Citation: Jinji Luo, Beate Krause, Petra Pötschke. Melt-mixed thermoplastic composites containing carbon nanotubes for thermoelectric applications[J]. AIMS Materials Science, 2016, 3(3): 1107-1116. doi: 10.3934/matersci.2016.3.1107
[1] | Xiaoming Su, Jiahui Wang, Adiya Bao . Stability analysis and chaos control in a discrete predator-prey system with Allee effect, fear effect, and refuge. AIMS Mathematics, 2024, 9(5): 13462-13491. doi: 10.3934/math.2024656 |
[2] | Kottakkaran Sooppy Nisar, G Ranjith Kumar, K Ramesh . The study on the complex nature of a predator-prey model with fractional-order derivatives incorporating refuge and nonlinear prey harvesting. AIMS Mathematics, 2024, 9(5): 13492-13507. doi: 10.3934/math.2024657 |
[3] | Nehad Ali Shah, Iftikhar Ahmed, Kanayo K. Asogwa, Azhar Ali Zafar, Wajaree Weera, Ali Akgül . Numerical study of a nonlinear fractional chaotic Chua's circuit. AIMS Mathematics, 2023, 8(1): 1636-1655. doi: 10.3934/math.2023083 |
[4] | A. Q. Khan, Ibraheem M. Alsulami . Complicate dynamical analysis of a discrete predator-prey model with a prey refuge. AIMS Mathematics, 2023, 8(7): 15035-15057. doi: 10.3934/math.2023768 |
[5] | Xiao-Long Gao, Hao-Lu Zhang, Xiao-Yu Li . Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture. AIMS Mathematics, 2024, 9(7): 18506-18527. doi: 10.3934/math.2024901 |
[6] | Weili Kong, Yuanfu Shao . The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator. AIMS Mathematics, 2023, 8(12): 29260-29289. doi: 10.3934/math.20231498 |
[7] | Asharani J. Rangappa, Chandrali Baishya, Reny George, Sina Etemad, Zaher Mundher Yaseen . On the existence, stability and chaos analysis of a novel 4D atmospheric dynamical system in the context of the Caputo fractional derivatives. AIMS Mathematics, 2024, 9(10): 28560-28588. doi: 10.3934/math.20241386 |
[8] | Yao Shi, Zhenyu Wang . Bifurcation analysis and chaos control of a discrete fractional-order Leslie-Gower model with fear factor. AIMS Mathematics, 2024, 9(11): 30298-30319. doi: 10.3934/math.20241462 |
[9] | Guilin Tang, Ning Li . Chaotic behavior and controlling chaos in a fast-slow plankton-fish model. AIMS Mathematics, 2024, 9(6): 14376-14404. doi: 10.3934/math.2024699 |
[10] | Xuyang Cao, Qinglong Wang, Jie Liu . Hopf bifurcation in a predator-prey model under fuzzy parameters involving prey refuge and fear effects. AIMS Mathematics, 2024, 9(9): 23945-23970. doi: 10.3934/math.20241164 |
Throughout the paper, we work over an algebraically closed field
Σk=Σk(C,L)⊆Pr |
of
Assume that
σk+1:Ck×C⟶Ck+1 |
be the morphism sending
Ek+1,L:=σk+1,∗p∗L, |
which is a locally free sheaf of rank
Bk(L):=P(Ek+1,L) |
equipped with the natural projection
H0(Bk(L),OBk(L)(1))=H0(Ck+1,Ek+1,)=H0(C,L), |
and therefore, the complete linear system
βk:Bk(L)⟶Pr=P(H0(C,L)). |
The
It is clear that there are natural inclusions
C=Σ0⊆Σ1⊆⋯⊆Σk−1⊆Σk⊆Pr. |
The preimage of
Theorem 1.1. Let
To prove the theorem, we utilize several line bundles defined on symmetric products of the curve. Let us recall the definitions here and refer the reader to [2] for further details. Let
Ck+1=C×⋯×C⏟k+1times |
be the
Ak+1,L:=Tk+1(L)(−2δk+1) |
be a line bundle on
The main ingredient in the proof of Theorem 1.1 is to study the positivity of the line bundle
Proposition 1.2. Let
In particular, if
In this section, we prove Theorem 1.1. We begin with showing Proposition 1.2.
Proof of Proposition 1.2. We proceed by induction on
Assume that
rz,k+1,L:H0(Ck+1,Ak+1,L)⟶H0(z,Ak+1,L|z) |
is surjective. We can choose a point
rz,k+1,L:H0(Ck+1,Ak+1,L)⟶H0(z,Ak+1,L|z) |
where all rows and columns are short exact sequences. By tensoring with
rz,k+1,L:H0(Ck+1,Ak+1,L)⟶H0(z,Ak+1,L|z) |
in which we use the fact that
Since
Lemma 2.1. Let
Proof. Note that
B′/A′⊗A′A′/m′q=B′/(m′qB′+A′)=B′/(m′p+A′)=0. |
By Nakayama lemma, we obtain
We keep using the notations used in the introduction. Recall that
αk,1:Bk−1(L)×C⟶Bk(L). |
To see it in details, we refer to [1,p.432,line –5]. We define the relative secant variety
Proposition 2.2. ([2,Proposition 3.15,Theorem 5.2,and Proposition 5.13]) Recall the situation described in the diagram
αk,1:Bk−1(L)×C⟶Bk(L). |
Let
1.
2.
3.
As a direct consequence of the above proposition, we have an identification
H0(Ck+1,Ak+1,L)=H0(Σk,IΣk−1|Σk(k+1)). |
We are now ready to give the proof of Theorem 1.1.
Proof of Theorem 1.1. Let
b:˜Σk:=BlΣk−1Σk⟶Σk |
be the blowup of
b:˜Σk:=BlΣk−1Σk⟶Σk |
We shall show that
Write
γ:˜Σk⟶P(V). |
On the other hand, one has an identification
ψ:Ck+1⟶P(V). |
Also note that
ψ:Ck+1⟶P(V). |
Take an arbitrary closed point
α−1(x)⊆π−1k(x″)∩β−1k(x′). |
However, the restriction of the morphism
[1] |
Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7: 105–114. doi: 10.1038/nmat2090
![]() |
[2] |
Poudel B, Hao Q, Ma Y, et al. (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320: 634–638. doi: 10.1126/science.1156446
![]() |
[3] |
McGrail BT, Sehirlioglu A, Pentzer E (2015) Polymer composites for thermoelectric applications. Angew Chem Int Edit 54: 1710–1723. doi: 10.1002/anie.201408431
![]() |
[4] |
Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393: 49–52. doi: 10.1038/29954
![]() |
[5] |
Shim M, Javey A, Shi Kam NW, et al. (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123: 11512–11513. doi: 10.1021/ja0169670
![]() |
[6] |
Rowell MW, Topinka MA, McGehee MD, et al. (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88: 233506. doi: 10.1063/1.2209887
![]() |
[7] |
Romero H, Sumanasekera G, Mahan G, et al. (2002) Thermoelectric power of single-walled carbon nanotube films. Phys Rev B 65: 205410. doi: 10.1103/PhysRevB.65.205410
![]() |
[8] | Avery AD, Zhou BH, Lee J, et al. (2016) Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat Energy 1: 16033. |
[9] |
Yu C, Shi L, Yao Z, et al. (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett 5: 1842–1846. doi: 10.1021/nl051044e
![]() |
[10] | Itkis ME, Borondics F, Yu A, et al. (2007) Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique. Nano Lett 7: 900–904. |
[11] |
Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 22: 535–539. doi: 10.1002/adma.200902221
![]() |
[12] | Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36: 914–944. |
[13] |
Suemori K, Watanabe Y, Hoshino S (2015) Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials. Appl Phys Lett 106: 113902. doi: 10.1063/1.4915622
![]() |
[14] | Nonoguchi Y, Ohashi K, Kanazawa R, et al. (2013) Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep 3. |
[15] | Freeman DD, Choi K, Yu C (2012) N-type thermoelectric performance of functionalized carbon nanotube-filled polymer composites. PloS one 7: e47822. |
[16] |
Yu C, Murali A, Choi K, et al. (2012) Air-stable fabric thermoelectric modules made of N-and P-type carbon nanotubes. Energy Environ Sci 5: 9481–9486. doi: 10.1039/c2ee22838f
![]() |
[17] |
Toshima N, Oshima K, Anno H, et al. (2015) Novel Hybrid Organic Thermoelectric Materials: Three‐Component Hybrid Films Consisting of a Nanoparticle Polymer Complex, Carbon Nanotubes, and Vinyl Polymer. Adv Mater 27: 2246–2251. doi: 10.1002/adma.201405463
![]() |
[18] |
Mai C-K, Russ B, Fronk SL, et al. (2015) Varying the ionic functionalities of conjugated polyelectrolytes leads to both p-and n-type carbon nanotube composites for flexible thermoelectrics. Energy Environ Sci 8: 2341–2346. doi: 10.1039/C5EE00938C
![]() |
[19] | Andrei V, Bethke K, Rademann K (2016) Adjusting the thermoelectric properties of copper (i) oxide–graphite–polymer pastes and the applications of such flexible composites. Phys Chem Chem Phys 18: 10700–10707. |
[20] |
Antar Z, Feller J-F, Noel H, et al. (2012) Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly (lactic acid) conductive biopolymer nanocomposites (CPC). Mater Lett 67: 210–214. doi: 10.1016/j.matlet.2011.09.060
![]() |
[21] |
Pang H, Piao Y-Y, Tan Y-Q, et al. (2013) Thermoelectric behaviour of segregated conductive polymer composites with hybrid fillers of carbon nanotube and bismuth telluride. Mater Lett 107: 150–153. doi: 10.1016/j.matlet.2013.06.008
![]() |
[22] | Liebscher M, Gärtner T, Tzounis L, et al. (2014) Influence of the MWCNT surface functionalization on the thermoelectric properties of melt-mixed polycarbonate composites. Compos Sci Technol 101: 133–138. |
[23] |
Andrei V, Bethke K, Rademann K (2014) Copper (I) oxide based thermoelectric powders and pastes with high Seebeck coefficients. Appl Phys Lett 105: 233902. doi: 10.1063/1.4903832
![]() |
[24] |
Krause B, Pötschke P, Ilin E, et al. (2016) Melt mixed SWCNT-polypropylene composites with very low electrical percolation. Polymer. 98: 45-50. doi: 10.1016/j.polymer.2016.06.004
![]() |
[25] |
Nonoguchi Y, Nakano M, Murayama T, et al. (2016) Simple Salt‐Coordinated n‐Type Nanocarbon Materials Stable in Air. Adv Funct Mater 26: 3021–3028. doi: 10.1002/adfm.201600179
![]() |
[26] | Samokhvalov A, Viglin N, Gizhevskij B, et al. (1993) Low-mobility charge carriers in CuO. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 103: 951–961. |
[27] |
Zappa D, Dalola S, Faglia G, et al. (2014) Integration of ZnO and CuO nanowires into a thermoelectric module. Beilstein J Nanotechnol 5: 927–936. doi: 10.3762/bjnano.5.106
![]() |
[28] |
Choi Y, Kim Y, Park, S et al. (2011) Effect of the carbon nanotubes type on the thermoelectric properties of CNT/Nafion nanocomposites. Organic Electronics 12: 2120–2125. doi: 10.1016/j.orgel.2011.08.025
![]() |
[29] |
Lee G. W, Park M, Kim J, et al. (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part A-Appl S 37: 727–734. doi: 10.1016/j.compositesa.2005.07.006
![]() |