z)−ω1(α(x),y⋅z)−(y⋅x)⋅α1(z)−ω1(y,x)⋅α(z)−ω1(y⋅x,α(z))+α(y)⋅ω1(x,z)+α1(y)⋅(x⋅z)+ω1(α(y),x⋅z)=−(∂ωωω1+∂αωα1)(x,y,z), |
and by (3.3), we have
0=ω1(α(x),α(y))+α1(x)⋅α(y)+α(x)⋅α1(y)−α(ω1(x,y))−α1(x⋅y)=−(∂ωαω1+∂ααα1)(x,y), |
which implies that ˜∂reg(ω1,α1)=0. Thus, (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α).
Definition 3.3. The 2-cocycle (ω1,α1) is called the infinitesimal of the 1-parameter formal deformation (A[[t]],ωt,αt) of the Hom-pre-Lie algebra (A,ω,α).
Definition 3.4. Let (ω′t=ω+∑+∞i=1ω′iti,α′t=α+∑+∞i=1α′iti) and (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be two 1-parameter formal deformations of a Hom-pre-Lie algebra (A,ω,α). A formal isomorphism from (A[[t]],ω′t,α′t) to (A[[t]],ωt,αt) is a power series Φt=∑+∞i=0φiti, where φi:A⟶A are linear maps with φ0=Id, such that
Φt∘ω′t=ωt∘(Φt×Φt), | (3.5) |
αt∘Φt=Φt∘α′t. | (3.6) |
Two 1-parameter formal deformations (A[[t]],ω′t,α′t) and (A[[t]],ωt,αt) are said to be equivalent if there exists a formal isomorphism Φt=∑+∞i=0φiti from (A[[t]],ω′t,α′t) to (A[[t]],ωt,αt).
Theorem 3.5. Let (A,ω,α) be a Hom-pre-Lie algebra.If two 1-parameter formal deformations (ω′t=ω+∑+∞i=1ω′iti,α′t=α+∑+∞i=1α′iti) and (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) are equivalent, then there infinitesimals (ω′1,α′1) and (ω1,α1) are in the same cohomology class of ˜H2(A;A).
Proof. Let (ω′t,α′t) and (ωt,αt) be two 1-parameter formal deformations. By Proposition 3.2, we have (ω′1,α′1) and (ω1,α1)∈˜Z2(A;A). Let Φt=∑+∞i=0φiti be the formal isomorphism. Then for all x,y∈A, we have
ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y))=(Id−φ1t+…)ωt(x+φ1(x)t+…,y+φ1(y)t+…)=(Id−φ1t+…)(x⋅y+(x⋅φ1(y)+φ1(x)⋅y+ω1(x,y))t+…)=x⋅y+(x⋅φ1(y)+φ1(x)⋅y+ω1(x,y)−φ1(x⋅y))t+…. |
Thus, we have
ω′1(x,y)−ω1(x,y)=x⋅φ1(y)+φ1(x)⋅y−φ1(x⋅y)=∂ωωφ1(x,y), |
which implies that ω′1−ω1=∂ωωφ1.
For all x∈A, we have
α′t(x)=Φ−1t∘αt(Φt(x))=(Id−φ1t+…)αt(x+φ1(x)t+…)=(Id−φ1t+…)(α(x)+(α(φ1(x))+α1(x))t+…)=α(x)+(α(φ1(x))+α1(x)−φ1(α(x)))t+…. |
Thus, we have
α′1(x)−α1(x)=α(φ1(x))−φ1(α(x))=∂ωαφ1(x), |
which implies that α′1−α1=∂ωαφ1.
Thus, we have (ω′1−ω1,α′1−α1)∈˜B2(A;A). This finishes the proof.
Definition 3.6. A 1-parameter formal deformation (A[[t]],ωt,αt) of a Hom-pre-Lie algebra (A,ω,α) is said to be trivial if it is equivalent to (A,ω,α), i.e. there exists Φt=∑+∞i=0φiti, where φi:A⟶A are linear maps with φ0=Id, such that
Φt∘ωt=ω∘(Φt×Φt), | (3.7) |
α∘Φt=Φt∘αt. | (3.8) |
Definition 3.7. Let (A,ω,α) be a Hom-pre-Lie algebra. If all 1-parameter formal deformations are trivial, we say that (A,ω,α) is rigid.
Theorem 3.8. Let (A,ω,α) be a Hom-pre-Lie algebra. If ˜H2(A;A)=0, then (A,ω,α) is rigid.
Proof. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation and assume that n≥1 is the minimal number such that at least one of ωn and αn is not zero. By (3.2), (3.4) and ˜H2(A;A)=0, we have (ωn,αn)∈˜B2(A;A). Thus, there exists φn∈˜C1(A;A) such that ωn=∂ωω(−φn) and αn=∂ωα(−φn). Let Φt=Id+φntn and define a new formal deformation (ω′t,α′t) by ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y)) and α′t(x)=Φ−1t∘αt(Φt(x)). Then (ω′t,α′t) and (ωt,αt) are equivalent. By a straightforward computation, for all x,y∈A, we have
ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y))=(Id−φntn+…)ωt(x+φn(x)tn,y+φn(y)tn)=(Id−φntn+…)(x⋅y+(x⋅φn(y)+φn(x)⋅y+ωn(x,y))tn+…)=x⋅y+(x⋅φn(y)+φn(x)⋅y+ωn(x,y)−φn(x⋅y))tn+…. |
Thus, we have ω′1=ω′2=⋯=ω′n−1=0. Moreover, we obtain
ω′n(x,y)=φn(x)⋅y+x⋅φn(y)+ωn(x,y)−φn(x⋅y)=∂ωωφn(x,y)+ωn(x,y)=0. |
For all x∈A, we get
α′t(x)=Φ−1t∘αt(Φt(x))=(Id−φntn+…)αt(x+φn(x)tn)=(Id−φ1tn+…)(α(x)+(α(φn(x))+αn(x))tn+…)=α(x)+(α(φn(x))+αn(x)−φn(α(x)))tn+…. |
Thus, α′1=α′2=⋯=α′n−1=0, and
α′n(x,y)=α(φn(x))+αn(x)−φn(α(x))=∂ωαφn(x)+αn(x)=0. |
By repeating this process, we obtain that (A[[t]],ωt,αt) is equivalent to (A,ω,α). The proof is finished.
At the end of this section, we recall 1-parameter formal deformations of Hom-Lie algebras, and establish the relation between 1-parameter formal deformations of Hom-pre-Lie algebras and 1-parameter formal deformations of Hom-Lie algebras.
Definition 3.9. (see [25]) Let (g,[⋅,⋅]g,ϕg) be a Hom-Lie algebra, [⋅,⋅]t=[⋅,⋅]g+∑+∞i=1ˉωiti:g[[t]]∧g[[t]]⟶g[[t]] be a K[[t]]-bilinear map and ϕt=ϕg+∑+∞i=1ϕiti:g[[t]]⟶g[[t]] be a K[[t]]-linear map, where ˉωi:g⊗g⟶g and ϕi:g⟶g are linear maps. If (g[[t]],[⋅,⋅]t,ϕt) is still a Hom-Lie algebra, we say that {ˉωi,ϕi}i≥1 generates a 1-parameter formal deformation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg).
Proposition 3.10. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), then
{ωi−ωi∘σ,αi}i≥1 |
generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC, where σ:A⊗A⟶A⊗A is the flip operator defined by σ(x⊗y)=y⊗x for all x,y∈A.
Proof. Let (A[[t]],ωt,αt) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). For all x,y∈A, we have
ωt(x,y)−ωt(y,x)=ω(x,y)−ω(y,x)++∞∑i=1ωi(x,y)ti−+∞∑i=1ωi(y,x)ti=[x,y]C++∞∑i=1(ωi−ωi∘σ)(x,y)ti, |
and
αt∘(ωt(x,y)−ωt(y,x))=ωt(αt(x),αt(y))−ωt(αt(y),αt(x)). |
Therefore, {ωi−ωi∘σ,αi}i≥1 generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC.
In this section, we study abelian extensions of Hom-pre-Lie algebras using the cohomological approach. We show that abelian extensions are classified by the cohomology group ˜H2(A;V).
Definition 4.1. Let (A,⋅,α) and (V,⋅V,β) be two Hom-pre-Lie algebras. An extension of (A,⋅,α) by (V,⋅V,β) is a short exact sequence of Hom-pre-Lie algebra morphisms:
![]() |
where (ˆA,⋅ˆA,αˆA) is a Hom-pre-Lie algebra.
It is called an abelian extension if (V,⋅V,β) is an abelian Hom-pre-Lie algebra, i.e. for all u,v∈V,u⋅Vv=0.
Definition 4.2. A section of an extension (ˆA,⋅ˆA,αˆA) of a Hom-pre-Lie algebra (A,⋅,α) by (V,⋅V,β) is a linear map s:A⟶ˆA such that p∘s=IdA.
Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) and s:A⟶ˆA a section. For all x,y∈A, define linear maps θ:A⊗A⟶V and ξ:A⟶V respectively by
θ(x,y)=s(x)⋅ˆAs(y)−s(x⋅y), | (4.1) |
ξ(x)=αˆA(s(x))−s(α(x)). | (4.2) |
And for all x,y∈A,u∈V, define ρ,μ:A⟶gl(V) respectively by
ρ(x)(u)=s(x)⋅ˆAu, | (4.3) |
μ(x)(u)=u⋅ˆAs(x). | (4.4) |
Obviously, ˆA is isomorphic to A⊕V as vector spaces. Transfer the Hom-pre-Lie algebra structure on ˆA to that on A⊕V, we obtain a Hom-pre-Lie algebra (A⊕V,⋄,ϕ), where ⋄ and ϕ are given by
(x+u)⋄(y+v)=x⋅y+θ(x,y)+ρ(x)(v)+μ(y)(u),∀x,y∈A,u,v∈V, | (4.5) |
ϕ(x+u)=α(x)+ξ(x)+β(u),∀x∈A,u∈V. | (4.6) |
Theorem 4.3. With the above notations, we have
(i) (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,⋅,α),
(ii) (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the representation (V,β,ρ,μ).
Proof. For all x∈A, v∈V, by the definition of a Hom-pre-Lie algebra, we have
ϕ(x⋄v)−ϕ(x)⋄ϕ(v)=β(ρ(x)(v))−ρ(α(x))β(v)=0, |
which implies that
β∘ρ(x)=ρ(α(x))∘β. | (4.7) |
Similarly, we have
β∘μ(x)=μ(α(x))∘β. | (4.8) |
For all x,y∈A, v∈V, by the definition of a Hom-pre-Lie algebra, we have
(x⋄y)⋄ϕ(v)−ϕ(x)⋄(y⋄v)−(y⋄x)⋄ϕ(v)+ϕ(y)⋄(x⋄v)=(x⋅y+θ(x,y))⋄β(v)−(α(x)+ξ(x))⋄ρ(y)(v)−(y⋅x+θ(y,x))⋄β(v)+(α(y)+ξ(y))⋄ρ(x)(v)=ρ(x⋅y)β(v)−ρ(α(x))ρ(y)(v)−ρ(y⋅x)β(v)+ρ(α(y))ρ(x)(v)=ρ([x,y]C)β(v)−ρ(α(x))ρ(y)(v)+ρ(α(y))ρ(x)(v)=0, |
which implies that
ρ([x,y]C)∘β=ρ(α(x))∘ρ(y)−ρ(α(y))∘ρ(x). | (4.9) |
Similarly, we have
μ(α(y))∘μ(x)−μ(x⋅y)∘β=μ(α(y))∘ρ(x)−ρ(α(x))∘μ(y). | (4.10) |
By (4.7), (4.8), (4.9), (4.10), we obtain that (V,β,ρ,μ) is a representation.
For all x,y∈A, by the definition of a Hom-pre-Lie algebra, we have
ϕ(x⋄y)−ϕ(x)⋄ϕ(y)=ϕ(x⋅y+θ(x,y))−α(x)⋅α(y)−θ(α(x),α(y))−ρ(α(x))ξ(y)−μ(α(y))ξ(x)=ξ(x⋅y)+β(θ(x,y))−θ(α(x),α(y))−ρ(α(x))ξ(y)−μ(α(y))ξ(x)=∂ωαθ(x,y)+∂ααξ(x,y)=0, |
which implies that
∂ωαθ+∂ααξ=0. | (4.11) |
For all x,y,z∈A, by the definition of a Hom-pre-Lie algebra, we have
(x⋄y)⋄ϕ(z)−ϕ(x)⋄(y⋄z)−(y⋄x)⋄ϕ(z)+ϕ(y)⋄(x⋄z)=(x⋅y+θ(x,y))⋄(α(z)+ξ(z))−(α(x)+ξ(x))⋄(y⋅z+θ(y,z))−(y⋅x+θ(y,x))⋄(α(z)+ξ(z))+(α(y)+ξ(y))⋄(x⋅z+θ(x,z))=θ(x⋅y,α(z))+μ(α(z))θ(x,y)−θ(α(x),y⋅z)−ρ(α(x))θ(y,z)−θ(y⋅x,α(z))−μ(α(z))θ(y,x)+θ(α(y),x⋅z)+ρ(α(y))θ(x,z)+ρ(x⋅y)ξ(z)−μ(y⋅z)ξ(x)−ρ(y⋅x)ξ(z)+μ(x⋅z)ξ(y)=−∂ωωθ(x,y,z)−∂αωξ(x,y,z)=0, |
which implies that
∂ωωθ+∂αωξ=0. | (4.12) |
By Eqs (4.11) and (4.12), we obtain that ˜∂(θ,ξ)=0, which implies that (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,⋅,α). The proof is finished.
Definition 4.4. Let (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) be two abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). They are said to be isomorphic if there exists a Hom-pre-Lie algebra isomorphism ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) such that the following diagram is commutative:
![]() |
Proposition 4.5. With the above notations, we have
(i) Two different sections of an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) give rise to the same representation of (A,⋅,α),
(ii) Isomorphic abelian extensions give rise to the same representation of (A,⋅,α).
Proof. (i) Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Choosing two different sections s1,s2:A⟶ˆA, by equations (4.3), (4.4) and Theorem 4.3, we obtain two representations (V,β,ρ1,μ1) and (V,β,ρ2,μ2). Define φ:A⟶V by φ(x)=s1(x)−s2(x). Then for all x∈A, we have
ρ1(x)(u)−ρ2(x)(u)=s1(x)⋅ˆAu−s2(x)⋅ˆAu=(φ(x)+s2(x))⋅ˆAu−s2(x)⋅ˆAu=φ(x)⋅ˆAu=0, |
which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.
(ii) Let (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Let s1:A1⟶^A1 and s2:A2⟶^A2 be two sections of (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) respectively. By equations (4.3), (4.4) and Theorem 4.3, we obtain that (V,β,ρ1,μ1) and (V,β,ρ2,μ2) are their representations respectively. Define s′1:A1⟶^A1 by s′1=ζ−1∘s2. Since ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4, by p2∘ζ=p1, we have
p1∘s′1=p2∘ζ∘ζ−1∘s2=IdA. | (4.13) |
Thus, we obtain that s′1 is a section of (^A1,⋅^A1,α^A1). For all x∈A,u∈V, we have
ρ1(x)(u)=s′1(x)⋅^A1u=(ζ−1∘s2)(x)⋅^A1u=ζ−1(s2(x)⋅^A2u)=ρ2(x)(u), |
which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.
So in the sequel, we fix a representation (V,β,ρ,μ) of a Hom-pre-Lie algebra (A,⋅,α) and consider abelian extensions that induce the given representation.
Theorem 4.6. Abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) are classified by ˜H2(A;V).
Proof. Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Choosing a section s:A⟶ˆA, by Theorem 4.3, we obtain that (θ,ξ)∈˜Z2(A;V). Now we show that the cohomological class of (θ,ξ) does not depend on the choice of sections. In fact, let s1 and s2 be two different sections. Define φ:A⟶V by φ(x)=s1(x)−s2(x). Then for all x,y∈A, we have
θ1(x,y)=s1(x)⋅ˆAs1(y)−s1(x⋅y)=(s2(x)+φ(x))⋅ˆA(s2(y)+φ(y))−s2(x⋅y)−φ(x⋅y)=s2(x)⋅ˆAs2(y)+ρ(x)φ(y)+μ(y)φ(x)−s2(x⋅y)−φ(x⋅y)=θ2(x,y)+∂ωωφ(x,y), |
which implies that θ1−θ2=∂ωωφ.
For all x∈A, we have
ξ1(x)=αˆA(s1(x))−s1(α(x))=αˆA(φ(x)+s2(x))−φ(α(x))−s2(α(x))=αˆA(φ(x))+αˆA(s2(x))−φ(α(x))−s2(α(x))=ξ2(x)+β(φ(x))−φ(α(x)), |
which implies that ξ1−ξ2=∂ωαφ.
Therefore, we obtain that (θ1−θ2,ξ1−ξ2)∈˜B2(A;V), (θ1,ξ1) and (θ2,ξ2) are in the same cohomological class.
Now we prove that isomorphic abelian extensions give rise to the same element in ˜H2(A;V). Assume that (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β), and ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4. Assume that s1:A⟶^A1 is a section of ^A1. By p2∘ζ=p1, we have
p2∘(ζ∘s1)=p1∘s1=IdA. | (4.14) |
Thus, we obtain that ζ∘s1 is a section of ^A2. Define s2=ζ∘s1. Since ζ is an isomorphism of Hom-pre-Lie algebras and ζ∣V=IdV, for all x,y∈A, we have
θ2(x,y)=s2(x)⋅^A2s2(y)−s2(x⋅y)=(ζ∘s1)(x)⋅^A2(ζ∘s1)(y)−(ζ∘s1)(x⋅y)=ζ(s1(x)⋅^A1s1(y)−s1(x⋅y))=θ1(x,y), |
and
ξ2(x)=α^A2(s2(x))−s2(α(x))=α^A2(ζ(s1(x)))−ζ(s1(α(x)))=ζ(α^A1(s1(x))−s1(α(x)))=ξ1(x). |
Thus, isomorphic abelian extensions gives rise to the same element in ˜H2(A;V).
Conversely, given two 2-cocycles (θ1,ξ1) and (θ2,ξ2), by Eqs (4.5) and (4.6), we can construct two abelian extensions (A⊕V,⋄1,ϕ1) and (A⊕V,⋄2,ϕ2). If (θ1,ξ1),(θ2,ξ2)∈˜H2(A;V), then there exists φ:A⟶V, such that θ1=θ2+∂ωωφ and ξ1=ξ2+∂ωαφ. We define ζ:A⊕V⟶A⊕V by
ζ(x+u)=x+u+φ(x),∀x∈A,u∈V. | (4.15) |
For all x,y∈A,u,v∈V, by θ1=θ2+∂ωωφ, we have
ζ((x+u)⋄1(y+v))−ζ(x+u)⋄2ζ(y+v)=ζ(x⋅y+θ1(x,y)+ρ(x)(v)+μ(y)(u))−(x+u+φ(x))⋄2(y+v+φ(y))=θ1(x,y)+φ(x⋅y)−θ2(x,y)−ρ(x)φ(y)−μ(y)φ(x)=θ1(x,y)−θ2(x,y)−∂ωωφ(x,y)=0, | (4.16) |
and for all x∈A,u∈V, by ξ1=ξ2+∂ωαφ, we have
ζ∘ϕ1(x+u)−ϕ1∘ζ(x+u)=ζ(α(x)+ξ1(x)+β(u))−ϕ2(x+u+φ(x))=ξ1(x)+φ(α(x))−ξ2(x)−β(φ(x))=ξ1(x)−ξ2(x)−∂ωαφ(x)=0, | (4.17) |
which implies that ζ is a Hom-pre-Lie algebra isomorphism from (A⊕V,⋄1,ϕ1) to (A⊕V,⋄2,ϕ2). Moreover, it is obvious that the diagram in Definition 4.4 is commutative. This finishes the proof.
By straightforward computations, for all x1,…,xn+2∈A, we have
∂ωω(∂ωωφ)(x1,…,xn+2)=n+1∑i=1(−1)i+1ρ(αn(xi))(∂ωωφ)(x1,…,^xi,…,xn+2)+n+1∑i=1(−1)i+1μ(αn(xn+2))(∂ωωφ)(x1,…,^xi,…,xn+1,xi)−n+1∑i=1(−1)i+1(∂ωωφ)(α(x1),…,^α(xi),…,α(xn+1),xi⋅xn+2)+∑1≤i<j≤n+1(−1)i+j(∂ωωφ)([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))=∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))ρ(αn−1(xj))φ(x1,…,^xj,…,^xi,…,xn+2) | (4.18) |
+∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))ρ(αn−1(xj))φ(x1,…,^xi,…,^xj,…,xn+2) | (4.19) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))μ(αn−1(xn+2))φ(x1,…,^xj,…,^xi,…,xn+1,xj) | (4.20) |
+∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))μ(αn−1(xn+2))φ(x1,…,^xi,…,^xj,…,xn+1,xj) | (4.21) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xj⋅xn+2) | (4.22) |
−∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xj⋅xn+2) | (4.23) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xk),…,^α(xi),…,α(xn+2)) | (4.24) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xi),…,^α(xk),…,α(xn+2)) | (4.25) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+2)) | (4.26) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))ρ(αn−1(xj))φ(x1,…,^xj,…,^xi,…,xn+1,xi) | (4.27) |
+∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))ρ(αn−1(xj))φ(x1,…,^xi,…,^xj,…,xn+1,xi) | (4.28) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))μ(αn−1(xi))φ(x1,…,^xj,…,^xi,…,xn+1,xj) | (4.29) |
+∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))μ(αn−1(xi))φ(x1,…,^xi,…,^xj,…,xn+1,xj) | (4.30) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xj⋅xi) | (4.31) |
−∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xj⋅xi) | (4.32) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xk), | (4.33) |
…,^α(xi),…,α(xn+1),α(xi))+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xi), | (4.34) |
…,^α(xk),…,α(xn+1),α(xi))+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xi),…,^α(xj), | (4.35) |
…,^α(xk),…,α(xn+1),α(xi))−∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xj))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xi⋅xn+2) | (4.36) |
−∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xj))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xi⋅xn+2) | (4.37) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),α(xj)) | (4.38) |
−∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj)) | (4.39) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1φ(α2(x1),…,^α2(xj),…,^α2(xi),…,α2(xn+1),α(xj)⋅(xi⋅xn+2)) | (4.40) |
+∑1≤i<j≤n+1(−1)i+1(−1)jφ(α2(x1),…,^α2(xi),…,^α2(xj),…,α2(xn+1),α(xj)⋅(xi⋅xn+2)) | (4.41) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kφ([α(xj),α(xk)]C,α2(x1),…,^α2(xj),…,^α2(xk),…, | (4.42) |
^α2(xi),…,α2(xn+1),α(xi⋅xn+2))−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1φ([α(xj),α(xk)]C,α2(x1),…,^α2(xj),…,^α2(xi),…, | (4.43) |
^α2(xk),…,α2(xn+1),α(xi⋅xn+2))−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kφ([α(xj),α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xj),…, | (4.44) |
^α2(xk),…,α2(xn+1),α(xi⋅xn+2))+∑1≤i<j≤n+1(−1)i+jρ(αn−1[xi,xj]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2)) | (4.45) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xk),…,^α(xi),…,^α(xj),…,α(xn+2)) | (4.46) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1ρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xk),…,^α(xj),…,α(xn+2)) | (4.47) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+2)) | (4.48) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xk),…,^α(xi),…, | (4.49) |
^α(xj),…,α(xn+1),α(xk))+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xk),…, | (4.50) |
^α(xj),…,α(xn+1),α(xk))+∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…, | (4.51) |
^α(xk),…,α(xn+1),α(xk))+∑1≤i<j≤n+1(−1)i+jμ(αn(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),[xi,xj]C) | (4.52) |
−∑1≤k<i<j≤n+1(−1)i+j(−1)kφ(α[xi,xj]C,α2(x1),…,^α2(xk),…,^α2(xi),…,^α2(xj), | (4.53) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1φ(α[xi,xj]C,α2(x1),…,^α2(xi),…,^α2(xk),…,^α2(xj), | (4.54) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<j<k≤n+1(−1)i+j(−1)kφ(α[xi,xj]C,α2(x1),…,^α2(xi),…,^α2(xj),…,^α2(xk), | (4.55) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<j≤n+1(−1)i+jφ(α2(x1),…,^α2(xi),…,^α2(xj),…,α2(xn+1),[xi,xj]C⋅α(xn+2)) | (4.56) |
+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.57) |
^α2(xl),…,^α2(xi),…,^α2(xj),…,α2(xn+2))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.58) |
^α2(xi),…,^α2(xl),…,^α2(xj),…,α2(xn+2))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.59) |
^α2(xk),…,^α2(xl),…,^α2(xj),…,α2(xn+2))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.60) |
^α2(xj),…,^α2(xk),…,^α2(xl),…,α2(xn+2))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.61) |
^α2(xk),…,^α2(xj),…,^α2(xl),…,α2(xn+2))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.62) |
^α2(xi),…,^α2(xj),…,^α2(xl),…,α2(xn+2))+∑1≤k<i<j≤n+1(−1)i+j(−1)kφ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xk),…,^α2(xi),…,^α2(xj),…,α2(xn+2)) | (4.63) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1φ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xk),…,^α2(xj),…,α2(xn+2)) | (4.64) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kφ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xj),…,^α2(xk),…,α2(xn+2)). | (4.65) |
The terms (4.22) and (4.37), (4.23) and (4.36), (4.24) and (4.48), (4.25) and (4.47), (4.26) and (4.46), (4.33) and (4.51), (4.34) and (4.50), (4.35) and (4.49) cancel each other. By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.63), (4.64) and (4.65) is zero. By the antisymmetry condition, the term (4.57) and (4.60), (4.58) and (4.61), (4.59) and (4.62) cancel each other. By the definition of the sub-adjacent Lie bracket, the sum of (4.31), (4.32) and (4.52) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.40), (4.41) and (4.56) is zero. Since α is an algebra morphism, the term (4.42) and (4.55), (4.43) and (4.54), (4.44) and (4.53) cancel each other.
Since (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,⋅,α), the sum of (4.18) and (4.19) can be written as
∑1≤i<j≤n+1(−1)i+j+1ρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2), | (4.66) |
the sum of (4.20), (4.28) and (4.29) can be written as
−∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xj,…,^xi,…,xn+1,xj), | (4.67) |
and the sum of (4.21), (4.27) and (4.30) can be written as
∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj). | (4.68) |
Thus, we have
∂ωω(∂ωωφ)(x1,…,xn+2)=∑1≤i<j≤n+1(−1)i+j+1ρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2),+∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xj,…,^xi,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+j+1ρ(αn−1[xi,xj]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))−∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj))+∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),α(xj)). |
For all x1,…,xn+2∈A, we have
∂αω(∂ωαφ)(x1,…,xn+2)=∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+2)+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+1,xi)=∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2),−∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj))−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xi)+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xi)). |
Since α is an algebra morphism, we obtain that ∂ωω∘∂ωω+∂αω∘∂ωα = 0.
For all x1,…,xn+2∈A, we have
∂ωω(∂αωψ)(x1,…,xn+2)=n+1∑i=1(−1)i+1ρ(αn(xi))(∂αωψ)(x1,…,^xi,…,xn+2)+n+1∑i=1(−1)i+1μ(αn(xn+2))(∂αωψ)(x1,…,^xi,…,xn+1,xi)−n+1∑i=1(−1)i+1(∂αωψ)(α(x1),…,^α(xi),…,α(xn+1),xi⋅xn+2)+∑1≤i<j≤n+1(−1)i+j(∂αωψ)([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))=∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xk…,^xi,…,xn+2) | (4.69) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xi…,^xk,…,xn+2) | (4.70) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xi,…,^xj…,^xk,…,xn+2) | (4.71) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xk) | (4.72) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xk) | (4.73) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xk) | (4.74) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xj) | (4.75) |
−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xj) | (4.76) |
−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xj) | (4.77) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xi) | (4.78) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xi) | (4.79) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xi) | (4.80) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xk) | (4.81) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xk) | (4.82) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xk) | (4.83) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xj) | (4.84) |
−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xj) | (4.85) |
−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xj) | (4.86) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xj),…,^α(xk), | (4.87) |
…,^α(xi),…,α(xn+1),xi⋅xn+2)−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xj),…,^α(xi), | (4.88) |
…,^α(xk),…,α(xn+1),xi⋅xn+2)−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xi),…,^α(xj), | (4.89) |
…,^α(xk),…,α(xn+1),xi⋅xn+2)−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn−1(xj)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xj),…,^α(xk), | (4.90) |
…,^α(xi),…,α(xn+1),α(xk))−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn−1(xj)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xj),…,^α(xi), | (4.91) |
…,^α(xk),…,α(xn+1),α(xk))−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn−1(xj)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xi),…,^α(xj), | (4.92) |
…,^α(xk),…,α(xn+1),α(xk))+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn−1(xk)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xj),…,^α(xk), | (4.93) |
…,^α(xi),…,α(xn+1),α(xj))+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn−1(xk)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xj),…,^α(xi), | (4.94) |
…,^α(xk),…,α(xn+1),α(xj))+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn−1(xk)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xi),…,^α(xj), | (4.95) |
…,^α(xk),…,α(xn+1),α(xj))+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.96) |
^α(xl),…,^α(xi),…,^α(xj),…,α(xn+2))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l−1ρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.97) |
^α(xi),…,^α(xl),…,^α(xj),…,α(xn+2))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.98) |
^α(xi),…,^α(xj),…,^α(xl),…,α(xn+2))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.99) |
^α(xk),…,^α(xl),…,^α(xj),…,α(xn+2))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l−1ρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.100) |
^α(xk),…,^α(xj),…,^α(xl),…,α(xn+2))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.101) |
^α(xj),…,^α(xk),…,^α(xl),…,α(xn+2))+∑1≤k<i<j≤n+1(−1)i+j(−1)kρ([αn−2[xi,xj]C,αn−1(xk)]C)ψ(α(x1),…,^α(xk),…,^α(xi), | (4.102) |
…,^α(xj),…,α(xn+2))+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1ρ([αn−2[xi,xj]C,αn−1(xk)]C)ψ(α(x1),…,^α(xi),…,^α(xk), | (4.103) |
…,^α(xj),…,α(xn+2))+∑1≤i<j<k≤n+1(−1)i+j(−1)kρ([αn−2[xi,xj]C,αn−1(xk)]C)ψ(α(x1),…,^α(xi),…,^α(xj), | (4.104) |
…,^α(xk),…,α(xn+2))+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.105) |
^α(xl),…,^α(xi),…,^α(xj),…,α(xn+1),α(xl))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.106) |
^α(xi),…,^α(xl),…,^α(xj),…,α(xn+1),α(xl))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.107) |
^α(xi),…,^α(xj),…,^α(xl),…,α(xn+1),α(xl))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.108) |
^α(xk),…,^α(xl),…,^α(xj),…,α(xn+1),α(xl))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.109) |
^α(xk),…,^α(xj),…,^α(xl),…,α(xn+1),α(xl))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.110) |
^α(xj),…,^α(xk),…,^α(xl),…,α(xn+1),α(xl))−∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.111) |
^α(xl),…,^α(xi),…,^α(xj),…,α(xn+1),α(xk))−∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.112) |
^α(xi),…,^α(xl),…,^α(xj),…,α(xn+1),α(xk))−∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.113) |
^α(xi),…,^α(xj),…,^α(xl),…,α(xn+1),α(xk))−∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.114) |
^α(xk),…,^α(xl),…,^α(xj),…,α(xn+1),α(xk))−∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.115) |
^α(xk),…,^α(xj),…,^α(xl),…,α(xn+1),α(xk))−∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.116) |
^α(xj),…,^α(xk),…,^α(xl),…,α(xn+1),α(xk))+∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−2[xi,xj]C⋅αn−1(xn+2))ψ(α(x1),…,^α(xk),…,^α(xi), | (4.117) |
…,^α(xj),…,α(xn+1),α(xk))+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−2[xi,xj]C⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xk), | (4.118) |
…,^α(xj),…,α(xn+1),α(xk))+∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−2[xi,xj]C⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xj), | (4.119) |
…,^α(xk),…,α(xn+1),α(xk))−∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−1(xk)⋅αn−1(xn+2))ψ(α(x1),…,^α(xk),…,^α(xi), | (4.120) |
…,^α(xj),…,α(xn+1),[xi,xj]C)−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−1(xk)⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xk), | (4.121) |
…,^α(xj),…,α(xn+1),[xi,xj]C)−∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−1(xk)⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+1),[xi,xj]C), | (4.122) |
and
∂αω(∂ααψ)(x1,…,xn+2)=∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)(∂ααψ)(x1,…,^xi,…,^xj,…,xn+2)+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))(∂ααψ)(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))(∂ααψ)(x1,…,^xi,…,^xj,…,xn+1,xi)=∑1≤k<i<j≤n+1(−1)i+j(−1)kρ([αn−1(xi),αn−1(xj)]C)ρ(αn−1(xk))ψ(x1,…,^xk,…,^xi,…,^xj…,xn+2) | (4.123) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+2}) \end{eqnarray} | (4.124) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}, \dots, x_{n+2}) \end{eqnarray} | (4.125) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\mu(\alpha^{n-1}(x_{n+2}))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.126) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\mu(\alpha^{n-1}(x_{n+2}))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.127) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\mu(\alpha^{n-1}(x_{n+2}))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.128) |
\begin{eqnarray} &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.129) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_{n+2})\\ &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.130) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_{n+2})\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.131) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), x_k\cdot x_{n+2})\\ &&+\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.132) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.133) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.134) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.135) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.136) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.137) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_j) \end{eqnarray} | (4.138) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_j) \end{eqnarray} | (4.139) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_j) \end{eqnarray} | (4.140) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_j))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.141) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_j))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.142) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_j))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.143) |
\begin{eqnarray} &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.144) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_j)\\ &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.145) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_j)\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.146) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), x_k\cdot x_j)\\ &&+\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.147) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.148) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.149) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.150) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.151) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.152) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_i) \end{eqnarray} | (4.153) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_i) \end{eqnarray} | (4.154) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_i) \end{eqnarray} | (4.155) |
\begin{eqnarray} &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_i))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.156) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_i))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.157) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_i))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.158) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.159) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_i)\\ &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.160) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_i)\\ &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.161) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), x_k\cdot x_i)\\ &&-\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.162) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.163) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.164) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.165) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.166) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \\ \nonumber&&\dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_i)). \end{eqnarray} | (4.167) |
By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.102), (4.103) and (4.104) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.90), (4.95) and (4.118) is zero, the sum of (4.91), (4.92) and (4.119) is zero, the sum of (4.93), (4.94) and (4.117) is zero. Obviously, the sum of (4.96) and (4.137) is zero, the sum of (4.97) and (4.136) is zero, the sum of (4.98) and (4.135) is zero, the sum of (4.99) and (4.134) is zero, the sum of (4.100) and (4.133) is zero, the sum of (4.101) and (4.132) is zero, the sum of (4.87) and (4.131) is zero, the sum of (4.88) and (4.130) is zero, the sum of (4.89) and (4.129) is zero, the sum of (4.105) and (4.152) is zero, the sum of (4.106) and (4.151) is zero, the sum of (4.107) and (4.150) is zero, the sum of (4.108) and (4.149) is zero, the sum of (4.109) and (4.148) is zero, the sum of (4.110) and (4.147) is zero, the sum of (4.111) and (4.167) is zero, the sum of (4.112) and (4.166) is zero, the sum of (4.113) and (4.165) is zero, the sum of (4.114) and (4.164) is zero, the sum of (4.115) and (4.163) is zero, the sum of (4.116) and (4.162) is zero. By the definition of the sub-adjacent Lie bracket, the sum of (4.120), (4.145) and (4.146) is zero, the sum of (4.121), (4.144) and (4.161) is zero, the sum of (4.122), (4.159) and (4.160) is zero. Since (V, \beta, \rho) is a representation of the sub-adjacent Hom-Lie algebra A^C , the sum of (4.69), (4.70), (4.71), (4.123), (4.124) and (4.125) is zero. Since (V, \beta, \rho, \mu) is a representation of the Hom-pre-Lie algebra (A, \cdot, \alpha) , the sum of (4.73), (4.74), (4.78), (4.82), (4.83), (4.128), (4.138), (4.139), (4.143) and (4.158) is zero, the sum of (4.72), (4.77), (4.79), (4.81), (4.86), (4.127), (4.140), (4.142), (4.153) and (4.157) is zero, the sum of (4.75), (4.76), (4.80), (4.84), (4.85), (4.126), (4.141), (4.154), (4.155) and (4.156) is zero. Thus, we have \partial_{\omega\omega}\circ \partial_{\alpha\omega}+\partial_{\alpha\omega}\circ \partial_{\alpha\alpha} = 0 .
Similarly, we have \partial_{\omega\alpha}\circ \partial_{\omega\omega}+\partial_{\alpha\alpha}\circ \partial_{\omega\alpha} = 0 and \partial_{\omega\alpha}\circ \partial_{\alpha\omega}+\partial_{\alpha\alpha}\circ \partial_{\alpha\alpha} = 0 . This finishes the proof.
We give warmest thanks to Yunhe Sheng for helpful comments that improve the paper. This work is supported by National Natural Science Foundation of China (Grant No. 12001226).
The authors declare there is no conflicts of interest.
[1] | Andre MC, Dai M (2018) Learning, robust monetary policy and the merit of precaution. BE J Macroecon 18: 2. |
[2] | Barlevy G (2009) Policymaking under uncertainty: gradualism and robustness. Econ Perspect 33. |
[3] |
Bask M, Proano CR (2016) Optimal monetary policy under learning and structural uncertainty in a New Keynesian model with a cost channel and inflation inertia. J Econ Dyn Control 69: 112-126. doi: 10.1016/j.jedc.2016.05.009
![]() |
[4] | Brainard WC (1967) Uncertainty and the effectiveness of policy. Am Econ Rev Pap Proc 57: 411-425. |
[5] |
Calvo G (1983) Staggered prices in a utility-maximizing framework. J Monetary Econ 12: 383-398. doi: 10.1016/0304-3932(83)90060-0
![]() |
[6] | Cateau G (2006) Guarding against large policy errors under model uncertainty. Bank of Canada Working Paper No. 2006-13. |
[7] | Cebula RJ, Boylan R (2019) Uncertainty regarding the effectiveness of Federal Reserve monetary policies over time in the U.S.: an exploratory empirical assessment. Quant Financ Econ 3: 244-256. |
[8] |
Chari VV, Kehoe PJ, McGrattan ER (2009) New Keynesian models: not yet useful for policy analysis. Am Econ J Macroecon Am Econ Assoc 1: 242-266. doi: 10.1257/mac.1.1.242
![]() |
[9] | Debortoli D, Kim J, Lindè J, et al. (2016) Designing a simple loss function for the Fed: does the dual mandate make sense? The Institute of Economic Research-Korea University, Discussion Paper Series, No. 1601. |
[10] |
Dennis R (2010) How robustness Can lower the cost of discretion. J Monetary Econ 57: 653-667. doi: 10.1016/j.jmoneco.2010.06.003
![]() |
[11] | Edge RM (2003) A utility-based welfare criterion in a model with endogenous capital accumulation. Finance and Economics Discussion Series, Working Paper No. 2003-66. |
[12] |
Fernandez-Villaverde J (2010) The econometrics of DSGE models. SERIEs 1: 3-49. doi: 10.1007/s13209-009-0014-7
![]() |
[13] | Fernandez-Villaverde J, Rubio-Ramirez JF (2006) A Baseline DSGE Model. Available from: http://economics.sas.upenn.edu/~jesusfv/benchmark_DSGE.pdf |
[14] | Gali J (2015) Monetary policy, inflation, and the business cycle: an introduction to the New Keynesian framework and its applications, Second Edition, Princeton, NJ: Princeton University Press. |
[15] |
Gali J (2018) The state of New Keynesian economics: a partial assessment. J Econ Perspect 32:87-112. doi: 10.1257/jep.32.3.87
![]() |
[16] |
Gali J, Gertler M (1999) Inflation dynamics: a structural econometric approach. J Monetary Econ 44: 195-222. doi: 10.1016/S0304-3932(99)00023-9
![]() |
[17] | Gali J, Gertler M, Lopez-Salido D (2005) Robustness of the estimates of the hybrid New Keynesian Phillips curve. NBER Working Paper No. 11788. |
[18] |
Gerke R, Hammermann F (2016) Robust monetary policy in a New Keynesian model with imperfect interest rate pass-through. Macroecon Dyn 20: 1504-1526. doi: 10.1017/S136510051400100X
![]() |
[19] |
Giordani P, Söderlind P (2004) Solution of macromodels with Hansen-Sargent robust policies: some extensions. J Econ Dyn Control 28: 2367-2397. doi: 10.1016/j.jedc.2003.11.001
![]() |
[20] | Giannoni MP, Woodford M (2003) Optimal interest-rate rules: I.general theory. NBER Working Paper No. 9419. |
[21] | Hansen LP, Sargent TJ (2008) Robustness, Princeton, NJ: Princeton University Press. |
[22] |
Kantur Z, Özcan G (2018) Financial stability under model uncertainty. Econ Lett 173: 65-68. doi: 10.1016/j.econlet.2018.09.019
![]() |
[23] | Kantur Z, Özcan G (2019) Optimal policy implications of financial uncertainty. University Library of Munich, Germany, MPRA Paper 95920. |
[24] | Leitemo K, Söderström U (2008a) Robust monetary policy in the New Keynesian framework. Macroecon Dyn 12: 126-135. |
[25] | Leitemo K, Söderström U (2008b) Robust Monetary Policy in a Small Open Economy. J Econ Dyn Control 32: 3218-3252. |
[26] |
Leith C, Moldovana I, Rossi R (2012) Optimal monetary policy in a New Keynesian model with habits in consumption. Rev Econ Dyn 15: 416-435. doi: 10.1016/j.red.2012.03.001
![]() |
[27] |
Lengnick M, Wohltmann HW (2017). Optimal monetary policy in a new Keynesian model with animal spirits and financial markets. J Econ Dyn Control 64: 148-165. doi: 10.1016/j.jedc.2016.01.003
![]() |
[28] |
Pecora N, Spelta A (2017). Managing monetary policy in a New Keynesian model with many beliefs types. Econ Lett 150: 53-58. doi: 10.1016/j.econlet.2016.11.007
![]() |
[29] |
Reis R (2013) Central bank design. J Econ Perspect 27: 17-44. doi: 10.1257/jep.27.4.17
![]() |
[30] |
Rotemberg JJ, Woodford M (1997) An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy. NBER Macroecon Annu 12: 297-346. doi: 10.1086/654340
![]() |
[31] |
Smets F, Wouters R (2007) Shocks and frictions in US business cycles: a bayesian DSGE approach. Am Econ Rev 97: 586-606. doi: 10.1257/aer.97.3.586
![]() |
[32] | Svensson LEO (2010) Inflation targeting, In Handbook of Monetary Economics, Elsevier, 3: 1237-1302. |
[33] |
Tillmann P (2009) Robust monetary policy with cost channel. Economica 76: 486-504. doi: 10.1111/j.1468-0335.2008.00697.x
![]() |
[34] |
Walsh CE (2004) Robustly optimal instrument rules and robust control: an equivalence result. J Money Credit Bank 36: 1105-1113. doi: 10.1353/mcb.2005.0013
![]() |
[35] | Woodford M (2003) Interest and Prices, Princeton University Press. |