Research article Special Issues

On the contribution of qualitative analysis in mathematical modeling of plasmid-mediated ceftiofur resistance


  • Received: 02 June 2023 Revised: 09 August 2023 Accepted: 06 October 2023 Published: 17 October 2023
  • The acquisition of antibiotic resistance due to the consumption of food contaminated with resistant strains is a public health problem that has been increasing in the last decades. Mathematical modeling is contributing to the solution of this problem. In this article we performed the qualitative analysis of a mathematical model that explores the competition dynamics in vivo of ceftiofur-resistant and sensitive commensal enteric Escherichia coli (E. coli) in the absence and during parenteral ceftiofur therapy within the gut of cattle, considering the therapeutic effects (pharmacokinetics (PK)/pharmacodynamics (PD)) in the outcome of infection. Through this analysis, empirical properties obtained through in vivo experimentation were verified, and it also evidenced other properties of bacterial dynamics that had not been previously shown. In addition, the impact of PD and PK has been evaluated.

    Citation: Eduardo Ibargüen-Mondragón, M. Victoria Otero-Espinar, Miller Cerón Gómez. On the contribution of qualitative analysis in mathematical modeling of plasmid-mediated ceftiofur resistance[J]. Electronic Research Archive, 2023, 31(11): 6673-6696. doi: 10.3934/era.2023337

    Related Papers:

  • The acquisition of antibiotic resistance due to the consumption of food contaminated with resistant strains is a public health problem that has been increasing in the last decades. Mathematical modeling is contributing to the solution of this problem. In this article we performed the qualitative analysis of a mathematical model that explores the competition dynamics in vivo of ceftiofur-resistant and sensitive commensal enteric Escherichia coli (E. coli) in the absence and during parenteral ceftiofur therapy within the gut of cattle, considering the therapeutic effects (pharmacokinetics (PK)/pharmacodynamics (PD)) in the outcome of infection. Through this analysis, empirical properties obtained through in vivo experimentation were verified, and it also evidenced other properties of bacterial dynamics that had not been previously shown. In addition, the impact of PD and PK has been evaluated.



    加载中


    [1] E. Ibargüen-Mondragón, L. Esteva, M. Cerón-Gómez, An optimal control problem applied to plasmid-mediated antibiotic resistance, J. Appl. Math. Comput., 68 (2022), 1635–-1667. https://doi.org/10.1007/s12190-021-01583-0 doi: 10.1007/s12190-021-01583-0
    [2] W. H. Hamer, The milroy lectures on epidemic diseases in england: The evidence of variability and of persistency of type, Lancet, 167 (1906), 569–574. https://doi.org/10.1016/S0140-6736(01)80187-2 doi: 10.1016/S0140-6736(01)80187-2
    [3] R. Ross, Mosquito Brigades and how to Organize Them, JAMA, (1902), 779–780. https://doi.org/10.1007/978-3-319-03080-7
    [4] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [5] A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Nat. Acad., 6 (1920), 410–415. https://doi.org/10.1073/pnas.6.7.410 doi: 10.1073/pnas.6.7.410
    [6] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 115 (1926), 558–560. https://doi.org/10.1038/119012a0 doi: 10.1038/119012a0
    [7] F. M. Stewart, B. Levin, The population biology of bacterial plasmids: a przori conditions for the existence of conjugationally transmitted factors, Genetics, 87 (1977), 209–228. https://doi.org/10.1093/genetics/87.2.209 doi: 10.1093/genetics/87.2.209
    [8] P. E. Kloeden, C. Pötzsche, Nonautonomous Dynamical Systems in the Life Sciences, 1nd edition, Springer, 2013. https://doi.org/10.1007/978-3-319-03080-7
    [9] L. Perko, Diffrential equations and dynamical systems, 2$^{nd}$ edition, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-1-4613-0003-8
    [10] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, Springer, New York, 2004. https://doi.org/10.1007/978-0-387-21736-9
    [11] E. Elyan, A. Hussain, A. Sheikh, A. A. Elmanama, P. Vuttipittayamongkol, K. Hijazi, Antimicrobial resistance and machine learning: Challenges and opportunities, J. Appl. Math. Comput., 10 (2022), 31561–31577. https://doi.org/10.1109/ACCESS.2022.3160213 doi: 10.1109/ACCESS.2022.3160213
    [12] P. Carracedo-Reboredo, J. Liñares-Blanco, N. Rodríguez-Fernández, F. Cedrón, F. J. Novoa, A. Carballal, et al., A review on machine learning approaches and trends in drug discovery, Comput. Struct. Biotechnol. J., 19 (2021), 4538–4558. https://doi.org/10.1016/j.csbj.2021.08.011
    [13] Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.
    [14] E. Ibargüen-Mondragón, M. Cerón-Gómez, E. M. Burbano-rosero, Assessing the role of bacterial plasmid replication in a competition model of sensitive and resistant bacteria to antibiotics, AIMS Math., 6 (2021), 9446–9467. https://doi.org/10.3934/math.2021549 doi: 10.3934/math.2021549
    [15] B. Daşbaşı, Fractional order bacterial infection model with effects of anti-virulence drug and antibiotic, Chaos Solitons Fractals, 170 (2023), 113331. https://doi.org/10.1016/j.chaos.2023.113331 doi: 10.1016/j.chaos.2023.113331
    [16] L. Qu, Z. Chen, A mathematical model of plasmid-carried antibiotic resistance transmission in two types of cells, Appl. Math. Nonlinear Sci., 8 (2022), 2331–2344. : https://doi.org/10.2478/amns.2021.2.00178
    [17] Q. J. Leclerc, J. A. Lindsay, G. M. Knight, Modelling the synergistic effect of bacteriophage and antibiotics on bacteria: Killers and drivers of resistance evolution, PLoS Comput. Biol., 18 (2022), e1010746. https://doi.org/10.1371/journal.pcbi.1010746 doi: 10.1371/journal.pcbi.1010746
    [18] A. Ali, M. Imran, S. Sial, A. Khan, Effective antibiotic dosing in the presence of resistant strains, PLoS ONE, 17 (2022), e0275762. https://doi.org/10.1371/journal.pone.0275762 doi: 10.1371/journal.pone.0275762
    [19] M. G. Roberts, S. Burgess, L. J. Toombs-Ruane, J. Benschop, J. C. Marshall, N. P. French, Combining mutation and horizontal gene transfer in a within-host model of antibiotic resistance, Math. Biosci., 339 (2021), 108656. https://doi.org/10.1016/j.mbs.2021.108656 doi: 10.1016/j.mbs.2021.108656
    [20] I. K. Minichmayr, V. Aranzana-Climent, L. E. Friberg, Pharmacokinetic/pharmacodynamic models for time courses of antibiotic effects, Int. J. Antimicrob. Agents, 60 (2022), 106616. https://doi.org/10.1016/j.ijantimicag.2022.106616 doi: 10.1016/j.ijantimicag.2022.106616
    [21] C. Witzany, J. Rolff, R. R. Regoes, C. Igler, The pharmacokinetic–pharmacodynamic modelling framework as a tool to predict drug resistance evolution, Microbiology, 169 (2023), 1635–1667. https://doi.org/10.1007/s12190-021-01583-0 doi: 10.1007/s12190-021-01583-0
    [22] J. R. Salas, T Gaire, V. Quichocho, E. Nicholson, V. V. Volkova, Modelling the antimicrobial pharmacodynamics for bacterial strains with versus without acquired resistance to fluoroquinolones or cephalosporins, J. Global Antimicrob. Resist., 28 (2022), 59–66. https://doi.org/10.1016/j.jgar.2021.10.026 doi: 10.1016/j.jgar.2021.10.026
    [23] M. Jacobs, N. Grégoire, W. Couet, J. B. Bulitta, Distinguishing antimicrobial models with different resistance mechanisms via population pharmacodynamic modeling, PLoS Comput. Biol., 12 (2016), e1004782. https://doi.org/10.1371/journal.pcbi.1004782 doi: 10.1371/journal.pcbi.1004782
    [24] V. V. Volkova, C. Lanzas, Z. Lu, Y. T. Gröhn, Mathematical model of plasmid-mediated resistance to ceftiofur in commensal enteric Escherichia coli of cattle, Plos One, 7 (2012), 1–15. https://doi.org/10.1371/journal.pone.0036738 doi: 10.1371/journal.pone.0036738
    [25] P. Macheras, A. Iliadis, Modeling in biopharmaceutics, pharmacokinetics and pharmacodynamics, 2nd edition, Springer, New York, 2016. https://doi.org/10.1007/978-3-319-27598-7
    [26] O. Osuna, J. Rodríguez-Ceballos, C. Vargas-De León, G. Villaseñor-Aguilar, A note on the existence and construction of Dulac functions, Nonlinear Anal. Modell. Control, 22 (2017), 431–440. https://doi.org/10.15388/NA.2017.4.1 doi: 10.15388/NA.2017.4.1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1264) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog