In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms:
$ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Psi_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Omega_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Upsilon_{n}}, \end{equation*} $
$ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Upsilon_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Psi_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Omega_{n}}, \end{equation*} $
for $ n\in \mathbb{N}_{0} $, where the initial conditions $ \Upsilon_{-j} $, $ \Psi_{-j} $, $ \Omega_{-j} $, for $ j\in\{0, 1\} $ and the parameters $ \Gamma_{i} $, $ \delta_{i} $, $ \Theta_{i} $ for $ i\in\{1, 2, 3\} $ are positive constants.
Citation: Merve Kara. Investigation of the global dynamics of two exponential-form difference equations systems[J]. Electronic Research Archive, 2023, 31(11): 6697-6724. doi: 10.3934/era.2023338
In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms:
$ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Psi_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Omega_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Upsilon_{n}}, \end{equation*} $
$ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Upsilon_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Psi_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Omega_{n}}, \end{equation*} $
for $ n\in \mathbb{N}_{0} $, where the initial conditions $ \Upsilon_{-j} $, $ \Psi_{-j} $, $ \Omega_{-j} $, for $ j\in\{0, 1\} $ and the parameters $ \Gamma_{i} $, $ \delta_{i} $, $ \Theta_{i} $ for $ i\in\{1, 2, 3\} $ are positive constants.
[1] | F. Brauer, C. C. Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001. |
[2] | E. M. Elsayed, F. Alzahrani, I. Abbas, N. H. Alotaibi, Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence, J. Appl. Anal. Comput., 10 (2020), 282–296. https://doi.org/10.11948/20190143 doi: 10.11948/20190143 |
[3] | Y. Ke, J. Zheng, An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation, Calc. Var., 58 (2019), 1–27. https://doi.org/10.1007/s00526-019-1568-2 doi: 10.1007/s00526-019-1568-2 |
[4] | N. Taskara, D. T. Tollu, Y. Yazlik, Solutions of rational difference system of order three in terms of Padovan numbers, J. Adv. Res. Appl. Math., 7 (2015), 18–29. |
[5] | D. T. Tollu, Y. Yazlik, N. Taskara, The solutions of four Riccati difference equations associated with Fibonacci numbers, Balkan J. Math., 2 (2014), 163–172. |
[6] | N. Touafek, On a general system of difference equations defined by homogeneous functions, Math. Slov., 71 (2021), 697–720. https://dx.doi.org/10.1515/ms-2021-0014 doi: 10.1515/ms-2021-0014 |
[7] | Z. A. Wang, J. Zheng, Global boundedness of the fully parabolic Keller-Segel system with signal-dependent motilities, Acta Appl. Math., 171 (2021), 1–19. https://doi.org/10.1007/s10440-021-00392-8 doi: 10.1007/s10440-021-00392-8 |
[8] | M. Winkler, How far do chemotaxis-driven forces in uence regularity in the Navier-Stokes system?, Trans. Am. Math. Soc., 369 (2017), 3067–3125. https://doi.org/10.1090/tran/6733 doi: 10.1090/tran/6733 |
[9] | M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components, J. Evol. Equation, 18 (2018), 1267–1289. https://doi.org/10.1007/s00028-018-0440-8 doi: 10.1007/s00028-018-0440-8 |
[10] | Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of difference equation systems with Padovan numbers, Appl. Math., 4 (2013), 15–20. |
[11] | J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Differ. Equation, 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003 |
[12] | J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equation, 267 (2019), 2385–2415. https://doi.org/10.1016/j.jde.2019.03.013 doi: 10.1016/j.jde.2019.03.013 |
[13] | J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Differ. Equation, 272 (2021), 164–202. https://doi.org/10.1016/j.jde.2020.09.029 doi: 10.1016/j.jde.2020.09.029 |
[14] | J. Zheng, Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux, Calc. Var., 61 (2022), 1–34. https://doi.org/10.1007/s00526-021-02164-6 doi: 10.1007/s00526-021-02164-6 |
[15] | X. Liu, J. Zheng, Convergence rates of solutions in apredator-prey system with indirect pursuit-evasion interaction in domains of arbitrary dimension, Discrete Contin. Dyn. Syst. B., 28 (2023), 2269–2293. https://doi.org/10.3934/dcdsb.2022168 doi: 10.3934/dcdsb.2022168 |
[16] | R. Abo-Zeid, H. Kamal, On the solutions of a third order rational difference equation, Thai J. Math., 18 (2020), 1865–1874. |
[17] | R. Abo-Zeid, Global behavior and oscillation of a third order difference equation, Quaest. Math., 44 (2021), 1261–1280. https://doi.org/10.2989/16073606.2020.1787537 doi: 10.2989/16073606.2020.1787537 |
[18] | I. Dekkar, N. Touafek, Y. Yazlik, Global stability of a third-order nonlinear system of difference equations with period-two coefficients, RACSAM, 111 (2017), 325–347. https://doi.org/10.1007/s13398-016-0297-z doi: 10.1007/s13398-016-0297-z |
[19] | E. M. Elsayed, Expression and behavior of the solutions of some rational recursive sequences, Math. Meth. Appl. Sci., 18 (2016), 5682–5694. https://doi.org/10.1002/mma.3953 doi: 10.1002/mma.3953 |
[20] | Y. Halim, N. Touafek, Y. Yazlik, Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math., 39 (2015), 1004–1018. https://doi.org/10.3906/mat-1503-80 doi: 10.3906/mat-1503-80 |
[21] | T. F. Ibrahim, N. Touafek, On a third order rational difference equation with variable coefficients, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 20 (2013), 251–264. |
[22] | N. Taskara, D. T. Tollu, N. Touafek, Y. Yazlik, A solvable system of difference equations, Commun. Korean Math. Soc., 35 (2020), 301–319. https://doi.org/10.4134/CKMS.c180472 doi: 10.4134/CKMS.c180472 |
[23] | D. T. Tollu, Y. Yazlik, N. Taskara, Behavior of positive solutions of a difference equation, J. Appl. Math. Inform., 35 (2017), 217–230. https://dx.doi.org/10.14317/jami.2017.217 doi: 10.14317/jami.2017.217 |
[24] | D. T. Tollu, I. Yalcinkaya, H. Ahmad, S. W. Yao, A detailed study on a solvable system related to the linear fractional difference equation, Math. Biosci. Eng., 18 (2021), 5392–5408. https://doi.org/10.3934/mbe.2021273 doi: 10.3934/mbe.2021273 |
[25] | I. Yalcinkaya, D. T. Tollu, Global behavior of a second order system of difference equations, Adv. Stud. Contemp. Math., 26 (2016), 653–667. |
[26] | I. Yalcinkaya, H. Ahmad, D. T. Tollu, Y. Li, On a system of $k-$difference equations of order three, Math. Probl. Eng., 2020 (2020), 1–11. https://doi.org/10.1155/2020/6638700 doi: 10.1155/2020/6638700 |
[27] | Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of a three-dimensional system of difference equations, Kuwait J. Sci., 43 (2016), 95–111. |
[28] | H. El-Metwally, E. A. Grove, G. Ladas, R. Levins, On the difference equation $x_{n+1} = \alpha+\beta x_{n-1} e^{-x_{n}}$, Nonlinear Anal. Theor. Meth. Appl., 47 (2001), 4623–4634. |
[29] | W. Wang, H. Feng, On the dynamics of positive solutions for the difference equation in a new population model, J. Nonlinear Sci. Appl., 9 (2016), 1748–1754. |
[30] | I. Ozturk, F. Bozkurt, S. Ozen, On the difference equation $y_{n+1} = \frac{\alpha+\beta e^{-y_{n}}}{\gamma+y_{n-1}}$, Appl. Math. Comput., 181 (2006), 1387–1393. https://doi.org/10.1016/j.amc.2006.03.007 doi: 10.1016/j.amc.2006.03.007 |
[31] | T. Comert, I. Yalcinkaya, D. T. Tollu, A study on the positive solutions of an exponential type difference equation, Electron. J. Math. Anal. Appl., 6 (2018), 276–286. |
[32] | F. Bozkurt, Stability analysis of a nonlinear difference equation, Int. J. Mod. Nonlinear Theor. Appl., 2 (2013), 1–6. https://doi.org/10.4236/ijmnta.2013.21001 doi: 10.4236/ijmnta.2013.21001 |
[33] | E. A. Grove, G. Ladas, N. R. Prokup, R. Levins, On the global behavior of solutions of a biological model, Commun. Appl. Nonlinear Anal., 7 (2000), 33–46. |
[34] | I. Ozturk, F. Bozkurt, S. Ozen, Global asymptotic behavior of the difference equations: $y_{n+1} = \frac{\alpha e^{-\left(ny_{n}+(n-k)y_{n-k} \right) }}{\beta+ny_{n}+(n-k)y_{n-k}}$, Appl. Math. Lett., 22 (2009), 595–599. https://doi.org/10.1016/j.aml.2008.06.037 doi: 10.1016/j.aml.2008.06.037 |
[35] | G. Papaschinopoulos, N. Fotiades, C. J. Schinas, On a system of difference equations including negative exponential terms, J. Differ. Equations Appl., 20 (2014), 717–732. https://doi.org/10.1080/10236198.2013.814647 doi: 10.1080/10236198.2013.814647 |
[36] | G. Papaschinopoluos, M. A. Radin, C. J. Schinas, Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form, Appl. Math. Comput., 218 (2012), 5310–5318. https://doi.org/10.1016/j.amc.2011.11.014 doi: 10.1016/j.amc.2011.11.014 |
[37] | T. H. Thai, N. A. Dai, P. T. Anh, Global dynamics of some system of second-order difference equations, Electron. Res. Arch., 29 (2021), 4159–4175. https://doi.org/10.3934/era.2021077 doi: 10.3934/era.2021077 |
[38] | A. Q. Khan, M. N. Qureshi, Behavior of an exponential system of difference equations, Discrete Dyn. Nat. Soc., 2014 (2014), 1–9. https://doi.org/10.1155/2014/607281 doi: 10.1155/2014/607281 |
[39] | A. Q. Khan, M. S. M. Noorani, H. S. Alayachi, Global dynamics of higher-order exponential systems of difference equations, Discrete Dyn. Nat. Soc., 2019 (2019), 1–19. https://doi.org/10.1155/2019/3825927 doi: 10.1155/2019/3825927 |
[40] | C. Mylona, N. Psarros, G. Papaschinopoulos, C. J. Schinas, Stability of the non-hyperbolic zero equilibrium of two closeto-symmetric systems of difference equations with exponential terms, Symmetry, 10 (2018), 188. https://doi.org/10.3390/sym10060188 doi: 10.3390/sym10060188 |
[41] | G. Papaschinopoluos, M. A. Radin, C. J. Schinas, On the system of two difference equations of exponential form: $x_{n+1} = a+bx_{n-1}e^{-y_{n}}$, $y_{n+1} = c+dy_{n-1}e^{-x_{n}}$, Math. Comput. Model., 54 (2011), 2969–2977. https://doi.org/10.1016/j.mcm.2011.07.019 doi: 10.1016/j.mcm.2011.07.019 |
[42] | G. Papaschinopoluos, C. J. Schinas, On the dynamics of two exponential type systems of difference equations, Comput. Math. Appl., 64 (2012), 2326–2334. https://doi.org/10.1016/j.camwa.2012.04.002 doi: 10.1016/j.camwa.2012.04.002 |
[43] | G. Papaschinopoulos, G. Ellina, K. B. Papadopoulos, Asymptotic behavior of the positive solutions of an exponential type system of difference equations, Appl. Math. Comput., 245 (2014), 181–190. https://doi.org/10.1016/j.amc.2014.07.074 doi: 10.1016/j.amc.2014.07.074 |
[44] | N. Psarros, G. Papaschinopoulos, C. J. Schinas, On the stability of some systems of exponential difference equations, Opuscula Math., 38 (2018), 95–115. https://doi.org/10.7494/OpMath.2018.38.1.95 doi: 10.7494/OpMath.2018.38.1.95 |
[45] | A. Q. Khan, A. Sharif, Global dynamics of some $3\times6$ systems of exponential difference equations, Discrete Dyn. Nat. Soc., 2018 (2018), 1–35. https://doi.org/10.1155/2018/8362837 doi: 10.1155/2018/8362837 |
[46] | C. Mylona, N. Psarros, G. Papaschinopoulos, C. J. Schinas, Stability of two $3\times3$ close-to-cyclic systems of exponential difference equations, Math. Meth. Appl. Sci., 41 (2018), 7936–7948. https://doi.org/10.1002/mma.5256 doi: 10.1002/mma.5256 |
[47] | S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005. |
[48] | E. A. Grove, G. Ladas, Advances in Discrete Mathematics and Applications, Chapman and hall/CRC, Boca Raton, 2005. |
[49] | V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Springer, Dordrecht, 1993. |
[50] | H. Sedaghat, Nonlinear Difference Equations: Theory with Applications to Social Science Models, Kluwer Academic Publishers, Dordreacht, 2013. |
[51] | M. Pituk, More on Poincare's and Perron's theorems for difference equations, J. Differ. Equation Appl., 8 (2002), 201–216. https://doi.org/10.1080/10236190211954 doi: 10.1080/10236190211954 |