Research article

The effect of recrystallization annealing on the tungsten surface carbidization in a beam plasma discharge

  • Received: 21 April 2023 Revised: 31 May 2023 Accepted: 12 June 2023 Published: 30 June 2023
  • Tungsten was chosen as the plasma facing material (PFM) of the ITER divertor. However, graphite and carbon-graphite materials are used as PFM in some research thermonuclear facilities, including the Kazakhstan materials science tokamak. This circumstance determines the interest in continuing the study of the formation of mixed layers under plasma irradiation. This article is devoted to the study of the effect of preliminary recrystallization annealing on the carbidization of the tungsten surface in a beam-plasma discharge (BPD), which is one of the ways to simulate the peripheral plasma of a tokamak. Experiments on preliminary isochoric and isothermal annealing of tungsten samples were carried out in the mode of direct heating of tungsten samples by an electron beam. The carbidization of tungsten samples after annealing was carried out in a methane atmosphere in the BPD at a temperature of 1000 ℃ for a duration of 3600 s. Optical microscopy (OM) and X-ray diffraction were used to analyze the structure of the tungsten surface. It has been established that differences in the structure arising during recrystallization annealing affect the transfer of carbon atoms in the near-surface area of tungsten and the formation of tungsten carbides (WC or W2C).

    Citation: Mazhyn Skakov, Victor Baklanov, Gainiya Zhanbolatova, Arman Miniyazov, Igor Sokolov, Yernat Kozhakhmetov, Timur Tulenbergenov, Nuriya Mukhamedova, Olga Bukina, Alexander Gradoboev. The effect of recrystallization annealing on the tungsten surface carbidization in a beam plasma discharge[J]. AIMS Materials Science, 2023, 10(3): 541-555. doi: 10.3934/matersci.2023030

    Related Papers:

  • Tungsten was chosen as the plasma facing material (PFM) of the ITER divertor. However, graphite and carbon-graphite materials are used as PFM in some research thermonuclear facilities, including the Kazakhstan materials science tokamak. This circumstance determines the interest in continuing the study of the formation of mixed layers under plasma irradiation. This article is devoted to the study of the effect of preliminary recrystallization annealing on the carbidization of the tungsten surface in a beam-plasma discharge (BPD), which is one of the ways to simulate the peripheral plasma of a tokamak. Experiments on preliminary isochoric and isothermal annealing of tungsten samples were carried out in the mode of direct heating of tungsten samples by an electron beam. The carbidization of tungsten samples after annealing was carried out in a methane atmosphere in the BPD at a temperature of 1000 ℃ for a duration of 3600 s. Optical microscopy (OM) and X-ray diffraction were used to analyze the structure of the tungsten surface. It has been established that differences in the structure arising during recrystallization annealing affect the transfer of carbon atoms in the near-surface area of tungsten and the formation of tungsten carbides (WC or W2C).



    加载中


    [1] Hirai T, Maier H, Rubel M, et al. (2007) R & D on full tungsten divertor and beryllium wall for JET ITER-like wall project. Fusion Eng Des 82: 1839–1845. https://doi.org/10.1016/j.fusengdes.2007.02.024 doi: 10.1016/j.fusengdes.2007.02.024
    [2] Pintsuk G, Hasegawa A (2019) Tungsten as a plasma-facing material, Reference Module in Materials Science and Materials Engineering, Elsevier Inc. https://doi.org/10.1016/B978-0-12-803581-8.11696-0
    [3] Davis JW, Barabash VR, Makhankov A, et al. (1998) Assessment of tungsten for use in the ITER plasma facing components. J Nucl Mater 258-263: 308–312. https://doi.org/10.1016/S0022-3115(98)00285-2 doi: 10.1016/S0022-3115(98)00285-2
    [4] Castin N, Van den Kerkhof S, Bonny G, et al. (2023) On the microstructure evolution in tungsten ITER monoblocks: A computational study. Comp Mater Sci 219: 112001. https://doi.org/10.1016/j.commatsci.2022.112001 doi: 10.1016/j.commatsci.2022.112001
    [5] Xu HY, Zhang YB, Yuan Y, et al. (2013) Observations of orientation dependence of surface morphology in tungsten implanted by low energy and high flux D plasma. J Nucl Mater 443: 452–457. https://doi.org/10.1016/j.jnucmat.2013.07.062 doi: 10.1016/j.jnucmat.2013.07.062
    [6] Jia YZ, Liu W, Xu B, et al. (2016) Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature. J Nucl Mater 477: 165–171. https://doi.org/10.1016/j.jnucmat.2016.05.011 doi: 10.1016/j.jnucmat.2016.05.011
    [7] Wirtz M, Uytdenhouwen I, Barabash V, et al. (2017) Material properties and their influence on the behaviour of tungsten as plasma facing material. Nucl Fusion 57: 066018. https://doi.org/10.1088/1741-4326/aa6938 doi: 10.1088/1741-4326/aa6938
    [8] Missirlian M, Firdaouss M, Richou M, et al. (2023) Manufacturing, testing and installation of the full tungsten actively cooled ITER-like divertor in the WEST tokamak. Fusion Eng Des 193: 113683. https://doi.org/10.1016/j.fusengdes.2023.113683 doi: 10.1016/j.fusengdes.2023.113683
    [9] Yu Y, Zhou D, Sakamoto M, et al. (2023) Fuel recycling control in long pulse operation with full tungsten divertors in EAST tokamak. Nucl Mater Energy 34: 101333. https://doi.org/10.1016/j.nme.2022.101333 doi: 10.1016/j.nme.2022.101333
    [10] Matthews GF, Coad P, Greuner H, et al. (2009) Development of divertor tungsten coatings for the JET ITER-like wall. J Nucl Mater 390–391: 934–937. https://doi.org/10.1016/j.jnucmat.2009.01.239 doi: 10.1016/j.jnucmat.2009.01.239
    [11] Tazhibayeva IL, Azizov EA, Krylov VA, et al. (2017) KTM experimental complex project status. Fusion Sci Technol 47: 746–750. https://doi.org/10.13182/FST05-A775 doi: 10.13182/FST05-A775
    [12] Luthin J, Linsmeier C (2000) Carbon films and carbide formation on tungsten. Surf Sci 454–456: 78–82. https://doi.org/10.1016/S0039-6028(00)00181-3 doi: 10.1016/S0039-6028(00)00181-3
    [13] Samarkhanov K, Batyrbekov E, Khasenov M, et al. (2019) Study of luminescence in noble gases and binary Kr-Xe mixture excited by the products of 6Li(N, α)T nuclear reaction. Eurasian Chem-Technol 21: 115–123. https://doi.org/10.18321/ectj821 doi: 10.18321/ectj821
    [14] Linsmeier Ch, Luthin J, Klages KU, et al. (2004) Formation and erosion of carbon-containing mixed materials on metals. Phys Scripta T111: 86–91. https://doi.org/10.1238/Physica.Topical.111a00086 doi: 10.1238/Physica.Topical.111a00086
    [15] Linsmeier Ch, Reinelt M, Schmid K (2011) Surface chemistry of first wall materials—From fundamental data to modeling. J Nucl Mater 415: S212–S218. https://doi.org/10.1016/j.jnucmat.2010.08.056 doi: 10.1016/j.jnucmat.2010.08.056
    [16] Ponkratov YU, Nikitenkov N, Tazhibayeva I, et al. (2019) Methodology of the experiments to study lithium cps interaction with deuterium under conditions of reactor irradiation. Eurasian Chem-Technol 21: 107–113. https://doi.org/10.18321/ectj820 doi: 10.18321/ectj820
    [17] Budaev VP, Martynenko YV, Karpov AV, et al. (2015) Tungsten recrystallization and cracking under ITER-relevant heat loads. J Nucl Mater 463: 237–240. https://doi.org/10.1016/j.jnucmat.2014.11.129 doi: 10.1016/j.jnucmat.2014.11.129
    [18] Parish CM, Hijazi H, Meyer HM, et al. (2014) Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes. Acta Mater 62: 173–181. https://doi.org/10.1016/j.actamat.2013.09.045 doi: 10.1016/j.actamat.2013.09.045
    [19] Alfonso A, Jensen DJ, Luo GN, et al. (2014) Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150–1350 ℃. J Nucl Mater 455: 591–594. https://doi.org/10.1016/j.jnucmat.2014.08.037 doi: 10.1016/j.jnucmat.2014.08.037
    [20] Rieth M, Hoffmann A (2010) Influence of microstructure and notch fabrication on impact bending properties of tungsten materials. Int J Refract Met Hard Mater 28: 679–686. https://doi.org/10.1016/j.ijrmhm.2010.04.010 doi: 10.1016/j.ijrmhm.2010.04.010
    [21] Mathaudhu SN, de Rosset A J, Hartwig KT, et al. (2009) Microstructures and recrystallization behavior of severely hot-deformed tungsten. Mater Sci Eng A 503: 28–31. https://doi.org/10.1016/j.msea.2008.03.051 doi: 10.1016/j.msea.2008.03.051
    [22] Kolodeshnikov AA, Zuev VA, Ganovichev DA, et al. (2016) Imitation stand with a plasma-beam installation. Republic of Kazakhstan Patent No. 2016/0108.2 (in Russian).
    [23] Tulubayev Y, Ponkratov Y, Gordienko Y, et al. (2023) Development of a methodology for conducting experiments with a sample of lithium capillary-porous structure at a plasma-beam installation. Mater Today Proc 81: 1209–1215. https://doi.org/10.1016/j.matpr.2023.03.176 doi: 10.1016/j.matpr.2023.03.176
    [24] Skakov M, Miniyazov A, Batyrbekov E, et al. (2022) Influence of the carbidized tungsten surface on the processes of interaction with helium plasma. Materials 15: 7821. https://doi.org/10.3390/ma15217821 doi: 10.3390/ma15217821
    [25] Sokolov IA, Skakov MK, Miniyazov AZ, et al. (2021) Interaction of plasma with beryllium. J Phys-Conf Ser 2064: 012070. https://doi.org/10.1088/1742-6596/2064/1/012070 doi: 10.1088/1742-6596/2064/1/012070
    [26] Skakov M, Batyrbekov E, Sokolov I, et al. (2022) Influence of hydrogen plasma on the surface structure of beryllium. Materials 15: 6340. https://doi.org/10.3390/ma15186340 doi: 10.3390/ma15186340
    [27] Kozhakhmetov Ye, Skakov M, Wieleba W, et al. (2020) Evolution of intermetallic compounds in Ti–Al–Nb system by the action of mechanoactivation and spark plasma sintering. AIMS Mater Sci 7: 182–191. https://doi.org/10.3934/matersci.2020.2.182 doi: 10.3934/matersci.2020.2.182
    [28] Mukhamedova N, Kozhakhmetov Y, Skakov M, et al. (2022) Microstructural stability of a two-phase (O + B2) alloy of the Ti–25Al–25Nb system (at.%) during thermal cycling in a hydrogen atmosphere. AIMS Mater Sci 9: 270–282. https://doi.org/10.3934/matersci.2022016 doi: 10.3934/matersci.2022016
    [29] Zhanbolatova GK, Baklanov VV, Tulenbergenov TR, et al. (2020) Carbidization of the tungsten surface in a beam-plasma discharge. NNC RK Bulletin 4: 77–81 (in Russian).
    [30] Baklanov V, Zhanbolatova G, Skakov M, et al. (2022) Study of the temperature dependence of a carbidized layer formation on the tungsten surface under plasma irradiation. Mater Res Express 9: 016403. https://doi.org/10.1088/2053-1591/ac4626 doi: 10.1088/2053-1591/ac4626
    [31] Zhanbolatova GK, Baklanov VV, Skakov MK, et al. (2021) Influence of temperature on tungsten carbide formation in a beam plasma discharge. J Phys-Conf Ser 2064: 012055. https://doi.org/10.1088/1742-6596/2064/1/012055 doi: 10.1088/1742-6596/2064/1/012055
    [32] Miniyazov AZ, Skakov MK, Tulenbergenov TR, et al. (2021) Investigation of tungsten surface carbidization under plasma irradiation. J Phys-Conf Ser 2064: 012053. https://doi.org/10.1088/1742-6596/2064/1/012053 doi: 10.1088/1742-6596/2064/1/012053
    [33] Kolenko YA (1994) Technology of Laboratory Experiment: Handbook, Polytechnic, 751 (in Russian).
    [34] ASTM International (2021) Standard test methods for determining average grain size. ASTM E112-13.
    [35] Bochvar AA (1940) Fundamentals of Heat Treatment of Alloys, Metallurgical Publishing House, NKCM Soviet Union, National. Science and technology. Understanding History: Biography Black and Nonferrous Metallurgy, 299 (in Russian). Available from: http://www.e-heritage.ru/Catalog/ShowPub/5078.
    [36] Aleksandrov VM (2015) Material Science and Technology of Structural Materials. Part 1: Materials Science. Arkhangelsk: Northern (Arctic) Federal University, 327 (in Russian). Available from: https://www.studmed.ru/aleksandrov-v-m-materialovedenie-i-tehnologiya-konstrukcionnyh-materialov-uchebnoe-posobie-chast-1-materialovedenie-standart-tretego-pokoleniya_4f2b3ab2370.html.
    [37] Gražulis S, Chateigner D, Downs RT, et al. (2009) Crystallography Open Database—an open-access collection of crystal structures. J Appl Cryst 42: 726–729. https://doi.org/10.1107/S0021889809016690 doi: 10.1107/S0021889809016690
    [38] Bukina OS, Kukushkin IM (2019) Identification of changes in the structure and phase composition of the surface layer of tungsten, which occurred as a result of exposure to methane plasma. NNC RK Bulletin 3: 46–53 (in Russian).
    [39] Perevezentsov VN, Shcherban MY (2000) Recrystallization of Metals and Alloys, Nizhny Novgorod: Publishing House of the UNN. N.I. Lobachevsky, 62 (in Russian).
    [40] Gorelik SS, Dobatkin SV, Kaputkina LM (2005) Recrystallization of Metals and Alloys, Moscow: MISIS, 432 (in Russian).
    [41] Zhang ZX, Chen DS, Han WT, et al. (2015) Irradiation hardening in pure tungsten before and after recrystallization. Fusion Eng Des 98: 2103–2107. https://doi.org/10.1016/j.fusengdes.2015.06.192 doi: 10.1016/j.fusengdes.2015.06.192
    [42] Wang K, Sun H, Zan X, et al. (2020) Evolution of microstructure and texture of moderately warm-rolled pure tungsten during annealing at 1300 ℃. J Nucl Mater 540: 152412. https://doi.org/10.1016/j.jnucmat.2020.152412 doi: 10.1016/j.jnucmat.2020.152412
    [43] Xue K, Guo Y, Zhou Y, et al. (2021) Thermal stability of the HPT-processed tungsten at 1250–1350 ℃. Int J Refract Met H 94: 105377. https://doi.org/10.1016/j.ijrmhm.2020.105377 doi: 10.1016/j.ijrmhm.2020.105377
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1525) PDF downloads(125) Cited by(5)

Article outline

Figures and Tables

Figures(9)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog