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Abstract: For a hybrid stochastic system, most existing feedback controllers need to observe modes
at continuous times, which is feasible when the system’s mode is observable and does not incur any
cost. However, in most cases, the mode is not readily apparent, and identifying it always incurs a
certain expense. Therefore, in order to reduce control costs, when designing a feedback controller, both
the state and the mode should be observed at discrete moments. This paper introduces an intermittent
feedback controller for stabilizing an unstable hybrid stochastic system through discrete delayed
observations of state and mode. By utilizing M-matrix theory, intermittent control approach, and the
comparison principle, we propose sufficient conditions for the stabilization theory of hybrid stochastic
systems. An illustrative example is taken to validate the proposed theory.
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1. Introduction

Stochastic systems have occupied significant positions in diverse fields. Hybrid stochastic
differential equations (SDEs) are an important class of stochastic systems, which can effectively
describe sudden changes in structures and parameters. Therefore, many scholars have conducted
research on hybrid SDEs.

In the study of hybrid SDEs, stability analysis is one of the important research topics [1-8].
Feedback control is referred to as an important approach to ensure the stability of stochastic systems.
However, conventional feedback controllers are rooted in the continuous observations of the system’s
states. Due to practical limitations, data can only be observed at discrete moments, even if the
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underlying system is continuous. To address this issue and reduce control costs, Mao [9] proposed a
feedback control approach for stabilizing a hybrid SDE through discrete-time state observations.
Unlike continuous-time controllers, feedback controllers rooted in discrete-time state observations have
significant advantages in terms of accuracy and cost. Therefore, discrete-time control strategies [10—17]
have been widely studied. Moreover, a delay is frequently present between the state observed moment
and its actual time. Thus, delayed feedback control strategy [18—27] has also received extensive
attention. Therein, Zhu et al. [22] considered both discrete and time-delay issues in designing the
controller. They studied exponential stabilization for hybrid SDEs through feedback control rooted in
delayed and discrete observations of the state. In addition, Li et al. [26] developed a delayed feedback
controller for stabilizing the switching diffusion system by discrete observations of state and mode.

Moreover, intermittent control strategy has attracted extensive attention from scholars [28-35],
particularly been applied in multiagent systems [32,33], complex networks [34] and other fields.
Intermittent control splits time into work and rest periods. The controller switches on during the work
period and turns off during the rest period, effectively switching the controlled system between closed-
loop and open-loop modes. Compared to classical continuous control strategies, intermittent control
strategy is more easily acceptable, which can reduce controller wear, extend the controller’s lifespan,
and lower costs.

To enhance control performance, a growing number of scholars have used hybrid control
strategies, which involves the simultaneous use of multiple control strategies. In particular, Jiang
et al. [35] considered discrete delayed observations of state and intermittent control method to design
the controller. Inspired by these aforementioned works, this paper employs a hybrid control strategy to
achieve stabilization, which involves discrete, time-delayed and intermittent components in controller
design. Particularly, in this paper, not only the state but also the mode is observed at discrete times.
When designing a controller, if the mode is readily apparent (meaning it can be observed without any
cost), it can be observed in continuous time. For instance, within a financial system where the mode is
referred to as interest rate, this is entirely feasible. However, in most cases, the mode is not evident,
and identifying it incurs costs. To lower control expenses, observations pertaining to the state and mode
should occur at discrete times. Therefore, our aim is to develop an intermittent feedback controller,
rooted in discrete delayed observations related to state and mode, to stabilize an unstable hybrid SDE.

2. Model description and main results
2.1. Symbol explanation

Consider a complete probability space ({2, {Zu}u,, P) satisfying the usual conditions. Let

w(w) = (wy(u) - w;(u))T be an I dimensional Brownian motion defined on the aforementioned
probability space. In this probability space, consider a continuous-time Markov chain I':R, - § =

{1,2, -+ N}, whose generator A = (y,)yxy is provided by

Yuwd +0(4) u#v,

P+ =vIl(w) =uw) = {1 +Ywd +0(d) u=v,

inwhich 4 > 0, y,, represents the rate of transition from state u to state v,and ¥y, = — Xpzu Vaw-
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Let w(u) be independent of I'(u).
Let v, be a positive number, C([—v,, 0], R") represent the family of continuous real-valued

functions &:[—vg, 0] » R™ with [|[€]| = sup_y, <g<0l£(O)]. L;“([—Uo.o]; R™) denotes the family
of all &, measurable C([—vg, 0], R™) valued random variables y = {y(0): —vy, < 6 < 0} with
E|ly|lP <, where E represents the expectation for probability P.

2.2. Model description

Consider an unstable hybrid SDE

dn(u) = h(m(w), I' (W), wWdu + k(mw), I' (W), wWdw(w), (2.1

on u > 0 along with initial data n(0) =n, # 0 and I'(0) = I, where h: R™" X § X R, - R" and
k:R"x S xR, » R™ | For system (2.1), our objective is to develop a discrete controller
@:R" XS X R - R" with a time delay v, in the drift term to achieve stabilization. Additionally, an
intermittent control strategy is incorporated. Thus, the controlled system is as follows:

dAQ) = (hAGD, (), 1) + @(A(8,), T (8,0, m)I(w) ) dp + k(AQ), T (), w)dw (), (2.2)

in which 6, = [1/v]v — vy, v > 0 is the duration separating two consecutive discrete observations,

[u/v] represents the integer part of p/v, and 1(u) = XiZo I urea W, w =14, 1=0,1.2,-,

A >0 represents the control period, ¢ € [0,1] represents the control width, and Ijy,,,,,;(0) =

{1, 1€ [upm + @4)
O,u €[ +@lp1)
[24, (2 + ¢p)A4), ---, switch off during [@p4, 4), [(1 + @)4,24),[(2 + ¢)4,34),--.

The original system (2.1) has initial data only at ¢ = 0, while the controlled system (2.2) requires
initial data

Namely, the controller will switch on during [0,¢p4), [4,(1+ ¢)4),

(A(0): —vy < 6 < 0} = & € C([—vy, O; R™), {I(8):—v, <O <0} =c¢ES. 2.3)

To address this issue, set A(6) =n(0), I'(6) =TI(0), 6 € [—v,,0].
To study the properties of system (2.2), we introduce the auxiliary system as follows:

do(u) = (h(o(w), T (W), 1) + w(o W), I'(w), WI(W))du + k(o(w), I W), Wdw(w)  (2.4)

The system (2.4) is continuous and has no delay term with initial values ¢(0) = g, =1, # 0 and
re) =rI,.

2.3. Preliminary knowledge and main result

Assumption 1. There are three positive constants K;, K, and K; such that

|h(Al ul H') - h(o—l ul ﬂ)l S KlIA - O-ll
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lw(4,u, 1) —w(o,u,w)| < K;|2 - g,
|k(4,u, p) — k(o,u,W)| < K3|4— o],
for V(A,0,u, 1) € R™® X R™ x § x R,. Additionally,
h(0,u,u) =0, w(0,u,u) =0, k(0O,u,u) =0,

for V(u,u) € S X R,.
This assumption implies the linear growth condition

for V(A u,u) ER™ xS X R,.
Remark 1: Under Assumption 1, from the reference [3], it can be inferred that the system (2.2) has a
unique solution A(u;&,¢,0) on u >0 and

E|A(u;€,6,0)|P <o, p=0, p>0.

Similarly, under Assumption 1, the auxiliary system (2.4) also has a unique solution denoted by
o(u; gy, I;,0) for u > 0.

Remark 2: Under Assumption 1, here we emphasize the important property from Lemma 2.1 of [1],
for Vo, # 0, P{o(u; 04,1, 0) # 0:u = 0} = 1. Specifically speaking, when any initial data of
system (2.4) is nonzero, almost all trajectories will never reach the origin.

Assumption 2. There exist m > 0, non-negative numbers 7, 5, and c,, u € S, satisfying

ATw(AI ur .u) S _Tulllz,
and

1

a7 (Thuw ) + 2 kQu,w?) = 25 T w12 < By,

2|74

for V(A u,u) € R" —{0}) xS xR, and B, — 1, < —cy.
Assumption 3. Let m be a positive constant, and N X N matrix

A(m) = diag(a;(m), ay(m) - ay(m)) — 4, (2.6)

be a non-singular M-matrix, in which a,(m) = ¢, m.

Define
(by, - by)T = A1 (M)(L, -+, D, (2.7)
and let
j— 1 p— bmax fr—
bmin = minby, bmay =maxby, M = ey X = rggsx(ﬁu + ). (2.8)

22m3 bmax

Theorem 1. For a free parameter ¢ € (0,1), let @ = Xilog > 0,and v* > 0 be the unique
1

bmine

root of Eq (2.9) with respect to v, = 0,
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(1 + Kpv,)z ePom(Kat05(mai—DKs*+K2) 4 gms(2ms ], (m,vg, 0) + Ls(m,vp,09 +0)) =1, (2.9)

where Y =—(m)(—b;—m)(<p), m>0,m=2vm, m;=0v(im-—1),
L3(m!UOI@)

m

2

k
{3(1 + Kpvg)e @+v0)2(Ka+05K*+K2) 5 [42(K, 2 4 K,2) + 4v,K52]} 2, m € (0,2),

1
= 3m-1(1 + KzUo)e(@+v°)m(K1+§(m_1)K32+K2) X [ug™(K,™ + K,™)
m

m3 z m
L+ <m> X U07K3m, me [2, 00)

({32(0 + v4)?K,*[L3(2,4,0) + 4(1 — e "V)NL, (2,10, 0)]
m
% e3[K12+(@+v0)_1K32+3K22](@+U0)2}7'm € (0,2),

Ly(m,v,,0) =< 32m-2(g 4 UO)szm[L3(m, Vo, 0) + 2’"(1 — e‘7v)NL1(m, Vo, 0)]
n m

KJ"*(W)Z (0+v0) 2K +3M 1K™ [(0+ug)™

\X e , mE|[2,00).

3m—1

Under Assumptions 1-3, let N* be a positive integer, for Vv, € (0,v*), an intermittent control

period 4 = (@ + 2v,)/N*v, and a control width ¢ € (1 - , 1) can be selected to make the

mybmax
controlled system (2.2) almost surely exponentially stable.
Remark 3: It is easy to see that the function

h(vy) 2 e(1 + K2v0)7e“0m(’<1+0'5(m1‘1)K32+K2) + 2m3(2m3L4(m, Vg, 0) + Ly(m, vy, vy + 0))

on the left side of Eq (2.9) is continuous and increasing. Moreover, 4(0) < 1 and A(4o) = +co.
Therefore, Eq (2.9) has a unique positive root.
To prove Theorem 1, a series of lemmas will be introduced in the following section.

3. Lemmas

Lemma 1. For Yu >0, j >0 and u € S, if s € [y, u + j], then
Prs)#u|l(w)=u)<1—e7V, (3.1

where ¥ = max(—=yy,).
UEes

As for the proof, please refer to the Appendix.
1

MmxYbmax

Lemma 2. Under Assumptions 1-3, when 0 <1 — < @ <1, the solution of the auxiliary

system (2.4) has
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Elo(w|™ < ME|gy|™e™ "1k, 3.2)
lim supilogla(,u)l <0,a.s., (3.3)
p—eo

where y; = — (m)( —o m)(<p) > 0.

As for the proof, please refer to the Appendix.
Lemma 3. Under Assumption 1, for VO > 0,

sup  E[A@|™ < L, (m,v,, ©)E||A(0)]|™, (3.4)
0=su<O+vy
(1 + KZUO)%B(@+v0)m(K1+%K32+K2)rm € (012)1
(1 + Kypy)e @ rvom(Kizm-Drs"+kz) 1 e 1o ooy

Proof. For simplicity, denote L;(m,v,,0)=L; . When m > 2, for initial data & €
C([—vy, 0], R™), apply the It6 formula to |A(u)|™, and have that

where L;(m,v,, 0) =

EIA@I™ < EIA(0)|™ + E [ m |A(s)|™? [/’l(S)Th(/l(S),F(S),S) +%(m -1
X [k(A(), T (s), $)I21ds + E [, mIA(s)|™ @ (A(8,), T'(8), $)I(s) | ds.

By Assumption 1, derive that

1 u u
E|IA(W)|™ < E|A(0)|™ + (mK1 + Em(m — 1)1(32) Ef |[A(s)|™ds + Ef mK,|A(s)|™ 1|A(8,)|ds
0 0

< E|A(0)|™ + (mK1 + 1m(m — 1)1(2) E fﬂll(s)lmds +E fMKZ[(m -1 |A(s)|™
B 2 ’ 0 0

+|A(65)|™]ds.

Substitute Jy EIA@B)™ds < [ sup E[A(0)[™ds < voEIAO)™ + [ sup EIANB)|™ds into

—Vg<Oss <@<s

the above, then

1 I I
EIA(W[™ < E|A0)|™ + (mK1 +5m(m = 1)K32) Ef IA(s)™ ds + f K,(m — 1E|A(s)[™ds
0 0
u
KU EAO)™ + K, j sup E|A(8)|™ds.
o 0s<6Oss
Using the Gronwall inequality,

1
sup  E|AO)™ < (1 + Kypug)e®rrom{Etstm=DK4K2) gy 3 3 pm. (3.5)

0=6<0+v,

When m € (0,2),

m

2 m 1
sup EA@IMm<( sup EIAO)2) < (1 + Kyvg)ze @ rvom(Kitzka® k) gy oy m.
p p

0<6<0+v, 0<6<0+v,
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Therefore, the inequality (3.4) is proven.
Lemma 4. Under Assumption 1, for VO > 0,

E( sup IM#)I’") < Ly(m, vy, O)E|A0)[|™, (3.6)
0<U<O+v,
where
({(3 + (6(6 +vg))KZv,) + [(6(0 + vo) ) KZ + 12(0 + v)KZ + (6(6 + vy))
1.2 1 -1 %;
X K2](1 + K,v,) (e(@+”°)2(K1+§K3 +Ko) _ 1) (2 <K1 + 51(3 + K2)> } ,
m € (0,2),
m
L,(m, vy, 0) =1 2

3
(= + (60 5™ s (600 +00)™ k47 (o

m-2 _ |
(@ +vy) 2 K" + (6(@ + UO))m 1[{27”] (1 + K,u) (e(@+v0)m(K1+§(m—1)K§+K2)

-1
-1) <m (K1 +%(m - 1K + K2)> } m € [2,00).
\

Proof. Denote L,(m,v,, @) = L,. When m > 2,

E< sup |A(s)|m>

0<s<0+v,

0+vg

< 3m1EIA0)]™ + (36 + )" 'E f (Ih(A(s), T(5), 5) + B(A,), T'(B5), )I(s)D™ds

0
m>
0+vg

<3IERO + (30 +0) "2 [ ERGEL T
0

+3m‘1E< sup

0spus<O+vy

fuk(l(s), r'(s),s)dw(s)

m
3

2m— 2

m-—2

)2 C) +U0)Tf +UOEIk(/1(S)'1"(S).S)Imds

Haw(A(8,), I'(85), )I(s)|™)ds + 3™ <

m
3 m-—2

2
o 2) (0 +vy) Z KI

< 3m1E|A(0)|™ + | (3(0 +v))" 2m LK™ 4 3m-1 <

0+vg

@+U0 _
x f E(AS)|™)ds + (3(0 +vy))™ “2m1K] f sup  E|A(0)|™ds
0 0

—vgs<Oss

<371+ (30 + )™ 2™ KT, | ENAOI™ + [(3(0 +vp)) ™ 2K + 37
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S E

0+vy

m=2 m-1
(@ +vy) 2z K"+ (3(60 +vp)) 2m ik f sup E|A(8)|™ds.

0 0<6s<s

m3
X

<2m - 2)

By (3.5), have that

E< sup |/1(s)|m>

0<s<6+v

S E

m-—2

3
<{[3m1 + (6(0 +v0))™ " Kf"vo | + [(6(6 +vp)) "™ K + 371 (znT = 2> O+ )z K

+(6(0 +v))™ " K| (1 + Kyv0) (e(9+“o)m(K1+%<m-1)K§+Kz) -1)

-1
X <m <K1 +%(m — K2 x K2)> }E||;1(0)||m.

When me (0,2),

E( sup |/1(s)|m>
0ss<6+vg
m

S(E sup |A(s)|2>7

0<s<6+v,

<{(3+ (6(6 +v9))K,%vg) + [(6(0 +v))K,* + 12(6 + vg)K3* + (6(0 + vy))K,?]

-1\
1 1
x (1 + Kyvo) (e(@”o)z(Kl*iKsZ*Kz) — 1) (2 (Kl +o K+ KZ)) } E|IA(0)]|™.

Inequality (3.6) has been proven.
Lemma 5. Under Assumption 1, for V@ > 0,

sup E< sup |A(u+6) — l(ﬂ)l"‘) < Lz(m, vy, ©)E||I2(0)[I™, (3.7)

0spu<e \0=0=<v,

where L;(m,v,, @) can be seen from Theorem 1.
Proof. Denote L;(m,v,, @) = L3, when m > 2,
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E < sup [A(u+6) — A(u)l’")

OSGSUO

u+vg U+vg
< (3vo)m‘1K1mj E|A(s)|™ds + (3v0)m‘1K2mj E|A(6,)|™ ds
n n

SE]

m-—2

et m3 m-2 m H+U0 m
+3 Uy 2 XKz E|A(s)|™ ds
u

2m — 2

m3 u+vg
< |Bvy)™ 1K™ +3m1 < ) vy 2 K™ j E|A(s)|™ ds
n

u+vg
+(30p)™ 1K™ j E|A(8,)|™ ds.
u

For Vu < s < u + vy, by (3.5), obtain that

1
EIAS)™ < (1 + Kyug)e @rom(Eatzm=nka®Ka) py 3 gy pm.

1
EIA@)I™ < (1 + Kyvg)etm(Kat3m=DK" k) 7 gy m.

Therefore,

E( sup |[A(u+0) — A@W)|™
0<0=<v,

m
2 m-—2

1
< (oo 37 (L) | (7 et

2m-2

1
X EIAQ)I™ds + Buo)™ K™ [*17°(1 + Kyug)e Woom{Kasmnis®ese) g7 g) s,

Furthermore,

sup E ( sup |[A(u+6) — A(u)lm)

0spu<e \0<f=<y,

m

3 2 m
> V2 K™ (1

< m-—1 mK m m—1
< |3ty mKy T + 3 <—2(m—1)

+ szo)e(0+v0)m(K1+%(m_1)K32+K2)E”/1(0) “m

1
+3MLy MK, ™ (1 + Kyvg)e ™K r20m DK K ) py g 0y m
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m
2 m

1 m3 m
<3™1(1+ K2U0)8(9+v0)m(Kl+2(m DKs?+Kz) vo™(K, "+ K, + (m) U2 K3™

X EN|A(0)[I™.
For m € (0,2),

sup E( sup |[A(u+6) — ﬂ(u)l’”)
0<u<e6 0<6<v,
3

< (301 + Kyug)e @A) o [42(K,2 4 K,2) + dvoks?]) EIRO)I™

Inequality (3.7) has been proven.
Lemma 6. Under Assumption 1, and ® > 0, for u € [0,0 + v,],

E|A() — o)™ < La(m, vo, O)E(2(0)[I™,

where L,(m,v,, @) can be seen from Theorem 1.
Proof. Let L,(m, vy, 0) = Ly, o(u; 0y, Iy, 0) = a(u). Taking the difference between system (2.2)
and system (2.4), obtain that

AG) — o) = f “(hA), T (5), 5) = h(a(), T(s),)) ds + f @A), T 5)
— w(a(s),F(s),s))I(s)ds + f#(k(l(s),l"(s),s) — k(a(s),F(s),s)) dw(s),
0

when m > 2. Taking the expectation, yield that
El2() —a(I™

u
< @wm! f Elh(A(s),I'(s),s) — h(a(s),I'(s),s)|™ds
0

u
+@3wmt f E|(w(A(8,), T(85), s)—w (0 (s), ' (s),))1(s)| " ds

0

+3m-1 (@)_ W5 [ ElRG(S), (), 9) — k(o(s), (), )™ ds
0

m(m — 1))7 m-2

u
< (3/1)’”’11(1'"+3m_1< > pz K3 f EIA(W) —o@)|™ds + Bu)™'Ty,
0

where

Electronic Research Archive Volume 32, Issue 1, 17-40.
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u
T, = Ef |(w(/1(65),F(é‘s),s)—w(a(s),F(s),s))l(s)|mds

< 3m—1

o ru
Ef (lw(A(85), T (85),5) — @ (A(65), I (), )™ + [w(A(85), T'(s), s)
—w(l@s),l"(s),s)lm + |@(A(s), ' (s),s)—w(a(s), I (s),s))|" ds]

u
< 3Mm 1 KI'(O + vy) L3 E||A(0)||™ + KZmEf |A(s) — a(s)|™ds + T, |,
0

m
and T, = [ E|w(A(5,), T(85),5) = @(A(8,), T (s),5)| " ds.
By Assumption 1, for lv < s < u A (I + 1)v, derive that

E|l@(A(S5),I'(6s),s) — @w(A(85), I'(s),s)|™
= Elo(A(lv —vy), F'(lv —vy),s) —w(A(lv —vy), T (s),s)|™

= E [E (Io(A(v = vo), I (Iv = vo), 5) = @AW — ), [ (s), 5)|™ |;g)]

<E [ZszmM(lv —vo)|"E (I{F(s)ﬂ(lv—vo)} |Zss)]

=F [ZmKZmM(lU - UO)ImE (ZueS I{F(lv—v0)=u}1{l"(s)¢u} |y55)]
= E[27K,™ A = v0)|™ Sues lru-up)-aP T () # ull (v = vp) = w)].

By Lemma 1 and inequality (3.4), have that
El@(A(65),I'(65), ) — w(A(85), I (s), s)I™

< E[2™K,™ Al — vp)|™N(1 — e77)]
< 2MK,™(1— e PY)NLLE||A(0)]|™.

Hence, for u € [0,0 + vy],
T, < fy 2mK,™ (1 — e TY)LLE|IA(0) ™ ds < (0 +vg) 2™K,™ (1 — e 7V)NLLE||A(0)||™.

Ty < 3™ K, (6 + vp) L;ENIA0) ™ + K,™E fo“m(s) —a(s)|™ds + 2™K," (1 — e V)

X (@ +vo)NLLE[|IA(0)]™].

Furthermore,
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EA() = o ()™

3

m(m —1)
2

IA

2 m-2 23
3m1(@ + vy)m 1K™ + 3mL < > (O +vy) 2z K™ f E|A(s) — o(s)|™ds
0

+3™71(0 + vy)™ T,

m

Mf © +0 T K| [ 61200~ s

2

IA

3O +v)" K™ + 3M (

. |
+32M72(0 + vy)™ 1K, (0 + vy) L3 E||A0)||™ + szEj |A(s) —a(s)|™ds
0

+2MK,™ (1 — e77) X (6 + vo)NLLE||2(0)||™]

m

m(im—1)\2 m-2
mim — 1) )> (0 +vy) Z K3™ +32"72(0 +v)™ K,

< [3™7HO +v)™ K™ + 3 < 5
H ~

X f E|A(s) — a(s)|™ds + 32™72(0 + vy)™K,™[Ls + 2™(1 — e 7V)NL, |E|IA(0)[|™.
0

By Gronwall inequality, we have that

E|A(w) = o ()™
< 32Mm72(Q 4 vy)™K, "Ly + 2™(1 — e TV)NL,|

m
3m—1[(@+u0)m—1klm+(%m) 2 (0+09) 7 Ka™43M1(040) M1 K,™ |(6+v0)
X e Efl2(0)[I™
3m-1 K1m+(w)7(@+vo)_%l(3m+3m_ll(zm (0+vg)™
< 32Mm72(Q 4 yy)™K, "Ly + 2™(1 — e TV)NLy| x e

x EllIA(0)[I™.

When m € (0,2), by Holder inequality, we have that

ElA(w) — o)™
< [3%(0 + v9)?K2?[L3(2,00,0) + 4(1 — e "V)NL, (2,10, 0)]

x e3[K12+(@+vo)‘1K32+3K22](@+v0)2]7E”/1(0) ™.

4. Proof of Theorem 1
Proof. Write A(u;&,¢,0) = A(w), I'(w;6,0) =T'(w) for u > 0. Similarly, let
a(v0 + Q;UO,A(UO),F(UO)) =o(vy + 0).

By Lemmas 2 and 3, have that
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Elo(vy + 0)|™
< ME|A(vo)|™e %1¢ (4.1)

<M1+ KZUO)%evom(K1+0.5(m1—1)K32+K2)E|M(O)“me—)h@'

where m, = 2 Am. By the elementary inequality (a + b)™ < 2™3(a™ + b™) for any a,b =0
and Lemma 6,

E|A(v, + 0)I™
=E|loc(vyg+ 0) + A(vg + 0) — a(vy + O)|™
< 2™ (Ela(vg + @)|™ + E|A(vy + 0) — o (vy + 6)|™) (4.2)

< oms (M(1 + Kyug) 7 evom(Kit05(mi~DK*+K2) g =110 4 L4)E||/1(0)||m

Using Lemma 5, obtain that
EllA(2vo + O)II™
< 2™Ms (EM(UO +0)™+E (05;1p [2(6 + vy + @) — Ay + 0)|m>>
sfO=v
< 2™ (EA(vo + O)|™ + L3 (m, Uo'(;o +O)ENA0)I™)
=2 <2m3 (M(l + Kyvp) 2 evom(Kit0.50mi—ks® +kz) g=210 4 L4) + L3(m, vy, 00 + 9)) (4.3)

x E[A(0)[I™

< [22msMe 210 (1 + Kyu,) = evom(Kut0S0m=DI*41G) 1 gms (2131, 4 Ly (m, vy, vp + 6))]
x E[A(0)[I™

< [e(1 + Kyup) 2 evom(at0Sim=nKs®+12) 1 gms(2ms L, + L (m, vo,vg + 6))] EIAO)II™,

where & = 22™3sMe~X19, Since v, < v*, it is obtained from the definition of v* that
e(1 + Kpv,)z eVom(Ka+05(ma—DKs*+Ky) 4 gma(gmap, 4 [ (m, vy, vy + 6)) < 1.

Therefore, there exists ¢ > 0 such that
£(1 + Kpv,) 2 eVom(Ka+050m -DKs*+Kz) 4 gms (2™M3L, + Ly(m, vy, vy + 0)) = e=$(2vot0),

It is concluded from (4.3) that
E[l2(2uy + 0)||™ < e~¢@Uot@E|I2(0) ™.

Further considering the solution A(u) on u = 6 + 2v,, there is a N* such that 6 + 2v, =
N*Av,. Meanwhile, A(u) can be referred to as the solution of the Eq (2.2) with the initial value
A(N*Av,), I'(N*Av,). By following the same procedure as mentioned above, show that

ElIAQ2N*Aug)||™ < e~V 4V E|| A(N* Avg) ™

< e—(N*AUOe—{(ZUOHQ)E”/1(0) |™

< e XNTAE||A(0)]I™
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Repeating the above procedure, have that
ElIA(zN* Avy)||™ < e~ 2N A% g || A(0)||™. 2z = 1,2, -

By Lemma 4, have that

i < sup EM(‘“)lm> < L,(m, vy, N Av, — Uo)e_Z(NJrAUOE”/l(O) m. (4.4

ZNtAvgsu<(z+1)NtAv,

From the Markov inequality and inequality (4.4), it can be concluded that, for all z > 0,

p ( sup A|™ = e—O.Sz§N+Av0>

zZNtAvgsus<(z+1)NtAav,

< 052N avo < sup ) |m)

zZN*tAvg<sus(z+1)N+Av,
< e 05N ML, (m, vy, N* Avg — vp) EA(0) ™.

According to the Borel — Cantelli lemma, there is a set 2, € # with P(£,) = 1, then for almost
all w € £, there is an integer z, = z,(w) such that for Vz > z,(w),

sup IA(W)|™ < e~ 052N Moy, > £ (w). a.s.
zZN*tAvgspus(z+1)NtAv,
Hence,
. 1 0.5z{N*Av, 4
= < 2257 770 5
ﬁggo sup log(|A(u, w)]) < —— p—-

The proof is completed.
5. Numerical example

Consider a stochastic differential equation

dn(u) = h(m(w), I' (W), wWdu + k@), I' (W), Wdw (W), (5.1)
in which I'(u) represents a Markov chain that takes values in § = {1,2} with the generator A =

(_12 _21), and

h(n,1,u) =0.2n, k(n,1,u) = 0.4n, (5.2)
h(n,2,u) = 0.4n, k(n,2,u) = 0.57. (5.3)

Using the Euler-Maruyama numerical method, with n(0) = 1, I'(0) = 1 and the step size
107, it is seen that the system (5.1) is unstable, as shown in Figure 1.
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104
5 X T T T T T T T T T
4 =
~3F
=
Sol |
1 = -
0 | | | | | | I
0 5 10 15 20 25 30 35 40 45 50
u/s
3 T T T T T T T T T
2
=
=
1L |
0 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
u/s

Figure 1. Trajectory simulation of n(u) and I'(u) for system (5.1).

In order to stabilize the system (5.1), the control function is designed as follows:

wn,1,u) =—-0.4n, @, 2,u) =—0.57.

By simple calculations, Assumption 1 is satisfied with K; = 0.4, K, = 0.5 and K; = 0.5.
Choosing m = 1, we can infer from Assumption 2 that

ﬁl = 02, Bz = 04, (S 02, Cy = 0.1.

From (2.6), obtain a non-singular M-matrix.

a=(7 om) =G 1D

By (2.7) and (2.8), we have
bax = 7.6191 b,,;,, = 7.3809 y = max(B, + ¢,) = 0.5.
By Lemma 2, it is known that if ¢ € (0.7375,1), then the auxiliary controlled stochastic system

do(u) = (h(eW), I' (W), 1) + (@ (W), I' (W), 1) )dp + k(o (W), I (1), t)dw(w) is almost surely

exponentially stable.
This paper aims to develop an intermittent feedback controller with discrete observations of both
state and mode with delays for stabilizing system (5.1). The controlled system becomes

dAw) = (hAG, (), 1) + @(A(8,), T (8,0, m)I(w) ) di + k(AQ), T (), g)dw (). (5.4)
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0.8

306

0 | | | 1 | | | 1 |

u/s

Figure 2: Trajectory simulation of A(u) and I'(u) for system (5.4).

We choose ¢ = 0.95, € = 0.9, and it can be obtained that y; = 0.1062, ©® = 1.0126. Then (2.9)
becomes

1
0.9(1 + 0.5v,)2e925% + L, (1,v,,1.0126) + L3 (1,10, 1.0126 + 1) = 1,

and its unique root is v* = 4.6436 X 107°. Taking v =10"% v,=10"% A =107, from
Theorem 1, we can get that the system (5.4) is almost surely exponentially stable. The simulated trajectory
is shown in Figure 2 with the step size 107°.

6. Conclusions

This paper delves into the issue of exponential stabilization for hybrid stochastic systems by
employing an intermittent feedback control with discrete delayed observations related to both state and
mode. Compared to state discrete observations of the feedback controller, model observations are also
performed at discrete times, which is more practical and cost-saving. Using M-matrix theory and
intermittent control approach, the feedback stabilization theory of hybrid stochastic systems is
established. However, this study focuses on the stabilization for hybrid stochastic systems and the
underlying systems do not consider some important practical factors, such as time delay, which will
be addressed in future work.
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Appendix

Proof of Lemma 1.

Given I'(u) = u, define stopping time k, = inf{s = u:I'(s) # u}. Let inf® = . Since

K, — 1 conforms to an exponential distribution with the parameter —y,,,,, one has that, for s €
L, 1+ 1,

P(I'(s) # ull'(u) = u)
S PRy —pu<jIr(w) =u)

= J] —pueresds (A1)
<1-—e7",

Thus, assertion (3.1) is obtained.
Proof of Lemma 2.

Define H(o,u,u) = b,|lo|™, (o,u,u) € (R™ —{0}) X S X R,, then
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EH(o(u), I'(u),u) = EH(a(0),I'(0),0) + Efoﬂ LH (0(s),I'(s),s)ds, (A2)

where generalized 1t6 operator LH: (R"™ —{0}) x R, X § —» R is given by

LH(o,u, 1) = bymlo|™ [ (7 (h(o,u, 1) + @(o,u, WIW) +3 k(o,u,w)I?) -

2_
— 22167k (0w 12| + Zhes Yaw bylo™.
As u € [u,u; + @4), I(u) = 1. By Assumptions 2 and 3, conclude that
N
LH, w10 < bymlol™ (B, = 1) + ) Yuw bolol™
v=1
N N
=< _bumculalm + Z Yuv bvlo-lm = _|O.|m (buau(m) - Z Yuv bv) .
v=1 v=1
By (2.6) and (2.7), have that
b,a,(m) — Zzlyzl Ywby =1,
hence,
LH(o,u, 1) < —lo|™ = =bylo]™+= < ———H(0,u, ). (A4)

As p € [u + ¢4, u41), 1(pw) = 0, then
LH(o,u, 1)

N
= bumlalmﬁu + z Yuv byla|™
v=1
N
< bymloI™ Gt =€)+ ) Yuw bylol™
v=1

N
< mylol™b, — lo|™ (mbucu DR bv)

v=1

N
= lealmbu — |o|™ (buau(m) - Z Yuv bv) .

v=1

Since bya,(m) — YN v, by, = 1,
LH(o,u, 1) < mylo|™b, — lo|™ = b,lo|™ (my - Z) < (mx - bmax) H(o,wu). (AS5)
From (A4) and (AS),

LH(o,u, 1) < [— ﬁl(u) + (m)( - ﬁ) (1- I(u))] H(o,u, 1).
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For any integer ¢ > 1, define stopping time k, = inf{u = uy: |o(u)| = t}. Itis evident that when ( —
o, Kk, = o. When p > 0, by utilizing the 1t6 formula, yield that

- fé‘“‘t[_brlnaxl(s)+(mx—ﬁ)(1‘l(s))ds]

E[H(o(uAK), T(uAK),unk)]e

= EH(6y,T,,0) +Efll/\KL —fo[ bma I(9)+(m)(——)(1 I(9))d9]

0

X |LH(o(s),I'(s),s) — (—

I(s) + (m)( - ) (1- 1(5))> H(a(s),r(s),s)] ds

bmax bmax

< EH(0,, T, 0).
When - oo, get that

1% 1 1
EH(o (1), (), e~ [_W‘(SH(W ‘m)(l—lﬁ))ds]

which means that

< EH(ay, I, 0),

1(s)+(

binE1GOI™ < by Elogme s [ 75m ) a-1)]as (A6)

By 0<1- <<l yu =14,

mxy bmax

1

<P+(m)(—m—)(1 Q) = m)(—ﬁ—m)((p.

bmax bmax bmax

Let [ > N*,when u € [y, u; + @4),
s 1 1
f [— 5 I(s) + <m)( ~% ) (1- I(s))] ds
0 max max

= (my —myep)l4 + (m)( 7 - m)()ﬂ
max
1
= (m)( — - qu)) 4~ (u—14)
Donax bmax
1
< (m)(— - —m)ap)u
max
When Ue [:ul +oA ., ) )
u
f [— I(s) + ( )(1 - 1(5))] ds
0 ax max
= (mx = —) u = mx( + DA
bmax
1
< (mx - = m)ap) 1
max

Substituting this into (A6), yield that
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b 1 1
Elow|™ < maxEIaolme(mX B O < ME|00|me(mX B mAP)H
min

hence E|o(u)|™ < ME|o,|™e~*1#. Inequality (3.2) has been proven.

Next, we start to prove inequality (3.3). Similarly to (A3), employing the It6 formula to
|a(u)|™, obtain that

Ele|™
=57 (0@ (a0 (), I'(),8) + w(a(s), [ (5), )I(s))

3 1k(@(), (), 9)I?) =3 255 1o () k(0 (s), T(), )| | ds.

< Elo(@)™ +E [“mo(s)™ |

As p € [y, + @4), I(n) = 1. By Assumption 2,
Elo@|™ < Ela(0)|™ + mE [} (B, — 7) lo(s)|™ds < E|a(0)|™ — cym [ E |o(s)|™ds.

As p € [+ @4, u41), 1) =0,
Elo(w)|™ < E|lo(0)[™ + pym [ Elo(s)|™ ds.

By (2.8), we have that

sup Ela(s)|™ < E|a(0)|™ + ym [* sup E|o(8)|™ ds.

0ss=su 0<6<ss
Gronwall inequality leads to

sup Elo(s)|™ < E|o(0)|™eX™,

0ss<u
Hence,
Jo sup Elo(@)™ds <~ (e*™ = DE|o(0)|™.
If m=2,
J;' sup Elo(0)Pds < - (e = DEIo(0)%, (A7)

For a non-negative integer [, we have that

2

E( sup IU(M)|2> < 3Elo(u)|* + 3E
HISUSHL4q

j (), 1 (s, $) + (0 (s), I'(s), 5) X I(s) ds
e

) (A8)

Under Assumption 1 and utilizing the Burkholder — Davis — Gundy inequality, we yield that

f k(o(s), I'(s),s)dw(s)

+3E< sup

ISSSU41
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A
E( sup |0(M)|2) < 3E|a(0)I* + 6Af E(Jh(a(s), I'(s),5)I?

O=su<A
A

+|lw(a(s),['(s),s) x 1(s)|?)ds + 12[ Elk(a(s),I'(s),s)|*ds

0

2
< 3E|0(0)|?> + (6AKZ + 12K2 + 6AK22)f sup |o(u)|?ds.
0

Osuss

Substituting (A7) into the above inequality, we obtain that
E( sup |0'(,u)|2> < 3E|0(0)|? + (64K, + 12K3* + 6AK22)$(e2X“ —1)E|c(0)|%.
Osu<Aa
For m € (0,2), by Holder inequality, we get that

E( sup |a(u)lm> <JZElo(O)|™,

Osu<A

where | =3 + (6AK12 + 12[(32 + 6AK22)$(92XA - 1).

Repeating the above process, we have that

E< sup IG(M)|m> <JzE|lo(qM)|™.q =12,
qA<sus<(q+1)4

Using Chebyshev’s inequality, have we that

P( sup [o()|™ = 6‘0'5’“‘“‘) < 60'5’“"“E< sup |0(ﬂ)|m>
qAsus<(q+1)a gAsus(q+1)4

m
< e 0947 E|g(q)|™
m
< e 039417 ME |0 (0)|™.
According to the Borel — Cantelli lemma, there is aset , € 7 with P(£2,) = 1, then for almost all

w € N, there exists an integer q, = qo(w) such that for Vq > q,,

sup  |o(u)|™ < 701194,
qAsus<(q+1)4

Therefore, for g4 < u < (q + 1)4,

0.5x1q4

1

Letting u — oo, obtain that
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. 1 _ X1
llll_r)zlosup;logla(u)l S -5 --a.s.

This completes the proof.
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