Citation: R.R.Bhargava, Kamlesh Jangid, Pavitra Tripathi. A Mode-III strip saturation model for two collinear semi-permeable cracks in a piezoelectric media[J]. AIMS Materials Science, 2016, 3(4): 1507-1519. doi: 10.3934/matersci.2016.4.1507
[1] | Gao H, Zhang TY, Tong P (1997) Local and global energy release rates for an electrically yielde crack in a piezoelectric ceramic. J Mech Phy Solids 45: 491–510. doi: 10.1016/S0022-5096(96)00108-1 |
[2] | Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phy Solids 8: 100–104. doi: 10.1016/0022-5096(60)90013-2 |
[3] | Ru CQ (1999) Effect of electrical polarization saturation on stress intensity factors in a piezoelectric ceramic. Int J Solids Struct 36: 869–883. doi: 10.1016/S0020-7683(97)00331-4 |
[4] | Ru CQ, Mao X (1999) Conducting cracks in a piezoelectric ceramic of limited electrical polarization. J Mech Phy Solids 47: 2125–2146. doi: 10.1016/S0022-5096(99)00007-1 |
[5] | Wang TC (2000) Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int J Solids Struct 37: 6031–6049. doi: 10.1016/S0020-7683(99)00255-3 |
[6] | Li S (2003) On saturation-strip model of a permeable crack in a piezoelectric ceramic. Acta Mech 165: 47–71. doi: 10.1007/s00707-003-0038-1 |
[7] | Jeong KM, Kim IO, Beom HG (2004) E ect of electric displacement saturation on the stress intensity factor for a crack in a piezoelectric ceramic. Mech Res Comm 31: 373–382. doi: 10.1016/S0093-6413(03)00093-4 |
[8] | Beom HG, Kim YH, Cho C, et al. (2006) A crack with an electric displacement saturation zone in an electrostrictive material. Arch Appl Mech 76: 19–31. doi: 10.1007/s00419-006-0002-3 |
[9] | Fan CY, Zhao YF, Zhao MH, et al. (2012) Analytical solution of a semi-permeable crack in a 2D piezoelectric medium based on the PS model. Mech Res Comm 40: 34–40. doi: 10.1016/j.mechrescom.2012.01.001 |
[10] | Bhargava RR, Jangid K (2014) A mathematical strip-saturation model for piezoelectric plate weakened by two collinear equal cracks. Math Mech Solids 19: 714–725. |
[11] | Bhargava RR, Jangid K (2013) Strip-saturation model for piezoelectric plane weakened by two collinear cracks with coalesced interior zones. Appl Math Modell 37: 4093–4102. doi: 10.1016/j.apm.2012.09.026 |
[12] | Zhong HC, Lee KY (2014) Electroelastic fields induced by two collinear and energetically consistent cracks in a piezoelectric layer. J Mech 30: 361–372. doi: 10.1017/jmech.2014.31 |
[13] | Sharma K, Bui TQ (2016) Numerical studies of an array of equidistant semi-permeable inclined cracks in 2-D piezoelectric strip using distributed dislocation method. Int J Solids Struct 80: 137–145. doi: 10.1016/j.ijsolstr.2015.10.030 |
[14] | Bui TQ (2014) Comparison of several BEM-based approaches in evaluating crack-tip field intensity factors in piezoelectric materials.Int J Fracture 189: 111–120. doi: 10.1007/s10704-014-9964-2 |
[15] | Sharma K, Bui TQ (2013) Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method. Eng Fract Mech 104: 114–139. doi: 10.1016/j.engfracmech.2013.03.012 |
[16] | Muskhelishvili NI (1963) Some basic problems of the mathematical theory of elasticity, The Netherlands, Nordhoff. |
[17] | Ou ZC, Wu X (2003) On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric biomaterials. Int J Solids Struct 40: 7499–7511. doi: 10.1016/j.ijsolstr.2003.08.021 |