Research article Special Issues

Note on control for hybrid stochastic systems by intermittent feedback rooted in discrete observations of state and mode with delays

  • Received: 17 August 2023 Revised: 22 November 2023 Accepted: 28 November 2023 Published: 12 December 2023
  • For a hybrid stochastic system, most existing feedback controllers need to observe modes at continuous times, which is feasible when the system's mode is observable and does not incur any cost. However, in most cases, the mode is not readily apparent, and identifying it always incurs a certain expense. Therefore, in order to reduce control costs, when designing a feedback controller, both the state and the mode should be observed at discrete moments. This paper introduces an intermittent feedback controller for stabilizing an unstable hybrid stochastic system through discrete delayed observations of state and mode. By utilizing M-matrix theory, intermittent control approach, and the comparison principle, we propose sufficient conditions for the stabilization theory of hybrid stochastic systems. An illustrative example is taken to validate the proposed theory.

    Citation: Lichao Feng, Dongxue Li, Chunyan Zhang, Yanmei Yang. Note on control for hybrid stochastic systems by intermittent feedback rooted in discrete observations of state and mode with delays[J]. Electronic Research Archive, 2024, 32(1): 17-40. doi: 10.3934/era.2024002

    Related Papers:

  • For a hybrid stochastic system, most existing feedback controllers need to observe modes at continuous times, which is feasible when the system's mode is observable and does not incur any cost. However, in most cases, the mode is not readily apparent, and identifying it always incurs a certain expense. Therefore, in order to reduce control costs, when designing a feedback controller, both the state and the mode should be observed at discrete moments. This paper introduces an intermittent feedback controller for stabilizing an unstable hybrid stochastic system through discrete delayed observations of state and mode. By utilizing M-matrix theory, intermittent control approach, and the comparison principle, we propose sufficient conditions for the stabilization theory of hybrid stochastic systems. An illustrative example is taken to validate the proposed theory.



    加载中


    [1] X. Mao, Stability of stochastic differential equations with Markovian switching, Stochastic Processes Appl., 79 (1999), 45–67. https://doi.org/10.1016/S0304-4149(98)00070-2 doi: 10.1016/S0304-4149(98)00070-2
    [2] X. Mao, Exponential stability of stochastic delay interval systems with Markovian switching, IEEE Trans. Autom. Control, 47 (2002), 1604–1612. https://doi.org/10.1109/TAC.2002.803529 doi: 10.1109/TAC.2002.803529
    [3] X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College press, 2006. https://doi.org/10.1142/p473
    [4] X. Mao, G. Yin, C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264–273. https://doi.org/10.1016/j.automatica.2006.09.006 doi: 10.1016/j.automatica.2006.09.006
    [5] S. Zhu, P. Shi, C. Lim, New criteria for stochastic suppression and stabilization of hybrid functional differential systems, Int. J. Robust Nonlinear Control, 28 (2018), 3946–3958. https://doi.org/10.1002/rnc.4114 doi: 10.1002/rnc.4114
    [6] S. Zhu, K. Sun, W. Chang, M. Wang, Stochastic suppression and stabilization of non-linear hybrid delay systems with general one-sided polynomial growth condition and decay rate, IET Control Theory Appl., 12 (2018), 933–941. https://doi.org/10.1049/iet-cta.2017.0931 doi: 10.1049/iet-cta.2017.0931
    [7] L. Feng, J. Cao, L. Liu, A. Alsaedi, Asymptotic stability of nonlinear hybrid stochastic systems driven by linear discrete time noises, Nonlinear Anal. Hybrid Syst., 33 (2019), 336–352. https://doi.org/10.1016/j.nahs.2019.03.008 doi: 10.1016/j.nahs.2019.03.008
    [8] L. Feng, L. Liu, J. Cao, L. Rutkowski, G. Lu, General decay stability for non-autonomous neutral stochastic systems with time-varying delays and Markovian switching, IEEE Trans. Cybern., 52 (2020), 5441–5453. https://doi.org/10.1109/TCYB.2020.3031992 doi: 10.1109/TCYB.2020.3031992
    [9] X. Mao, Stabilization of continuous-time hybrid stochastic differential equations discrete-time feedback control, Automatica, 49 (2013), 3677–3681. https://doi.org/10.1016/j.automatica.2013.09.005 doi: 10.1016/j.automatica.2013.09.005
    [10] X. Mao, W. Liu, L. Hu, Q. Luo, J. Lu, Stabilization of hybrid stochastic differential equations by feedback control based on discrete-time state observations, Syst. Control Lett., 73 (2014), 88–95. https://doi.org/10.1016/j.sysconle.2014.08.011 doi: 10.1016/j.sysconle.2014.08.011
    [11] S. You, W. Liu, J. Lu, X. Mao, Q. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM J. Control Optim., 53 (2015), 905–925. https://doi.org/10.1137/140985779 doi: 10.1137/140985779
    [12] J. Shao, Stabilization of regime-switching processes by feedback control based on discrete time observations, SIAM J. Control Optim., 55 (2017), 724–740. https://doi.org/10.1137/16M1066336 doi: 10.1137/16M1066336
    [13] G. Song, B. Zheng, Q. Luo, X. Mao, Stabilization of hybrid stochastic differential equations by feedback control based on discrete-time observations of state and mode, IET Control Theory Appl., 11 (2017), 301–307. https://doi.org/10.1049/iet-cta.2016.0635 doi: 10.1049/iet-cta.2016.0635
    [14] G. Song, Z. Lu, B. Zheng, X. Mao, Almost sure stabilization of hybrid systems by feedback control based on discrete-time observations of mode and state, Sci. China Inf. Sci., 61 (2018), 130–145. https://doi.org/10.1007/s11432-017-9297-1 doi: 10.1007/s11432-017-9297-1
    [15] R. Dong, Almost sure exponential stabilization by stochastic feedback control based on discrete-time observations, Stochastic Anal. Appl., 36 (2018), 561–583. https://doi.org/10.1080/07362994.2018.1433046 doi: 10.1080/07362994.2018.1433046
    [16] L. Feng, Q. Liu, J. Cao, C. Zhang, F. Alsaadi, Stabilization in general decay rate of discrete feedback control for non-autonomous Markov jump stochastic systems, Appl. Math. Comput., 417 (2022), 126771. https://doi.org/10.1016/j.amc.2021.126771 doi: 10.1016/j.amc.2021.126771
    [17] L. Feng, C. Zhang, J. Cao, Note on general stabilization of discrete feedback control for non-autonomous hybrid neutral stochastic systems with delays, Acta Math. Sci., 2023 (2023).
    [18] X. Mao, J. Lam, L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, Syst. Control Lett., 57 (2008), 927–935. https://doi.org/10.1016/j.sysconle.2008.05.002 doi: 10.1016/j.sysconle.2008.05.002
    [19] X. Sun, G. Liu, D. Rees, W. Wang, Stability of systems with controller failure and time-varying delay, IEEE Trans. Autom. Control, 53 (2008), 2391–2396. https://doi.org/10.1109/TAC.2008.2007528 doi: 10.1109/TAC.2008.2007528
    [20] W. Chen, S. Xu, Y. Zou, Stabilization of hybrid neutral stochastic differential delay equations by delay feedback control, Syst. Control Lett., 88 (2016), 1–13. https://doi.org/10.1016/j.sysconle.2015.04.004 doi: 10.1016/j.sysconle.2015.04.004
    [21] Q. Qiu, W. Liu, L. Hu, X. Mao, S. You, Stabilization of stochastic differential equations with Markovian switching by feedback control based on discrete-time state observation with a time delay, Stat. Probab. Lett., 115 (2016), 16–26. https://doi.org/10.1016/j.spl.2016.03.024 doi: 10.1016/j.spl.2016.03.024
    [22] Q. Zhu, Q. Zhang, P th moment exponential stabilization of hybrid stochastic differential equations by feedback controls based on discrete-time state observations with a time delay, IET Control Theory Appl., 11 (2017), 1992–2003. https://doi.org/10.1049/iet-cta.2017.0181 doi: 10.1049/iet-cta.2017.0181
    [23] L. Liu, M. Perc, J. Cao, Aperiodically intermittent stochastic stabilization via discrete time or delay feedback control, Sci. China Inf. Sci., 62 (2019). https://doi.org/10.1007/s11432-018-9600-3 doi: 10.1007/s11432-018-9600-3
    [24] X. Li, X. Mao, Stabilization of highly nonlinear hybrid stochastic differential delay equations by delay feedback control, Automatica, 112 (2020), 108657. https://doi.org/10.1016/j.automatica.2019.108657 doi: 10.1016/j.automatica.2019.108657
    [25] J. Hu, W. Liu, F. Deng, X. Mao, Advances in stabilization of hybrid stochastic differential equations by delay feedback control, SIAM J. Control Optim., 58 (2020), 735–754. https://doi.org/10.1137/19M1270240 doi: 10.1137/19M1270240
    [26] X. Li, X. Mao, D. Mukama, C. Yuan, Delay feedback control for switching diffusion systems based on discrete-time observations, SIAM J. Control Optim., 58 (2020), 2900–2926. https://doi.org/10.1137/20M1312356 doi: 10.1137/20M1312356
    [27] L. Feng, L. Liu, J. Cao, F. E. Alsaadi, General stabilization of non-autonomous hybrid systems with delays and random noises via delayed feedback control, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106939. https://doi.org/10.1016/j.cnsns.2022.106939 doi: 10.1016/j.cnsns.2022.106939
    [28] C. Li, G. Feng, X. Liao, Stabilization of nonlinear systems via periodically intermittent control, IEEE Trans. Circuits Syst. II Express Briefs, 54 (2007), 1019–1023. https://doi.org/10.1109/TCSII.2007.903205 doi: 10.1109/TCSII.2007.903205
    [29] B. Zhang, F. Deng, S. Peng, S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829–3852. https://doi.org/10.1016/j.jfranklin.2017.12.033 doi: 10.1016/j.jfranklin.2017.12.033
    [30] L. Liu, Z. Wu, Intermittent stochastic stabilization based on discrete-time observation with time delay, Syst. Control Lett., 137 (2020), 104626. https://doi.org/10.1016/j.sysconle.2020.104626 doi: 10.1016/j.sysconle.2020.104626
    [31] W. Mao, Y. Jiang, L. Hu, X. Mao, Stabilization by intermittent control for hybrid stochastic differential delay equations, Discrete Contin. Dyn. Syst. Ser. B, 27 (2021), 569–581. https://doi.org/10.3934/dcdsb.2021055 doi: 10.3934/dcdsb.2021055
    [32] R. Zhu, L. Liu, Stochastic stabilization of switching diffusion systems via an intermittent control strategy with delayed and sampled-data observations, Syst. Control Lett., 168 (2022), 105362. https://doi.org/10.1016/j.sysconle.2022.105362 doi: 10.1016/j.sysconle.2022.105362
    [33] C. Liu, L. Liu, J. Cao, M. Abdel-Aty, Intermittent event-triggered optimal leader-following consensus for nonlinear multi-agent systems via Actor-Critic algorithm, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 3992–4006. https://doi.org/10.1109/TNNLS.2021.3122458 doi: 10.1109/TNNLS.2021.3122458
    [34] S. Li, J. Zhao, X. Ding, Stability of stochastic delayed multi-links complex network with semi-Markov switched topology: A time-varying hybrid aperiodically intermittent control strategy, Inf. Sci., 630 (2023), 623–646. https://doi.org/10.1016/j.ins.2022.11.061 doi: 10.1016/j.ins.2022.11.061
    [35] Y. Jiang, L. Hu, J. Lu, W. Mao, X. Mao, Stabilization of hybrid systems by intermittent feedback controls based on discrete-time observations with a time delay, IET Control Theory Appl., 15 (2021), 2039–2052. https://doi.org/10.1049/cth2.12160 doi: 10.1049/cth2.12160
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3307) PDF downloads(95) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog