Citation: Dimitra Papadaki, Spyros Foteinis, Vasileios Binas, Margarita N. Assimakopoulos, Theocharis Tsoutsos, George Kiriakidis. A life cycle assessment of PCM and VIP in warm Mediterranean climates and their introduction as a strategy to promote energy savings and mitigate carbon emissions[J]. AIMS Materials Science, 2019, 6(6): 944-959. doi: 10.3934/matersci.2019.6.944
[1] | Bernardo H, Antunes CH, Gaspar A, et al. (2016) An approach for energy performance and indoor climate assessment in a Portuguese school building. Sustain Cities Soc 30: 184-194. |
[2] | Stephan A, Stephan L (2016) Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings. Appl Energ 161: 445-464. doi: 10.1016/j.apenergy.2015.10.023 |
[3] | Zhang X, Wang F (2016) Hybrid input-output analysis for life-cycle energy consumption and carbon emissions of China's building sector. Build Environ 104: 188-197. doi: 10.1016/j.buildenv.2016.05.018 |
[4] | Luo Z, Yang L, Liu J (2016) Embodied carbon emissions of office building: A case study of China's 78 office buildings. Build Environ 95: 365-371. doi: 10.1016/j.buildenv.2015.09.018 |
[5] | EU (2010) Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off J Eur Union 2010: 13-35. |
[6] | Economidou M, Atanasiu B, Despret C, et al. (2011) Europe's Buildings under the Microscope. Buildings Performance Institute Europe (BPIE). |
[7] | Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: A state of art. Renew Sustain Energ Rev 11: 1146-1166. doi: 10.1016/j.rser.2005.10.002 |
[8] | Mukhopadhyaya P, Maclean D, Korn J, et al. (2014) Building application and thermal performance of vacuum insulation panels (VIPs) in Canadian subarctic climate. Energ Buildings 85: 672-680. |
[9] | Aranda-Uson A, Ferreira G, Lopez-Sabiron AM, et al. (2013) Phase change material applications in buildings: An environmental assessment for some Spanish climate severities. Sci Total Environ 444: 16-25. doi: 10.1016/j.scitotenv.2012.11.012 |
[10] | Song M, Niu F, Mao N, et al. (2018) Review on building energy performance improvement using phase change materials. Energ Buildings 158: 776-793. doi: 10.1016/j.enbuild.2017.10.066 |
[11] | Gao T, Ingunn L, Sandberg C, et al. (2014) Nano insulation materials: synthesis and life cycle assessment. Procedia CIRP 15: 490-495. doi: 10.1016/j.procir.2014.06.041 |
[12] | de Gracia A, Rincón L, Castell A, et al. (2010) Life cycle assessment of the inclusion of phase change materials (PCM) in experimental buildings. Energ Buildings 42: 1517-1523. doi: 10.1016/j.enbuild.2010.03.022 |
[13] | Farid MM, Khudhair AM, Razack SAK, et al. (2004) A review on phase change energy storage: materials and applications. Energ Convers Manag 45: 1597-1615. doi: 10.1016/j.enconman.2003.09.015 |
[14] | Sierra-Perez J, Boschmonart-Rives J, Gabarrell X (2016) Environmental assessment of façade-building systems and thermal insulation materials for different climatic conditions. J Clean Prod 113: 102-113. doi: 10.1016/j.jclepro.2015.11.090 |
[15] | Dylewski R, Adamczyk J (2016) The environmental impacts of thermal insulation of buildings including the categories of damage: A Polish case study. J Clean Prod 137: 878-887. doi: 10.1016/j.jclepro.2016.07.172 |
[16] | Jordà X, Esarte J, Perpiñà X, et al. (2015) Characterization of phase change material systems using a thermal test device. Microelectron J 46: 1195-1201. doi: 10.1016/j.mejo.2015.09.022 |
[17] | Giro-Paloma J, Al-shannaq R, Fernández AI, et al. (2016) Preparation and characterization of microencapsulated phase change materials for use in building applications. Materials 9: 1-13. |
[18] | Nemanic V, Zajec B, Zumer M, et al. (2014) Synthesis and characterization of melamine-formaldehyde rigid foams for vacuum thermal insulation. Appl Energ 114: 320-326. doi: 10.1016/j.apenergy.2013.09.071 |
[19] | Fang Y, Kuang S, Gao X, et al. (2008) Preparation and characterization of novel nanoencapsulated phase change materials. Energ Convers Manag 49: 3704-3707. doi: 10.1016/j.enconman.2008.06.027 |
[20] | Fateh A, Borelli D, Spoladore A, et al. (2019) A state-space analysis of a single zone building considering solar radiation, internal radiation, and PCM effects. MDPI Appl Sci 9: 832-859. |
[21] | Fateh A, Borelli D, Weinläder H, et al. (2019) Cardinal orientation and melting temperature effects for PCM-enhanced light-walls in different climates. Sustain Cities Soc 51: 101766. doi: 10.1016/j.scs.2019.101766 |
[22] | Fateh A, Borelli D, Devia F, et al. (2018) Summer thermal performances of PCM-integrated insulation layers for light-weight building walls: effect of orientation and melting point temperature. Therm Sci Eng Prog 6: 361-369. doi: 10.1016/j.tsep.2017.12.012 |
[23] | Iommi M (2018) The mediterranean smart adaptive wall. An experimental design of a smart and adaptive facade module for the mediterranean climate. Energ Build 158: 1450-1460. |
[24] | Detommaso M, Gianpiero E, Antonio G, et al. (2016) Thermal performance of innovative building envelope systems in Mediterranean climate. International Building Performance Simulation Association (IBPSA), 77-85. |
[25] | Konstantinidou CA, Lang W, Papadopoulos AM (2018) Multiobjective optimization of a building envelope with the use of phase change materials (PCMs) in Mediterranean climates. Int J Energ Res 42: 3030-3047. doi: 10.1002/er.3969 |
[26] | Cabeza LF, Castell A, Medrano M, et al. (2010) Experimental study on the performance of insulation materials in Mediterranean construction. Energ Buildings 42: 630-636. doi: 10.1016/j.enbuild.2009.10.033 |
[27] | Ascione F, Francesca R, Masi D, et al. (2017) Experimental investigation and numerical evaluation of adoption of multi-layered wall with vacuum insulation panel for typical Mediterranean climate. Energ Buildings 152: 108-123. doi: 10.1016/j.enbuild.2017.07.029 |
[28] | Mandilaras I, Stamatiadou M, Katsourinis D, et al. (2013) Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls. Build Environ 61: 93-103. |
[29] | Baldassarri C, Sala S, Caverzan A, et al. (2017) Environmental and spatial assessment for the ecodesign of a cladding system with embedded phase change materials. Energ Buildings 156: 374-389. doi: 10.1016/j.enbuild.2017.09.011 |
[30] | BSI (2006) ISO 14040:2006, Environmental management-life cycle assessment-principles and framework. |
[31] | BSI (2006) ISO 14044:2006, Environmental management-life cycle assessment-requirements and guidelines. |
[32] | Papadaki D, Foteinis S, Mhlongo GH, et al. (2017) Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures. Sci Total Environ 586: 566-575. doi: 10.1016/j.scitotenv.2017.02.019 |
[33] | Thormark C (2002) A low energy building in a life cycle-its embodied energy, energy need for operation and recycling potential. Build Environ 37: 429-435. doi: 10.1016/S0360-1323(01)00033-6 |
[34] | Huang B, Xing K, Pullen S (2017) Energy and carbon performance evaluation for buildings and urban precincts: review and a new modelling concept. J Clean Prod 163: 24-35. doi: 10.1016/j.jclepro.2015.12.008 |
[35] | Foteinis S, Monteagudo JM, Durán A, et al. (2018) Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Sci Total Environ 612: 605-612. doi: 10.1016/j.scitotenv.2017.08.277 |
[36] | Chatzisymeon E, Foteinis S, Mantzavinos D, et al. (2013) Life cycle assessment of advanced oxidation processes for olive mill wastewater treatment. J Clean Prod 54: 229-234. doi: 10.1016/j.jclepro.2013.05.013 |
[37] | Kreith F, Black WZ (1980) Basic Heat Transfer. New York: Harper and Row. |
[38] | Blengini GA, Di Carlo T (2010) The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energ Buildings 42: 869-880. doi: 10.1016/j.enbuild.2009.12.009 |