A high spike-timing precision characterized by a small variation in interspike intervals of neurons is important for information processing in various brain functions. An experimental study on fast-spiking interneurons has shown that inhibitory autapses functioning as negative self-feedback can enhance spike-timing precision. In the present paper, bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision to stochastic modulations are obtained in two theoretical models, presenting theoretical explanations to the experimental finding. For stochastic spikes near both the saddle-node bifurcation on an invariant cycle (SNIC) and the subcritical Hopf (SubH) bifurcation with classes 1 and 2 excitabilities, respectively, enhanced spike-timing precision appears in large ranges of the conductance and the decaying rate of inhibitory autapses, closely matching the experimental observation. The inhibitory autaptic current reduces the membrane potential after a spike to a level lower than that in the absence of inhibitory autapses and the threshold to evoke the next spike, making it more difficult for stochastic modulations to affect spike timings, and thereby enhancing spike-timing precision. In addition, firing frequency near the SubH bifurcation is more robust than that near the SNIC bifurcation, resulting in a higher spike-timing precision for the SubH bifurcation. The bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision present potential measures to modulate the neuronal dynamics or the autaptic parameters to adjust the spike-timing precision.
Citation: Yanbing Jia, Huaguang Gu, Xianjun Wang, Yuye Li, Chunhuizi Zhou. Bifurcation and negative self-feedback mechanisms for enhanced spike-timing precision of inhibitory interneurons[J]. Electronic Research Archive, 2024, 32(1): 90-108. doi: 10.3934/era.2024005
A high spike-timing precision characterized by a small variation in interspike intervals of neurons is important for information processing in various brain functions. An experimental study on fast-spiking interneurons has shown that inhibitory autapses functioning as negative self-feedback can enhance spike-timing precision. In the present paper, bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision to stochastic modulations are obtained in two theoretical models, presenting theoretical explanations to the experimental finding. For stochastic spikes near both the saddle-node bifurcation on an invariant cycle (SNIC) and the subcritical Hopf (SubH) bifurcation with classes 1 and 2 excitabilities, respectively, enhanced spike-timing precision appears in large ranges of the conductance and the decaying rate of inhibitory autapses, closely matching the experimental observation. The inhibitory autaptic current reduces the membrane potential after a spike to a level lower than that in the absence of inhibitory autapses and the threshold to evoke the next spike, making it more difficult for stochastic modulations to affect spike timings, and thereby enhancing spike-timing precision. In addition, firing frequency near the SubH bifurcation is more robust than that near the SNIC bifurcation, resulting in a higher spike-timing precision for the SubH bifurcation. The bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision present potential measures to modulate the neuronal dynamics or the autaptic parameters to adjust the spike-timing precision.
[1] | K. W. Latimer, J. L. Yates, M. L. R. Meister, A. C. Huk, J. W. Pillow, Single-trial spike trains in parietal cortex reveal discrete steps during decision-making, Science, 349 (2015), 184–187. https://doi.org/10.1126/science.aaa4056 doi: 10.1126/science.aaa4056 |
[2] | A. A. Faisal, L. P. J. Selen, D. M. Wolpert, Noise in the nervous system, Nat. Rev. Neurosci., 9 (2008), 292–303. https://doi.org/10.1038/nrn2258 doi: 10.1038/nrn2258 |
[3] | P. Tiesinga, J. Fellous, T. J. Sejnowski, Regulation of spike timing in visual cortical circuits, Nat. Rev. Neurosci., 9 (2008), 97–107. https://doi.org/10.1038/nrn2315 doi: 10.1038/nrn2315 |
[4] | A. Bacci, J. R. Huguenard, Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons, Neuron, 49 (2006), 119–130. https://doi.org/10.1016/j.neuron.2005.12.014 doi: 10.1016/j.neuron.2005.12.014 |
[5] | H. Sun, H. Zhang, A. Ross, T. T. Wang, A. Al-Chami, S. H. Wu, Developmentally regulated rebound depolarization enhances spike timing precision in auditory midbrain neurons, Front. Cell. Neurosci., 14 (2020). https://doi.org/10.3389/fncel.2020.00236 doi: 10.3389/fncel.2020.00236 |
[6] | Z. Yang, Q. Tan, D. Cheng, L. Zhang, J. Zhang, E. Gu, The changes of intrinsic excitability of pyramidal neurons in anterior cingulate cortex in neuropathic pain, Front. Cell. Neurosci., 12 (2018). https://doi.org/10.3389/Fncel.2018.00436 doi: 10.3389/Fncel.2018.00436 |
[7] | N. Hajos, J. Palhalmi, E. O. Mann, B. Nemeth, O. Paulsen, T. F. Freund, Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro, J. Neurosci., 24 (2004), 9127–9137. https://doi.org/10.1523/Jneurosci.2113-04.2004 doi: 10.1523/Jneurosci.2113-04.2004 |
[8] | P. Antonoudiou, Y. L. Tan, G. Kontou, A. L. Upton, E. O. Mann, Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations, J. Neurosci., 40 (2020), 7668–7687. https://doi.org/10.1523/Jneurosci.0261-20.2020 doi: 10.1523/Jneurosci.0261-20.2020 |
[9] | P. J. Kammermeier, Endogenous momer proteins regulate metabotropic glutamate receptor signaling in neurons, J. Neurosci., 28 (2008), 8560–8567. https://doi.org/10.1523/Jneurosci.1830-08.2008 doi: 10.1523/Jneurosci.1830-08.2008 |
[10] | V. Szegedi, M. Paizs, J. Baka, P. Barzo, G. Molnar, G. Tamas, et al., Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex, Elife, 9 (2020), 51691. https://doi.org/10.7554/eLife.51691 doi: 10.7554/eLife.51691 |
[11] | R. A. Tikidji-Hamburyan, J. J. Martinez, J. A. White, C. C. Canavier, Resonant interneurons can increase robustness of gamma oscillations, J. Neurosci., 35 (2015), 15682–15695. https://doi.org/10.1523/Jneurosci.2601-15.2015 doi: 10.1523/Jneurosci.2601-15.2015 |
[12] | J. Ma, X. Song, W. Jin, C. Wang, Autapse-induced synchronization in a coupled neuronal network, Chaos, Solitons Fractals, 80 (2015), 31–38. https://doi.org/10.1016/j.chaos.2015.02.005 doi: 10.1016/j.chaos.2015.02.005 |
[13] | E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Autapse-induced multiple coherence resonance in single neurons and neuronal networks, Sci. Rep., 6 (2016), 30914. https://doi.org/10.1038/Srep30914 doi: 10.1038/Srep30914 |
[14] | D. Guo, S. Wu, M. Chen, M. Perc, Y. Zhang, J. Ma, et al., Regulation of irregular neuronal firing by autaptic transmission, Sci. Rep., 6 (2016), 26096. https://doi.org/10.1038/Srep26096 doi: 10.1038/Srep26096 |
[15] | X. Yang, Y. Yu, Z. Sun, Autapse-induced multiple stochastic resonances in a modular neuronal network, Chaos, 27 (2017), 083117. https://doi.org/10.1063/1.4999100 doi: 10.1063/1.4999100 |
[16] | C. Yao, Z. He, T. Nakano, Y. Qian, J. Shuai, Inhibitory-autapse-enhanced signal transmission in neural networks, Nonlinear Dyn., 97 (2019), 1425–1437. https://doi.org/10.1007/s11071-019-05060-z doi: 10.1007/s11071-019-05060-z |
[17] | L. Li, Z. G. Zhao, Inhibitory autapse with time delay induces mixed-mode oscillations related to unstable dynamical behaviors near subcritical Hopf bifurcation, Electron. Res. Arch., 30 (2022), 1898–1917. https://doi.org/10.3934/era.2022096 doi: 10.3934/era.2022096 |
[18] | Z. Zhao, L. Li, H. Gu, Y. Gao, Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation, Nonlinear Dyn., 99 (2020), 1129–1154. https://doi.org/10.1007/s11071-019-05342-6 doi: 10.1007/s11071-019-05342-6 |
[19] | C. Qi, Y. Li, H. Gu, Y. Yang, Nonlinear mechanism for the enhanced bursting activities induced by fast inhibitory autapse and reduced activities by fast excitatory autapse, Cogn. Neurodyn., 17 (2023), 1093–1113. https://doi.org/10.1007/s11571-022-09872-5 doi: 10.1007/s11571-022-09872-5 |
[20] | X. Ding, H. Gu, Y. Li, Y. Jia, Paradoxical roles of inhibitory autapse and excitatory synapse in formation of counterintuitive anticipated synchronization, Chin. Phys. B., 32 (2023), 088701. https://doi.org/10.1088/1674-1056/Acc450 doi: 10.1088/1674-1056/Acc450 |
[21] | Y. Jia, H. Gu, Y. Li, X. Ding, Inhibitory autapses enhance coherence resonance of a neuronal network, Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105643. https://doi.org/10.1016/J.Cnsns.2020.105643 doi: 10.1016/J.Cnsns.2020.105643 |
[22] | Y. Jia, H. Gu, Y. Li, Influence of inhibitory autapses on synchronization of inhibitory network gamma oscillations, Cogn. Neurodyn., 17 (2023), 1131–1152. https://doi.org/10.1007/s11571-022-09856-5 doi: 10.1007/s11571-022-09856-5 |
[23] | E. M. Izhikevich, Neural excitability, spiking and bursting, Int. J. Bifurcation Chaos, 10 (2000), 1171–1266. https://doi.org/10.1142/S0218127400000840 doi: 10.1142/S0218127400000840 |
[24] | J. Mikiel-Hunter, V. Kotak, J. Rinzel, High-frequency resonance in the gerbil medial superior olive, Plos Comput. Biol., 12 (2016), 1005166. https://doi.org/10.1371/journal.pcbi.1005166 doi: 10.1371/journal.pcbi.1005166 |
[25] | X. Ding, H. Gu, B. Jia, Y. Li, Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model, Acta. Phys. Sin., 70 (2021), 218701. https://doi.org/10.7498/Aps.70.20210912 doi: 10.7498/Aps.70.20210912 |
[26] | B. Jia, H. Gu, Identifying type I excitability using dynamics of stochastic neural firing patterns, Cogn. Neurodyn., 6 (2012), 485–497. https://doi.org/10.1007/s11571-012-9209-x doi: 10.1007/s11571-012-9209-x |
[27] | B. Jia, H. Gu, Dynamics and physiological roles of stochastic firing patterns near bifurcation points, Int. J. Bifurcation Chaos, 27 (2017), 1750113. https://doi.org/10.1142/S0218127417501139 doi: 10.1142/S0218127417501139 |
[28] | X. Wang, Neurophysiological and computational principles of cortical rhythms in cognition, Physiol. Rev., 90 (2010), 1195–1268. https://doi.org/10.1152/physrev.00035.2008 doi: 10.1152/physrev.00035.2008 |
[29] | C. Borgers, An Introduction to Modeling Neuronal Dynamics, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-51171-9 |
[30] | X. Wang, G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model, J. Neurosci., 17 (1996), 6402–6413. https://doi.org/10.1523/jneurosci.16-20-06402.1996 doi: 10.1523/jneurosci.16-20-06402.1996 |
[31] | B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, Philadelphia, 2002. https://doi.org/10.1137/1.9780898718195 |
[32] | C. Deleuze, G. S. Bhumbra, A. Pazienti, J. Lourenco, C. Mailhes, A. Aguirre, et al., Strong preference for autaptic self-connectivity of neocortical PV interneurons facilitates their tuning to gamma-oscillations, PLoS Biol., 17 (2019), 3000419. https://doi.org/10.1371/journal.pbio.3000419 doi: 10.1371/journal.pbio.3000419 |
[33] | A. Bacci, J. R. Huguenard, D. A. Prince, Functional autaptic neurotransmission in fast-spiking interneurons: A novel form of feedback inhibition in the neocortex, J. Neurosci., 23 (2003), 859–866. https://doi.org/10.1523/jneurosci.23-03-00859.2003 doi: 10.1523/jneurosci.23-03-00859.2003 |