In this paper, we use elementary linear algebra methods to explore possible Hopf algebra structures within the generalized quaternion algebra. The sufficient and necessary conditions that make the generalized quaternion algebra a Hopf algebra are given. It is proven that not all of the generalized quaternion algebras have Hopf algebraic structures. When the generalized quaternion algebras have Hopf algebraic structures, we describe all the Hopf algebra structures. Finally, we shall prove that all the Hopf algebra structures on the generalized quaternion algebras are isomorphic to Sweedler Hopf algebra, which is consistent with the classification of 4-dimensional Hopf algebras.
Citation: Quanguo Chen, Yong Deng. Hopf algebra structures on generalized quaternion algebras[J]. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154
In this paper, we use elementary linear algebra methods to explore possible Hopf algebra structures within the generalized quaternion algebra. The sufficient and necessary conditions that make the generalized quaternion algebra a Hopf algebra are given. It is proven that not all of the generalized quaternion algebras have Hopf algebraic structures. When the generalized quaternion algebras have Hopf algebraic structures, we describe all the Hopf algebra structures. Finally, we shall prove that all the Hopf algebra structures on the generalized quaternion algebras are isomorphic to Sweedler Hopf algebra, which is consistent with the classification of 4-dimensional Hopf algebras.
[1] | L. Brand, The roots of a Quaternion, Am. Math. Mon., 49 (1942), 519–520. https://doi.org/10.1080/00029890.1942.11991274 doi: 10.1080/00029890.1942.11991274 |
[2] | H. Kabadayi, Y. Yayli, De Moivre's formula for dual quaternions, Kuwait J. Sci. Eng., 38 (2011), 15–23. |
[3] | M. Ozdemir, The roots of a split quaternion, Appl. Math. Lett., 22 (2009), 258–263. https://doi.org/10.1016/j.aml.2008.03.020 doi: 10.1016/j.aml.2008.03.020 |
[4] | H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, New York, 2000. |
[5] | M. Jafari, Y. Yayli, Generalized quaternions and their algebraic properties, Commun. Series A1 Math. Stat., 64 (2015), 15–27. https://doi.org/10.1501/commua1_0000000724 doi: 10.1501/commua1_0000000724 |
[6] | T. Li, Q. W. Wang, Structure preserving quaternion biconjugate gradient method, SIAM J. Matrix Anal. Appl., 45 (2024), 306–326. https://doi.org/10.1137/23m1547299 doi: 10.1137/23m1547299 |
[7] | T. Li, Q. W. Wang, Structure preserving quaternion full orthogonalization method with applications, Numer. Linear Algebra Appl., 30 (2023), e2495. https://doi.org/10.1002/nla.2495 doi: 10.1002/nla.2495 |
[8] | X. F. Zhang, W. Ding, T. Li, Tensor form of GPBiCG algorithm for solving the generalized Sylvester quaternion tensor equations, J. Franklin Inst., 360 (2023), 5929–5946. https://doi.org/10.1016/j.jfranklin.2023.04.009 doi: 10.1016/j.jfranklin.2023.04.009 |
[9] | E. Abe, Hopf Algebras, Cambridge university press, 1977. |
[10] | S. Montgomery, Hopf Algebras And Their Actions on Rings, American Mathematical Soc., 1993. |
[11] | M. Jafari, Y. Yayli, Rotation in four dimensions via generalized Hamilton operators, Kuwait J. Sci. Eng., 40 (2013), 67–79. https://doi.org/10.1038/srep01918 doi: 10.1038/srep01918 |
[12] | B. A. Rosenfeld, Geometry of Lie Groups, Kluwer Academic Publishers, 1997. |