Research article Special Issues

Alternating series in terms of Riemann zeta function and Dirichlet beta function

  • Received: 19 September 2023 Revised: 15 January 2024 Accepted: 25 January 2024 Published: 30 January 2024
  • By making use of the multisection series method, four classes of alternating infinite series are evaluated, in closed form, by the Riemann zeta function and the Dirichlet beta function.

    Citation: Zhiling Fan, Wenchang Chu. Alternating series in terms of Riemann zeta function and Dirichlet beta function[J]. Electronic Research Archive, 2024, 32(2): 1227-1238. doi: 10.3934/era.2024058

    Related Papers:

  • By making use of the multisection series method, four classes of alternating infinite series are evaluated, in closed form, by the Riemann zeta function and the Dirichlet beta function.



    加载中


    [1] T. M. Apostol, Zeta and related functions, in NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, (2010), 601–616.
    [2] G. Bretti, C. Cesarano, P. E. Ricci, Laguerre-type exponentials and generalized Appell polynomials, Comput. Math. Appl., 48 (2004), 833–839. https://doi.org/10.1016/j.camwa.2003.09.031 doi: 10.1016/j.camwa.2003.09.031
    [3] E. Guariglia, Fractional calculus, zeta functions and Shannon entropy, Open Math. 19 (2021), 87–100. https://doi.org/10.1515/math-2021-0010 doi: 10.1515/math-2021-0010
    [4] S. D. Lin, H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput., 154 (2004), 725–733 https://doi.org/10.1016/S0096-3003(03)00746-X doi: 10.1016/S0096-3003(03)00746-X
    [5] , W. Ramírez, D. Bedoya, A. Urieles, C. cesarano, M. Ortega, New $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomials and their matrices, Carpathian Math. Publ., 15 (2023), 449–467 https://doi.org/10.15330/cmp.15.2.449-467 doi: 10.15330/cmp.15.2.449-467
    [6] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics, Addison-Wesley Professional, Massachusetts, 1989.
    [7] K. N. Boyadzhiev, Derivative polynomials for tanh, tan, sech and sec in explicit form, Fibonacci Quart., 45 (2007), 291–303.
    [8] W. Chu, C. Wang, Convolution formulae for Bernoulli numbers, Integr. Transf. Spec. Funct., 21 (2010), 437–457. https://doi.org/10.1080/10652460903360861 doi: 10.1080/10652460903360861
    [9] K. Stromberg, An Introduction to Classical Real Analysis, American Mathematical Society, California, 1981.
    [10] J. R. Higgins, Two basic formulae of Euler and their equivalence to Tschakalov's sampling theorem, Sampl. Theory Signal Image Process., 2 (2003), 259–270. https://doi.org/10.1007/BF03549398 doi: 10.1007/BF03549398
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(312) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog