Research article

On estimates for augmented Hessian type parabolic equations on Riemannian manifolds

  • Received: 28 November 2021 Revised: 11 May 2022 Accepted: 06 June 2022 Published: 07 July 2022
  • The author extends previous results to general classes of equations under weaker assumptions obtained in 2016 by Bao, Dong and Jiao concerning the study of the regularity of solutions for the first initial-boundary value problem for parabolic Hessian equations on Riemannian manifolds.

    Citation: Yang Jiao. On estimates for augmented Hessian type parabolic equations on Riemannian manifolds[J]. Electronic Research Archive, 2022, 30(9): 3266-3289. doi: 10.3934/era.2022166

    Related Papers:

  • The author extends previous results to general classes of equations under weaker assumptions obtained in 2016 by Bao, Dong and Jiao concerning the study of the regularity of solutions for the first initial-boundary value problem for parabolic Hessian equations on Riemannian manifolds.



    加载中


    [1] G. Bao, W. Dong, H. Jiao, The first initial–boundary value problem for Hessian equations of parabolic type on Riemannian manifolds, Nonlinear Anal. Theory Methods Appl., 143 (2016), 45–63. https://doi.org/10.1016/j.na.2016.05.005 doi: 10.1016/j.na.2016.05.005
    [2] F. Jiang, N. S. Trudinger, On the Dirichlet problem for general augmented Hessian equations, J. Differ. Equ., 269 (2020), 5204–5227. https://doi.org/10.1016/j.jde.2020.04.004 doi: 10.1016/j.jde.2020.04.004
    [3] H. Jiao, Second order estimates for Hessian equations of parabolic type on Riemannian manifolds, J. Differ. Equ., 259 (2015), 7662–7680. https://doi.org/10.1016/j.jde.2015.08.031 doi: 10.1016/j.jde.2015.08.031
    [4] N. S. Trudinger, X.-J. Wang, The Monge-Ampère equation and its geometric applications, in Handbook of geometric analysis. No. 1, vol. 7 of Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 2008,467–524.
    [5] X. Ma, N. S. Trudinger, X. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. An., 177 (2005), 151–183. https://doi.org/10.1007/s00205-005-0362-9 doi: 10.1007/s00205-005-0362-9
    [6] F. Jiang, N. S. Trudinger, X. Yang, On the Dirichlet problem for Monge-Ampère type equations, Calc. Var. Partial Differ. Equ., 49 (2014), 1223–1236.
    [7] B. Guan, H. Jiao, The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds, Discrete Contin. Dyn. Syst., 36 (2016), 701–714. https://doi.org/10.3934/dcds.2016.36.701 doi: 10.3934/dcds.2016.36.701
    [8] N. M. Ivochkina, O. A. Ladyzhenskaya, Parabolic equations generated by symmetric functions of the eigenvalues of the Hessian or by the principal curvatures of a surface. I. Parabolic Monge-Amère equations, Algebra i Analiz, 6 (1994), 141–160.
    [9] N. M. Ivochkina, O. A. Ladyzhenskaya, Flows generated by symmetric functions of the eigenvalues of the Hessian, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., 221 (1995), 127–144. https://doi.org/10.1007/BF02355587 doi: 10.1007/BF02355587
    [10] H. Jiao, Z. Sui, The first initial-boundary value problem for a class of fully nonlinear parabolic equations on Riemannian manifolds, Int. Math. Res. Notices, 2 (2014), 151. https://doi.org/10.1093/imrn/rnu014 doi: 10.1093/imrn/rnu014
    [11] N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Sibirsk. Mat. Ž., 17 (1976), 290–303.
    [12] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, Singapore, 1996.
    [13] Y. Li, Some existence results for fully nonlinear elliptic equations of Monge-Ampère type, Comm. Pure Appl. Math., 43 (1990), 233–271.
    [14] J. Urbas, Hessian equations on compact Riemannian manifolds, In Nonlinear problems in mathematical physics and related topics, II, Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York, New York, 2002.
    [15] B. Guan, The Dirichlet problem for Hessian equations on Riemannian manifolds, Calc. Var. Partial Differ. Equ., 8 (1999), 45–69. https://doi.org/10.1007/s005260050116 doi: 10.1007/s005260050116
    [16] B. Guan, Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, Duke Math. J., 163 (2014), 1491–1524. https://doi.org/10.1215/00127094-2713591 doi: 10.1215/00127094-2713591
    [17] B. Guan, H. Jiao, Second order estimates for Hessian type fully nonlinear elliptic equations on Riemannian manifolds, Calc. Var. Partial Differ. Equ., 54 (2015), 2693–2712. https://doi.org/10.1007/s00526-015-0880-8 doi: 10.1007/s00526-015-0880-8
    [18] L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. iii. Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261–301. https://doi.org/10.1007/BF02392544 doi: 10.1007/BF02392544
    [19] E. Andriyanova, On the Dirichlet problem for degenerate Monge–Ampère type equations, Calc. Var. Partial Differ. Equ., 58 (2019), 1–22.
    [20] S. Du, Q. Li, Positivity of Ma-Trudinger-Wang curvature on Riemannian surfaces, Calc. Var. Partial Differ. Equ., 51 (2014), 495–523. https://doi.org/10.1007/s00526-013-0684-7 doi: 10.1007/s00526-013-0684-7
    [21] A. Figalli, L. Rifford, C. Villani, On the Ma–Trudinger–Wang curvature on surfaces, Calc. Var. Partial Differ. Equ., 39 (2010), 307–332. https://doi.org/10.1007/s00526-010-0311-9 doi: 10.1007/s00526-010-0311-9
    [22] A. Figalli, L. Rifford, C. Villani, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Tohoku Math. J., 63 (2011), 855–876. https://doi.org/10.2748/tmj/1325886291 doi: 10.2748/tmj/1325886291
    [23] C. Goodrich, A. Scapellato, Partial regularity of minimizers of asymptotically 2 convex functionals with p(x)-growth, Studia Math., 264 (2022), 71–102. https://doi.org/10.4064/sm210104-20-9 doi: 10.4064/sm210104-20-9
    [24] G. Loeper, N. S. Trudinger, Weak formulation of the MTW condition and convexity properties of potentials, Methods Appl. Anal., 28 (2021), 53–60. https://doi.org/10.4310/MAA.2021.v28.n1.a4 doi: 10.4310/MAA.2021.v28.n1.a4
    [25] M. A. Ragusa, On weak solutions of ultraparabolic equations, Nonlinear Anal. Theory Methods Appl., 47 (2001), 503–511. https://doi.org/10.1016/S0362-546X(01)00195-X doi: 10.1016/S0362-546X(01)00195-X
    [26] F. Jiang, N. S. Trudinger, Oblique boundary value problems for augmented Hessian equations ii, Nonlinear Anal. Theory Methods Appl., 154 (2017), 148–173. https://doi.org/10.1016/j.na.2016.08.007 doi: 10.1016/j.na.2016.08.007
    [27] B. Guan, S. Shi, Z. Sui, On estimates for fully nonlinear parabolic equations on Riemannian manifolds, Anal. PDE, 8 (2015), 1145–1164. https://doi.org/10.2140/apde.2015.8.1145 doi: 10.2140/apde.2015.8.1145
    [28] F. Jiang, N. S. Trudinger, Oblique boundary value problems for augmented Hessian equations I, Bull. Math. Sci., 8 (2018), 353–411.
    [29] B. Guan, J. Spruck, Interior gradient estimates for solutions of prescribed curvature equations of parabolic type, Indiana Univ. Math. J., 40 (1991), 1471–1481.
    [30] B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differ. Equ., 2 (1994), 151–171. https://doi.org/10.1007/BF01191340 doi: 10.1007/BF01191340
    [31] C. Gerhardt, Closed Weingarten hypersurfaces in Riemannian manifolds, J. Differ. Geom., 43 (1996), 612–641. https://doi.org/10.4310/jdg/1214458325 doi: 10.4310/jdg/1214458325
    [32] N. S. Trudinger, On the Dirichlet problem for hessian equations, Acta Math., 175 (1995), 151–164. https://doi.org/10.1007/BF02393303 doi: 10.1007/BF02393303
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1086) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog