Research article

Hopf algebra structures on generalized quaternion algebras

  • Received: 04 February 2024 Revised: 13 April 2024 Accepted: 23 April 2024 Published: 23 May 2024
  • In this paper, we use elementary linear algebra methods to explore possible Hopf algebra structures within the generalized quaternion algebra. The sufficient and necessary conditions that make the generalized quaternion algebra a Hopf algebra are given. It is proven that not all of the generalized quaternion algebras have Hopf algebraic structures. When the generalized quaternion algebras have Hopf algebraic structures, we describe all the Hopf algebra structures. Finally, we shall prove that all the Hopf algebra structures on the generalized quaternion algebras are isomorphic to Sweedler Hopf algebra, which is consistent with the classification of 4-dimensional Hopf algebras.

    Citation: Quanguo Chen, Yong Deng. Hopf algebra structures on generalized quaternion algebras[J]. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154

    Related Papers:

  • In this paper, we use elementary linear algebra methods to explore possible Hopf algebra structures within the generalized quaternion algebra. The sufficient and necessary conditions that make the generalized quaternion algebra a Hopf algebra are given. It is proven that not all of the generalized quaternion algebras have Hopf algebraic structures. When the generalized quaternion algebras have Hopf algebraic structures, we describe all the Hopf algebra structures. Finally, we shall prove that all the Hopf algebra structures on the generalized quaternion algebras are isomorphic to Sweedler Hopf algebra, which is consistent with the classification of 4-dimensional Hopf algebras.



    加载中


    [1] L. Brand, The roots of a Quaternion, Am. Math. Mon., 49 (1942), 519–520. https://doi.org/10.1080/00029890.1942.11991274 doi: 10.1080/00029890.1942.11991274
    [2] H. Kabadayi, Y. Yayli, De Moivre's formula for dual quaternions, Kuwait J. Sci. Eng., 38 (2011), 15–23.
    [3] M. Ozdemir, The roots of a split quaternion, Appl. Math. Lett., 22 (2009), 258–263. https://doi.org/10.1016/j.aml.2008.03.020 doi: 10.1016/j.aml.2008.03.020
    [4] H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, New York, 2000.
    [5] M. Jafari, Y. Yayli, Generalized quaternions and their algebraic properties, Commun. Series A1 Math. Stat., 64 (2015), 15–27. https://doi.org/10.1501/commua1_0000000724 doi: 10.1501/commua1_0000000724
    [6] T. Li, Q. W. Wang, Structure preserving quaternion biconjugate gradient method, SIAM J. Matrix Anal. Appl., 45 (2024), 306–326. https://doi.org/10.1137/23m1547299 doi: 10.1137/23m1547299
    [7] T. Li, Q. W. Wang, Structure preserving quaternion full orthogonalization method with applications, Numer. Linear Algebra Appl., 30 (2023), e2495. https://doi.org/10.1002/nla.2495 doi: 10.1002/nla.2495
    [8] X. F. Zhang, W. Ding, T. Li, Tensor form of GPBiCG algorithm for solving the generalized Sylvester quaternion tensor equations, J. Franklin Inst., 360 (2023), 5929–5946. https://doi.org/10.1016/j.jfranklin.2023.04.009 doi: 10.1016/j.jfranklin.2023.04.009
    [9] E. Abe, Hopf Algebras, Cambridge university press, 1977.
    [10] S. Montgomery, Hopf Algebras And Their Actions on Rings, American Mathematical Soc., 1993.
    [11] M. Jafari, Y. Yayli, Rotation in four dimensions via generalized Hamilton operators, Kuwait J. Sci. Eng., 40 (2013), 67–79. https://doi.org/10.1038/srep01918 doi: 10.1038/srep01918
    [12] B. A. Rosenfeld, Geometry of Lie Groups, Kluwer Academic Publishers, 1997.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(550) PDF downloads(37) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog