Citation: Kulpash Iskakova, Rif Akhmaltdinov, Orken Mamyrbayev. Production of thin copper oxide films and its electronic density[J]. AIMS Materials Science, 2019, 6(3): 454-463. doi: 10.3934/matersci.2019.3.454
[1] | Baumeister PW (1961) Optical absorption of cuprous oxide. Phys Rev 121: 359–362. doi: 10.1103/PhysRev.121.359 |
[2] | Besenbacher F, Nørskov JK (1993) Oxygen chemisorption on metal surfaces: General trends for Cu, Ni and Ag. Prog Surf Sci 44: 5–66. doi: 10.1016/0079-6816(93)90006-H |
[3] | Berge K, Goldmann A (2003) Electronic interchain interactions of the Cu(110)(2 × 1)O surface-an angle-resolved photoemission study. Surf Sci 540: 97–106. doi: 10.1016/S0039-6028(03)00778-7 |
[4] | Bessekhouad Y, Robert D, Weber JV (2005) Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today 101: 315–321. doi: 10.1016/j.cattod.2005.03.038 |
[5] | Blanchard NP, Martin DS, Weightman P (2005) Molecular adsorbate induced restructuring of a stepped Cu(110) surface. Phys Status Solidi C 12: 4017–4021. |
[6] | Islam MM, Diawara B, Maurice V, et al. (2009) Bulk and surface properties of Cu2O: A first-principles investigation. J Mol Struc-THEOCHEM 903: 41–48. doi: 10.1016/j.theochem.2009.02.037 |
[7] | Islam MM, Diawara B, Maurice V, et al. (2009) First principles investigation on the stabilization mechanisms of the polar copper terminated Cu2O(111) surface. Surf Sci 603: 2087–2095. doi: 10.1016/j.susc.2009.04.005 |
[8] | Galeotti M, Cortigiani B, Torrini M, et al. (1996) Epitaxy and structure of the chloride phase formed by reaction of chlorine with Cu(100). A study by X-ray photoelectron diffraction. Surf Sci 349: L164–L168. |
[9] | Forster M, Raval R, Hodgson A, et al. (2011) c(2 × 2) water-hydroxyl layer on Cu(110): a wetting layer stabilized by Bjerrum defects. Phys Rev Lett 106: 046103. doi: 10.1103/PhysRevLett.106.046103 |
[10] | Ikeda S, Takata T, Kondo T, et al. (1998) Mechano-catalytic overall water splitting. Chem Commun 2185–2186. |
[11] | Bobrov K, Guillemot L (2008) Interplay between adsorbate-induced reconstruction and local strain: Formation of phases on the Cu(110)–(2 × 1):O surface. Phys Rev B 78: 121408(R). |
[12] |
|
[13] | 12. Bohnen KP, Heid R, Pintschovius L, et al. (2009) Ab initio lattice dynamics and thermal expansion of Cu2O. Phys Rev B 80: 304. doi: 10.1103/PhysRevB.80.134304 |
[14] | 13. Fornasini P, Dalba G, Grisenti R, et al. (2006) Local behaviour of negative thermal expansion materials. Nucl Instrum Meth B 246: 180–183. doi: 10.1016/j.nimb.2005.12.062 |
[15] | 14. Hu JP, Payne DJ, Egdell RG, et al. (2008) On-site interband excitations in resonant inelastic X-ray scattering from Cu2O. Phys Rev B 77: 115. doi: 10.1103/PhysRevB.77.155115 |
[16] | 15. Coulman DJ, Wintterlin J, Behm RJ, et al. (1990) Novel mechanism for the formation of chemisorption phases: The (2 × 1)O–Cu(110) "added row" reconstruction. Phys Rev Lett 64: 1761–1764. doi: 10.1103/PhysRevLett.64.1761 |
[17] | 16. Cox DF, Schulz KH (1991) Interaction of CO with Cu+ cations: CO adsorption on Cu2O(100). Surf Sci 249: 138–148. doi: 10.1016/0039-6028(91)90839-K |
[18] | 17. Harrison MJ, Woodruff DP, Robinson J, et al. (2006) Adsorbate-induced surface reconstruction and surface-stress changes in Cu(100)/O: Experiment and theory. Phys Rev B 74: 165402. doi: 10.1103/PhysRevB.74.165402 |
[19] | 18. Haugsrud R, Kofstad P (7) On the oxygen pressure dependence of high temperature oxidation of copper. Mater Sci Forum 251–254: 65–72. |
[20] | 19. Haugsrud R (2) The influence of water vapor on the oxidation of copper at intermediate temperatures. J Electrochem Soc 149: B14–B21. doi: 10.1149/1.1427076 |
[21] | 20. Haugsrud R, Norby T (1999) Determination of thermodynamics and kinetics of point defects in Cu2O using the Rosenburg method. J Electrochem Soc 146: 999–1004. doi: 10.1149/1.1391712 |
[22] | 21. Ho JH, Vook RW (1978) (111)Cu2O growth modes on (111)Cu surfaces. J Cryst Growth 44: 561–569. doi: 10.1016/0022-0248(78)90299-3 |
[23] | 22. Ito T, Yamaguchi H, Okabe K, et al. (1998) Single-crystal growth and characterization of Cu2O and CuO. J Mater Sci 33: 3555–3566. doi: 10.1023/A:1004690809547 |
[24] | 23. Ivanda M, Waasmaier D, Endriss A, et al. (1997) Low-temperature anomalies of cuprite observed by Raman spectroscopy and X-ray powder diffraction. J Raman Spectrosc 28: 487–493. doi: 10.1002/(SICI)1097-4555(199707)28:7<487::AID-JRS115>3.0.CO;2-V |
[25] | 24. Brandstetter T, Draxler M, Hohage M, et al. (2008) Oxygen-induced restructuring of Cu(19 19 1) studied by scanning tunneling microscopy. Phys Rev B 78: 075402. doi: 10.1103/PhysRevB.78.075402 |
[26] | 25. Cruickshank BJ, Sneddon DD, Gewirth AA (1993) In situ observations of oxygen adsorption on a Cu(100) substrate using atomic force microscopy. Surf Sci 281: L308–L314. doi: 10.1016/0039-6028(93)90845-B |
[27] | 26. Dapiaggi M, Tiano W, Artioli G, et al. (2003) The thermal behaviour of cuprite: An XRD–EXAFS combined approach. Nucl Instrum Meth B 200: 231–236. doi: 10.1016/S0168-583X(02)01682-8 |
[28] | 27. Hara M, Kondo T, Komoda M, et al. (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 357–358. |
[29] | 28. Brattain WH (1951) The copper oxide rectifier. Rev Mod Phys 23: 203–212. doi: 10.1103/RevModPhys.23.203 |
[30] | 29. De Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Cu2O: a catalyst for the photochemical decomposition of water? Chem Commun 1069–1070. |
[31] | 30. Hodgson A, Haq S (2009) Water adsorption and the wetting of metal surfaces. Surf Sci Rep 64: 381–451. doi: 10.1016/j.surfrep.2009.07.001 |
[32] | 31. Iskakova K, Akhmaltdinov R, Kuketaev T (2018) Formation of (Cu)n & (Cu2O)n nanostructures with the stability of their clusters. AIMS Mater Sci 5: 543–550. doi: 10.3934/matersci.2018.3.543 |
[33] | 32. Iskakova K, Akhmaltdinov R, Aliyev B (2018) Interspheral space and properties of mono- and divalent metals with FCC and BCC structures. J Comput Theor Nanos 15: 1384–1394. doi: 10.1166/jctn.2018.7245 |
[34] | 33. Akhmaltdinov R (2012) Modeling of the crystal structure growth process of GaAs. Appl Phys A-Mater 109: 857–864. doi: 10.1007/s00339-012-7364-x |
[35] | 34. Akhmaltdinov RF (2012) Modeling and calculation of the algorithm structure of compound semiconductor-type A3B5. Appl Mech Mater 110–116: 2854–2858. |