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Abstract: In this paper, a mode-III strip-saturation model is proposed for a piezoelectric ceramic plate
weakened by two equal collinear, semi-permeable hairline cracks. A mathematical model is obtained
using Stroh’s formalism and solved using matrix Hilbert problem. Analytic closed form expressions
are derived for various fracture parameters such as crack sliding displacement, crack opening potential
drop, field intensity factor and energy release rate. An illustrative numerical case study is presented
for impermeable, semi-permeable and permeable crack face boundary conditions for different piezo-
ceramics. The results obtained are presented graphically, discussed and concluded. It is observed that
the model proposed is capable of crack arrest under small-scale electric saturation.
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1. Introduction

Due to intrinsic electro-mechanical coupling effect, piezoelectric materials have vast utility in many
engineering devices, such as sensors, transducers, actuator components. But, under the action of elec-
tromechanical loadings, these piezoelectric materials could fail prematurely due to defects, e.g., cracks,
holes, etc., arising during their manufacturing process over loads/fatigue/aging etc. This has made it
important subject for study of their cracking/failure mechanics. Lots of research has been carried on a
crack weakening a piezo-ceramic sensor etc., from 1990. Due to the tendency of developing multiple
cracks in piezoelectric ceramics, the interaction amongst these cracks and their effects on the ceramic
play an important role in fracture behavior of these ceramics and this makes the subject matter of the
investigations of this paper.

The concept of strip-saturation model [1] was introduced by Gao for a cracked poled piezoelectric
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plate, based on the concept of Dugdale model for strip-yield model [2] for metals. The extended case of
strip-saturation model for a semi-permeable and for a conductive crack face boundary conditions [3, 4]
was solved. Wang [5] gave a fully anisotropic analysis proposed by Gao et al. [1]. Li [6] re-examined
the strip-saturation model for a permeable cracked piezoelectric ceramic to analyze fracture toughness
of piezoelectric ceramic. Jeong et al. [7] proposed a strip-saturation model for cracked ferroelectric
ceramic with perfect saturation under electrical loading.

Using complex function theory Beom et al. [8] analysed a strip-saturation model for an electro-
strictive material under pure electric loading. Fan et al. [9] analysed a polarization saturation model
for a non-linear semi-permeable crack in piezoelectric plane.

Bhargava and Jangid [10] were the first one to propose a strip-saturation model for two collinear
cracks in a poled piezo-ceramic under mode-I conditions. They further extended [11] the strip-
saturation when saturation zone developed at adjacent interior tips of the cracks get coalesced.

Zhang and Lee [12] investigated the problem of two collinear electrically dielectric cracks in a
piezoelectric layer, within the frame work of linear piezoelectricity. Bui et al. [13, 14, 15] investigated
the crack problems using BEM, DDM and XFEM methods for various crack face boundary conditions.

As we know, an analytic solution of the problem in closed form has some advantage over numerical
and approximate solutions, which can serve a benchmark for the purpose of judging the accuracy and
efficiency of various numerical and approximate methods.

Therefore, present paper deals with the problem of strip-saturation model for two collinear semi-
permeable hairline cracks weakening a poled piezoelectric ceramic under mode-III conditions. Stroh
formalism and complex variables employed to obtain the solution. Closed from analytic expressions
are derived for various fracture parameters. A case study is presented for cracked piezo-ceramics
PZT − 5H, PZT − 6B, PZT − 7A under permeable, semi-permeable and impermeable crack face
boundary conditions. Results obtained are presented graphically, discussed and concluded. It is seen
that the model proposed is capable of crack arrest.

2. Fundamental Formulation and Solution Methodology

As are well known for out of plane problem, displacement components ui(i = x, y, z) are defined as

ux(x, y, z) = 0, uy(x, y, z) = 0, and uz(x, y, z) = w(x, y)

and for in-plane electric field problem, the electric field component Ei(x, y, z) may be defined as

Ex(x, y, z) = Ex(x, y) = −φ,x , Ey(x, y, z) = Ey(x, y) = −φ,y and Ez(x, y, z) = 0

where “φ” denotes the electric potential and comma after the function denotes the partial differentiation
with respect to argument following it.

Gradient equations may be written as,

εzi = w,i and Ei = −φ,i where i = x, y. (1)

Constitutive equations for stress components, σzi and electric displacement components, Di, (i = x, y)
may be written as

σzi = c44w,i + e15φ,i, Di = e15w,i − k11φ,i (2)
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where c44, e15 and k11 are elastic, piezoelectric and dielectric constant, respectively.
Equilibrium equations for stresses in absence of body force and for electric displacement in absence

of body charge may be written as

σi j, j = 0, Di,i = 0. (3)

The general solution of Eq. (2) may be expressed in terms of generalized stress function Φ and gener-
alized displacement vector u = [w, φ]T , where superscript T denotes the transpose of the matrix.

u,1 = AF(z) + AF(z) (4)

Φ,1 = BF(z) + BF(z) (5)

where z = (x + iy = x1 + ix2), F(z) =
d f (z)

dz , f (z) being an analytic function and A, B stand for material
constant matrix defined as,

A = I, B = iB0 = i
(

c44 e15

e15 −k11

)
.

3. Statement and Solution of the Problem

Let a piezoelectric material occupy the region oxy and is poled along oy direction. The plate is cut
along ox direction forming two equal finite hairline straight cracks L1 and L2. These occupy the region
y = 0, [−d,−c] and [d, c] respectively. Out-of-plane stress, σzy = τ0, is applied at remote boundary as
x2 → ∞ and also in-plane electric displacement, D2

∞ applied along oy direction. Due to prescribed
forces, the cracks open in self-similar fashion forming a small saturation zone in a strip ahead each tip
of the cracks. To arrest the cracks from further opening, the developed zones are subjected to normal
cohesive saturation limit electrical displacement D2 = Ds. The schematic configuration of the problem
is depicted in Figure 1.

 

o
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Figure 1. Schematic representation of the problem.

Mathematically boundary conditions of the problem may be written as,
(i) σzi

+ = σzi
− = 0, D2 = Dr, for d ≤ |x| ≤ c,

(ii) σzy = τ0, D2 = D2
∞, for |y| → ∞,

(iii) σzi
+ = σzi

−, D2
+ = D2

− = Ds, for b ≤ |x| ≤ d and c ≤ |x| ≤ a,
(iv) Φ,1(x)+ = Φ,1(x)− = −V, for d ≤ |x| ≤ c,
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where, V = [0, 0, τ0,D2
∞]T and Dr denotes electric crack condition parameter which is of value 1 for

permeable case, zero for impermeable case and lies between (0, 1) for semi-permeable case.
From the condition of continuity of Φ,1 on the ox-axis barring the interval d ≤ |x| ≤ c yields vector

Hilbert problem.
[BF(x) − BF(x)]

+
− [BF(x) − BF(x)]

−
= 0.

Solution of which may be written as,

BF(z) = BF(z) = h(z)(say) (6)

The boundary condition (iv) together with Eqs. (5), (6) yields

h+(x) + h−(x) = −V, for d ≤ |x| ≤ c (7)

Introducing new complex function vector as,

Ω(z) = [Ω1(z),Ω2(z),Ω3(z),Ω4(z)]T

and
h(z) = [HR]−1Ω(z) = ΛΩ(z)

where

HR = 2Re[iAB−1] and Λ =

(
Λ33 Λ34

Λ43 Λ44

)
= [HR]−1

.

Consequently Eq. (7) can be written as,

Λ[Ω+(x) + Ω−(x)] = −V for d < |x| < c. (8)

Above equation in component form leads to the scalar Hilbert problem

Λ33[Ω3
+(x) + Ω3

−(x)] + Λ34[Ω4
+(x) + Ω4

−(x)] = −τ0, (9)
Λ43[Ω3

+(x) + Ω3
−(x)] + Λ44[Ω4

+(x) + Ω4
−(x)] = Dr − D2

∞. (10)

Solving these equations for Ω3(z) and Ω4(z) together with boundary conditions (ii), (iii) and single-
valuedness of displacement from Muskhelishvili [16], we obtain

Ω3(z) =
1

24
[
τ0Λ44 +

(
Dr − D∞2

)]  z2 − c2λ2√(
z2 − d2) (z2 − c2) − 1

 , (11)

where, 4 = Λ33Λ44 − Λ34Λ43, λ2 =
E(k)
F(k) and k =

(c2−d2)
c2 , E(k)and F(k) denote complete elliptic integral

of first and second kind, respectively.
The general solution of Eq. (10) yields Ω4(z), once Ω3(z) is obtained.

Ω4(z) = −
Λ43

Λ44
Ω3(z) +

Dr − D2
∞

2Λ44
+

1
Λ44

[
P2(z)

2X1(z)
+

Ds − Dr

2πiX1(z)

∫
X1(t)
t − z

dt
]

(12)

where X1(z) =
√(

z2 − a2) (z2 − b2), P2(z) = G0z2 + G1z + G2 and Γ =
⋃4

i=1Γi.
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Here, Γi being the saturation zones occupying the interval b ≤ |x| ≤ d and c ≤ |x| ≤ a on ox-axis.
Arbitrary constant, G0, determined using boundary condition at infinity; G1 and G2 are determined
using single-valuedness condition of displacement around cracks. After a lengthy calculation, one
finally obtain Ω4(z) as,

Ω4(z) = −
Λ43

Λ44
Ω3(z) +

(D2
∞ − Dr)
2Λ44

{
z2 − a2λ1

2

X1(z)
− 1

}
−

(Ds − Dr)
πΛ44X1(z)

[
(z2 − a2λ1

2)(
π

2
− ψ1 + ψ2)

−(a2 − b2)(sinψ1 cosψ1 − sinψ2 cosψ2) + ad{E(ψ1, k1) − λ1
2F(ψ1, k1)}

−ac{E(ψ2, k1) − λ1
2F(ψ2, k1)} − X1(z)(

π

2
− θ1 + θ2)

]
(13)

where

λ1
2 =

E(k1)
K(k1)

, k1 =
(a2 − b2)

a2 , sin2ψ =
(a2 − x1

2)
(a2 − b2)

, tan2θ =
(b2 − z2)
a2 − z2 tan2ψ

sin2ψ1 =
(a2 − d2)
(a2 − b2)

, sin2ψ2 =
(a2 − c2)
(a2 − b2)

4. Applications

In this section, we present various applications of the problem for finding crack sliding displace-
ment, crack opening potential drop, intensity factors, saturation zone lengths and energy release rate.

4.1. Crack Sliding Displacement (CSD)

The jump displacement vector ∆u is defined as

i∆u,1 = HR[BF+(x) − BF−(x)] = Ω+(x) −Ω−(x) (14)

Crack sliding displacement is the relative crack face opening between the two surfaces of the crack.
Crack sliding displacement can be used as a measure of the toughness of the materials under mode-III
deformation. CSD, ∆w, is determined substituting, Ω3(z), from Eq. (11) into Eq. (14) and noting
∆w = 0 at x = ±d,±c, one obtains

∆w,1 = −i{Ω+
3 (x) −Ω−3 (x)}.

On integrating

∆w = c
{
τ0Λ44 + (Dr − D2

∞)Λ34

Λ33Λ44 − Λ34Λ43

} (
E(χ, k) − λ2F(χ, k)

)
(15)

where, sin2 χ =
c2 − x2

1

c2 − d2 .

4.2. Crack Potential Drop (COP)

Crack opening potential drop is the electric potential difference between the two surfaces of the
crack. Same as CSD, COP is used to measure the fracture and fatigue of materials. COP, ∆φ, can be
obtained using,

∆u4,1 = −i{Ω4
+(x) −Ω4

−(x)}
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Integrating above equation, substituting Ω4(z) from Eq. (13) into Eq. (14), then taking limit x→ c and
x→ d, we obtain

∆φ(d) = −
Ds − Dr

πΛ44

{
R3 − πa

D∞2 − Dr

Ds − Dr
R4

}
, (16)

∆φ(c) =
Ds − Dr

πΛ44

{
R5 − πa

D∞2 − Dr

Ds − Dr

(
E(ψ2, k1) − λ2

1F(ψ2, k1)
)}
, (17)

where, R3, R4 and R5 can be found from appendix A.

4.3. Saturation Zone Length

Saturation zone length is obtained using Dugdale [2] hypothesis to be true for electric displacement
to remain finite at every point of the body, consequently at the tips x = a and x = b yields following
two non-linear transcendental equations.(b2

a2 − λ1
2
)(
π

2
D2
∞ − Dr

Ds − Dr
−
π

2
+ ψ1 − ψ2

)
+ k1

2(sinψ1 cosψ1 − sinψ2 cosψ2)

−
d
a
{E(ψ1, k1) − λ1

2F(ψ1, k1)} +
c
a
{E(ψ2, k1) − λ1

2F(ψ2, k1)} = 0, (18)

and

(1 − λ1
2)
(
π

2
D2
∞ − Dr

Ds − Dr
−
π

2
+ ψ1 − ψ2

)
+ k1

2(sinψ1 cosψ1 − sinψ1 − sinψ2 cosψ2)

−
d
a
{E(ψ1, k1) − λ1

2F(ψ1, k1)} +
c
a
{E(ψ2, k1) − λ1

2F(ψ2, k1)} = 0. (19)

From these, a and b are determined and saturation zone lengths are then determined from (a − c) and
(b − d).

4.4. Field Intensity Factors

In Piezoelectric materials, near the tip of the crack, each stress component is proportional to a
constant K. And if this constant is known then the state of stress at the tip of crack can be determined.
This constant is known as stress intensity factor. Stress and electric displacement intensity factors at
the tip x = c and d are determined in this section.

4.4.1. Stress Intensity Factor (SIF)

Mode-III stress intensity factor Kd
τ at the tip x = d can be determined by this formula,

Kd
τ = lim

x→d−

√
2π(d − x)σzy(x, 0)

= −
{
τ0 + (Dr − D2

∞)
Λ34

Λ44

}√ π

d(d2 − c2)
(d2 − c2λ2). (20)

Similarly, SIF at tip x = c is obtained as,

Kc
τ = lim

x→c+

√
2π(x − c)σzy(x, 0)

=
{
τ0 + (Dr − D2

∞)
Λ34

Λ44

}√ π

c(c2 − d2)
(c2 − c2λ2). (21)
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4.4.2. Electric Displacement Intensity Factor (EDIF)

Mode-III, EDIF obtained at the tip x = b from

KD
b = lim

x→b−

√
2π(b − x)Dy(x, 0)

=

√
π

b(a2 − b2)
[(D2

∞ − Dr)(b2 − a2λ1
2) −

2
π

(Ds − Dr){(b2 − a2λ1
2)(
π

2
− ψ1 + ψ2)

− (a2 − b2)(sinψ1 cosψ1 − sinψ2 cosψ2) + da
(
E(ψ1, k1) − λ1

2F(ψ1, k1)
)

− ca
(
E(ψ2, k1) − λ1

2F(ψ2, k1)
)
}] (22)

Analogously EDIF at the tip x = a is obtained as

KD
a = lim

x→a+

√
2π(x − a)Dy(x, 0)

= −

√
π

a(a2 − b2)
[(D2

∞ − Dr)(a2 − a2λ2) −
2(Ds − Dr)

π
{(a2 − a2λ1

2)(
π

2
− ψ1 + ψ2)

− (a2 − b2)(sinψ1 cosψ1 − sinψ2 cosψ2)} + da
(
E(ψ1, k1) − λ1

2F(ψ1, k1)
)

− ca
(
E(ψ2, k1) − λ1

2F(ψ2, k1)
)
}]. (23)

While mode-III strain intensity factors Kd
ε and Kc

ε and mode-III electric field intensity factors, Kb
E

and Ka
E factors are calculated from

Kε
d =

e15KD
b + k11Kτ

d

e2
15 + k11c44

, (24)

Kε
c =

e15KD
a + k11Kτ

c

e2
15 + k11c44

, (25)

KE
b =

c44KD
b − e15Kτ

d

e2
15 + k11c44

, (26)

KE
a =

c44KD
a − e15Kτ

c

e2
15 + k11c44

. (27)

4.5. Energy Release Rate (ERR)

ERR Gd and Gc at the tips x = d and x = c, respectively computed using,

Gd =
1
2

[Kd
τKd

ε − Kb
DKb

E], (28)

Gc =
1
2

[Kc
τKc

ε − Ka
DKc

E]. (29)

5. A Special Case

In order to verify the above derived results, let us consider a strip electric saturation model of single
crack problem in piezoelectric material. The crack occupy the interval (−c, c) and developed saturation
zone occupy the interval c < |x| < a; with semi-permeable electric boundary condition, then the above
Eqs. (11) and (13) with b = d = 0, reduces to the results of Wang [5].
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6. Case Study

A numerical case study is presented for various crack face boundary conditions for ceramics PZT −
5H, PZT − 6B and PZT − 7A. The crack lengths are taken to be 10mm each and Ds = 0.03C/m2.

The material parameter for piezo-ceramics given in Table 1 below taken from, Ou and Wu [17].

Table 1. Material constants.
Material/ Constants c44(1010Nm−2) e15(Cm−2) k11(10−10C/Vm)

PZT-5H 2.30 17.44 150.3
PZT-6B 2.71 4.60 36.0
PZT-7A 2.54 9.70 81.1

6.1. Variation of Crack Sliding Displacement (CSD) over Crack Rims

Figure 2 depicts the variation of CSD over the crack rims. It is observed that CSD is symmetrical
and parabolically varying with respect to middle point and is maximum at the center point of crack
and then reduces till it becomes zero at end points. Also CSD is maximum for impermeable boundary
condition and almost three times less for semi-permeable case as compared to that for impermeable
case. CSD further reduces for permeable crack face boundary conditions and crack opens least for this
case.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−6

(x
1
 − d) / (c − d)

C
S

D
 (

m
)

impermeable

semi−permeable

permeable

Figure 2. CSD over the crack surface.

6.2. Variation of CSD for Different Piezoceramics

The opening of crack on different piezoceramics is depicted in Figure 3. It is noted that crack opens
least for PZT − 5H ceramic and maximum for PZT − 6B ceramic. It may assists the designers for the
correct selection of the ceramic for desired purposes.
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Figure 3. CSD for different piezoceramics.

6.3. Effect of Electric Load on Electric Displacement Intensity Factor

Variation of electric displacement intensity factor KD versus prescribed electric displacement D2
∞,

for impermeable, semi-permeable and permeable crack face conditions is plotted in Figure 4 at interior
and exterior tips of the crack. It is observed that KD decreases almost linearly as D2

∞ is increased for
all the cases. It is noted that KD is higher at inner tip for all three crack face boundary conditions.
Also KD is maximum for impermeable case followed by semi-permeable case, and is minimum for
permeable case. Same trend is followed at the interior tip of the crack.
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−
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 2

)

 

 

inner tip b

outer tip a

inner tip b

outer tip a

inner tip b

outer tip a

impermeable

semi−permeable

permeable

Figure 4. Variation of KD with respect to D2
∞.

6.4. Effect of Electric Displacement on Energy Release Rate

Energy release rate versus D2
∞ variation is presented in Figure 5. ERR decreases continuously

with increasing D2
∞. The decrease for impermeable boundary condition is more sharp as compared to

that for semi-permeable and permeable case. At the outer tip d, the variation for semi-permeable and
permeable cases, decrease in ERR is very close to each other while for impermeable case, variation is
more steep and away from semi-permeable and permeable case.
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Figure 5. Variation of energy release rate versus D2
∞.

6.5. Stress Intensity Variation at the Crack Tip

Figure 6 presents the variation of SIF, Kτ at the inner tip x1 = d and outer tip x1 = c of the crack
with respect to the inter-crack distance. It is observed that stress concentration is maximum for the
case of impermeable crack face boundary condition followed by semi-permeable crack face boundary
condition and least for permeable crack face boundary condition, as expected. For all the three cases
the SIF variation at inner crack tip show a slight parabolic decrease for smaller values of inter crack
distance to crack length ratio and then stabilizes to a uniform constant variation for d/a > 1.5. The
same is true for the variation at the outer tip but in this case, the variation is more flat as compared to
that in the case of inner tip.
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Figure 6. Variation of Kτ with respect to inter-crack distance.

7. Conclusions

• The proposed strip-saturation model is capable of crack arrest for small electric yielding case.
The reduction in energy release rate confirms it.

AIMS Materials Science Volume 3, Issue 4, 1507-1519.



1517

• The study of CSD on different piezoceramic presented may assists the designers for the correct
choice of the piezoceramic required for specific purpose.
• There is more stress concentration around crack tip for impermeable crack face boundary con-

dition as compared to that for semi-permeable and permeable case and is least for permeable
case.
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A. Appendix

R1 =
d
a

(
E(ψ1, k1) − λ2

1F(ψ1, k1)
)
−

c
a

(
E(ψ2, k1) − λ2

1F(ψ2, k1)
)
− k2

1 (sinψ1 cosψ1 − sinψ2 cosψ2) ,

(A.1)

R2 = aλ2
1

(
π

2
− ψ1 + ψ2

)
− aR1, (A.2)

G(d, c) = −d ln

 √
(d2 − b2)(a2 − c2) +

√
(a2 − d2)(c2 − b2)√

(d2 − b2)(a2 − c2) −
√

(a2 − d2)(c2 − b2)

 +
2b2

a

√
a2 − c2

c2 − b2 II(ϑ1,
c2k2

1

c2 − b2 , k1),

(A.3)

sin2 ϑ1 =
a2(d2 − b2)
d2(a2 − b2)

, (A.4)

H(c, d) = c ln

 √
(c2 − b2)(a2 − d2) +

√
(a2 − c2)(d2 − b2)√

(c2 − b2)(a2 − d2) −
√

(a2 − c2)(d2 − b2)


−

2
a

√
(d2 − b2)(a2 − d2)

{
F(ψ2, k1) +

d2

a2 − d2 II(ψ2,
a2 − b2

a2 − d2 , k1)
}
, (A.5)

R3 =
2b2

a

√
a2 − d2

d2 − b2

{
F(ϑ1, k1) − II(ϑ1,

d2 − b2

d2 , k1)
}
− d ln

(
a2 − d2

a2 − b2 +
a2(d2 − b2)
d2(a2 − b2)

)
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+ 2a
(
π

2
− ψ1 + ψ2

) E(ϑ1, k1) −
k2

1 sinϑ1 cosϑ1√
1 − k2

1 sin2 ϑ1

 − 2R2F(ϑ1, k1) −G(d, c), (A.6)

R4 = E(ϑ1, k1) − λ2
1F(ϑ1, k1) −

k2
1 sinϑ1 cosϑ1√
1 − k2

1 sin2 ϑ1

, (A.7)

R5 = −c ln
(
(a2 − c2)(c2 − b2)

c2(a2 − b2)
+ 1

)
+

2
a

√
c2 − b2

a2 − c2

{
a2F(ψ2, k1) − c2II(ψ2,

a2 − c2

a2 , k1)
}

+ 2a
(
π

2
− ψ1 + ψ2

)
E(ψ2, k1) − 2R2F(ψ2, k1) + H(c, d). (A.8)
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