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1. Introduction

Let (M", g) be a compact Riemannian manifold of dimension n > 2 with smooth boundary dM and
M := M UOM. Define My = M x (0,T] € M xR, PM; = BM; U S My is the parabolic boundary of
My with BMy = M x {0} and S My = OM %[0, T]. In [1], the authors derived C? estimates for solutions
of the first initial-boundary value problem of parabolic Hessian equations in the form

FQAVu+ x(x, 1)), =) = Y(x, 1), (1.1)

where f is a symmetric smooth function of n + 1 variables.
In this paper, we apply an exponential barrier from [2] where Jiang-Trudinger treat the correspond-
ing elliptic problems in R” to study (1.1) in the general augmented Hessian form

FQANV?u + Ax, t, V), —u,) = y(x, 1, Vi) (1.2)

in M7 with boundary condition
u=¢@onPMry, (1.3)

where V2u+A(x, t, Vu) is called augmented Hessian, Vu and V?u denote the gradient and the Hessian of
u(x,t) with respect to x € M respectively, u, = D,u is the derivative of u(x, t) with respect to ¢ € [0, T'],
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Alu] = A(x, t, Vu) is a (0, 2) tensor on M which may depend on ¢ € [0, T] and Vu, and
ANV u+ Aful) = (A4, ..., 4,)

denotes the eigenvalues of V?u + A[u] with respect to the metric g.

As in [3], throughout the paper we assume A[u] is smooth on My foru € C“(m), VS C“(T*M X
[0, T]). We shall write ¥ = ¥(x,t, p) for (x, p) € T*M and ¢ € [0, T]. Note that for fixed (x, 1) € My
and p e T;M,

Ax,t,p) : T M XT:M - R

is a symmetric bilinear map. We shall use the notation
AT(x,1,7) 1= A(x, 1, )(Em), EneTiM.

For a function v € C?(Mr), we write A[v] := A(x, t, Vv), A7[v] := A%(x, 1, Vv) and Y[u] := Y(x, t, V).

There are many different A in conformal geometry, the optimal transportation satisfies, the isometric
embedding, reflector design and other research fields, we recommend readers see subsection 3.8 in [4]
and references therein for the Monge-Ampere type equations arising in applications.

We are concerned in this work with the a priori estimates of admissible solutions to (1.2) with
boundary condition. The use of the exponential barrier allows us to relax the concavity assumption of
A to Ma-Trudinger-Wang conditions(see [S]). By the perturbation method of subsolutions in [2] (see
Remark 2.2 in [6] for details), we can obtain strict subsolutions from non-strict subsulutions which
simplifies the proofs and relaxes some restrictions to f in the estimates of |u].

Our treatment here will also work for parabolic equations in the form

FQANV U+ A(x, 1, Vi) — u; = y(x, t, Vu) (1.4)

with slight modification. Note that we do not require a priori bound of |u,| in the study of (1.4).
The idea of this paper is mainly from Guan-Jiao [7] and Jiang-Trudinger [2] where those authors
studied the second order estimates for the elliptic counterpart of (1.2):

f(/l(Vzu + A(x,u, Vu))) = y(x, u, Vu). (1.5)

The first initial-boundary value problem for equation of form (1.4) in R” with A = 0 and ¢ = ¥(x, 1)
was studied by Ivochkina-Ladyzhenskaya in [8] (when f = a':/ ") and [9]. In recent years, Jiao-Sui [10]
treated the case that A = y(x,7) and ¥ = ¥(x, ) on Riemannian manifolds and Jiao [3] extend their
results to the form

FANV?u + Ax, t, Vi) — u, = w(x, t,u, Vi)

by the method using in the corresponding elliptic problems.
Krylov in [11] treated (1.2) in the parabolic Monge—Ampere form

—u, det(Vu + A) = y"*!

in R”, where A = 0 and ¥ = y/(x, t). In [12], Lieberman studied the first initial-boundary value problem
of (1.2) when A = 0 and ¢ may depend on u and Vu in a bounded domain under various conditions.
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For the elliptic Hessian equations, we refer the readers to Li [13], Urbas [14, 367-377], Guan
[15,16], Guan-Jiao [17], Jiang-Trudinger [2] and their references.

Following [18], in which the authors studied the corresponding elliptic equations in R”, f € C*(I')N
C°(T) is assumed to be defined on I', where T is an open, convex, symmetric proper subcone of R™*!
with vertex at the origin and

I'* ={1eR"™": each component A, > 0} C T,

and to satisfy the following structure conditions in this paper:

0
ﬁ55£>0mn l<i<n+l, (1.6)
fisconcave in T, (1.7)
and
Oy = infyy —sup f > 0, where sup f = sup limsup f(A). (1.8)
‘ Mr ar or Apedl  A—dg

Typical examples are f = 0,/* and f = (0/0)"/*, 1 < I < k < n, defined in the cone

i ={1eR":0(H)>0,j=1,...,k}

and f = (M) defined in
My={1eR": 4; +---+ 4, >0},

where 0 (A) are the kth elementary symmetric functions and M are the p-plurisubharmonic functions
defined by
D= D Ay Ay, 1<k<n

i1 <...<@g

and
M) = [ | Qi+ + 20, 1<k<n

i <-<ig

respectively. When k = n, f = 0',% is the famous Monge-Ampere equation arising in many research
fields such as conformal geometry, optimal transportation, isometric embedding and reflector designs,
see the survey [4] and references therein.

We define a function u(x, ¢) to be admissible if (A(V?u + A[u]), —u,) € T in M x [0, T]. It is shown
in [18] that (1.6) ensures that Eq (1.2) is parabolic for admissible solutions. (1.7) means that the
function F defined by F(A, 1) = f(A[A], 1) is concave for (A, 7) with (1[A],7) € T, where A is in the
set of n X n symmetric matrices S™". Moreover, when {U;;} is diagonal so is {F i/}, and the following
identities hold

FiU; =" i, FIUUG= Y, AU) = (..., dy).

We define a function u to be a admissible viscosity supersolution of (1.2) if

AR, D) + AR, 1, VPR, D), —¢(£,D) < Y(R, £, V(£ 1)

whenever ¢ € C*(M7) is a admissible function and (%, f) € M is a local minimum of u — ¢.
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In this paper we assume that there exists an admissible function u € C*(My) satisfying

FQANVu+ Alul), —u,) > ¢(x,t,Vu) in M x[0,T],
©® on oM x [0,T], (1.9)
® on M x {0}.

IA

L
u

A (0,2) tensor B is called regular (strictly regular), if

DB (ot, pEEma 2 0(> 0)

i,j.k,l

forall (x,7,p) e M X [0, T] xR", é,me T;M and g(&,n) = 0.

The regular condition, well known as MTW condition, was first introduced by Ma, Trudinger and
Wang in [5] for the study of optimal transportation in its strict form, and used in [2, 19] and other
relevant problems. It is natural to consider MTW conditions instead of normal concavity assumptions
on A. Examples in [5] shows that there exists a tensor A, without convexity respect to p, derived from
special cost functions satisfying this regular condition. There are many results about MTW conditions,
see, for instance, [20—25] and references therein.

We now begin to formulate the main theorems of this paper.

Theorem 1. Let u € C*(My) be an admissible solution of (1.2). Suppose (1.6)—(1.8) and (1.9) hold.
Assume, in addition, that

Y(x,t, p) is convex in p, (1.10)
—A%(x,t, p) is regular, (1.11)
then
max |V2u| < C;(1 + max |V2ul), (1.12)
MT PMT

where Cy > 0 depends on |u|ci 1,y [Uilcogz,y and |ulcagiz,y. Suppose that u also satisfies the boundary
condition (1.3) and, in addition, assume that there exists a function ® € C*(BMr) such that ® = —¢,
on OM x {0} and

(AV?¢(x,0) + Ale(x,0)]), 0(x)) €T, Yxe M, (1.13)

and that
FQAV(x,0) + Alp(x, 0)]), —¢,(x, 0)) = Yle(x,0)], Yx € M, (1.14)

for each (x,t) € SMy and p € T:M . Then there exists C, > 0 depending on luler iy Nl coginy 1tle2my
and |¢|cypumy) Such that
max |VZu| < C,. (1.15)
PMr

Combining with the gradient estimates and the estimates of |u,|, we can prove the following theorem
immediately.

Theorem 2. Let u € C*(My) be an admissible solution of (1.2) in My with u > uin My and u = ¢ on
PMr. Suppose (1.6)—(1.11) and (1.13)—(1.14) hold. Assume, in addition, for every C > 0, there is a
constant R = R(C) such that

f(RI) > C, (1.16)
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where1 = (1,...,1) € R™!. Assume also there exist a bounded admissible viscosity supersolution u of
(1.2) satisfying u > ¢ on PMy. Then we have

lulc2iizyy < C, (1.17)

where C > 0 depends on n, M and |u|c2(yz,) under the additional assumptions (3.1)~(3.4) in Section 3.

The assumptions of the existence of bounded viscosity supersolution and the additional conditions
(3.1)—(3.4) are only used to derive C° and C' estimates. (1.16) is used in the estimates of |u,| and can
be dropped if u is strict subsolution. Both (1.16) and (3.4) hold for many operators such as the famous
Monge-Ampere operator or more general k-Hessian operator 0',1/ K,

The outline of this paper is as follows. In Section 2, we present some preliminaries and give a proof
of Lemma 4. The solution bound and the gradient bound are derived in Section 3 while an a priori
estimates for , is obtained in Section 4. Finally we establish the global and boundary C? estimates in
Sections 5 and 6 respectively.

2. Preliminaries

Throughout the paper V denotes the Levi-Civita connection of (M", g).
Let u € C*(M7) be an admissible solution of Eq (1.2). For simplicity we shall denote U := V?u +
A(x,t,Vu) and U := Vzg + A(x, t, Vu). Moreover, we denote,

. OF oF
Fl] = s s FT = T s >
ahij (U, —u,) ot (U, —uy)
iy O*F g O*F OPF
Fiikl = _— (U, -u,), F* = U,-u,), F*"= —(U, -
FTSE T FrA LA e (U )

and, under a local frame e, ..., e,,
Uij= Ule,e;) = Viu+ AY(x,t, Vu),
VUi =VU(e; e, er) = Vigju + ViAY (x, 1, Vu)
= Vigju + Al (x, 1, Vu) + AY (x, 1, Vi) Vgu,

(Ui = (UCes, ) = (Viju), + A (x, 1, Vu) + A (x, 1, Vu)(V ),
=V, ju + Aﬁj(x, t,Vu) + AZ(x, t,Vu)Vu,,

where AV = A% and Azj denotes the partial covariant derivative of A when viewed as depending on
x € M only, while the meanings of Aﬁj and Ai,j,, etc are obvious. Similarly we can calculate VU;; =
ViViU;; =TV, Uij, ete.

It is convenient to express the regular condition of —A in the equivalent form as in [26],

— A &&man > —2AlnlgE - ), 2.1)
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for all £,7 € R”, where Ais a non-negative function in CO(VT x R"), depending on V,A. Hence, we
have, for any non-negative symmetric matrix £/ and € € (0, 1],

ij Aij 7 ii 1o i
— FUAT > =A(e Y Filyl? + —Fina)). (2.2)
Define the linear operator £ locally by
Ly =F'V,v+ (Fi</Ai<,’;( -, )V = F'y,

for v e C?(My).

A crucial lemma was proved by Jiang-Trudinger for elliptic type equations in Lemma 2.1(ii) in [2]
for M = R", we extend their results to the parabolic case. Note that their perturbation of non-strict
subsolution, which make a non-strict subsolution to be strict, only holds near the boundary in the
Riemannian manifolds case. Therefore we shall apply a classification technique from [7] to deal with
global estimates.

Let u(x,t) = /l(Vzg(x, 1) + Alu]) and note that {u(x, ) : (x,t) € Mr} is a compact subset of positive
cone I'* since (1.6). There exists uniform constant 8 € (0, #ﬁ) such that

v, —2Bl el Vx € My, (2.3)

where v, := Df(1)/|Df(A)| is the unit normal vector to the level hypersurface I/ for A € T and
1=(1,...,1) e R,

For fixed (xo, 1), we consider two cases: (i) |v, — v,| > B and (ii) |v, — v,| < B. In case (i), we shall
modify Jiang-Trduinger’s Lemma 2.1 [2]. First, we need the following lemma, its proof can be found
in Lemma 2.2 [27].

Lemma 3. Let K be a compact subset of I and B > 0. There is a constant € > 0 such that, for any
neKand A €T withlv, —vi =B,

D =) 2 f = fQ) +e(1+ Y fi() (2.4)
It follows from Lemma 6.2 in [18] and Lemma (2.4) that
FI(U,, — Uy) 2 F(U, ) = F(U, ) + €(1 + )" F" + F7), (2.5)

We now prove the crucial lemma for case (i).

Lemma 4. Let u € C*(My) be an admissible solution of Eq (1.2) Suppose vy —val > B. Assume F
satisfies (1.6)—(1.7) and (1.9)—(1.11) hold. Then there exist positive constants K and € , depending on
My, A, |ulci 2,y and |ulc1 iz, such that

Ln> el + Z Fi+ F), (2.6)
K(u-u)

wheren = e
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Proof. By (2.5), we have

Lu—u) = F""{[Q,,. = Uil = F'lu, —u] + A;j;{Dk(E —u)
— AY(x,t, Du) + AY(x,t, Du)} — , Vi(u — u)
>F(U,~-u) - F(U,~u) = ¢, Vi(u—u)

1 )
- EFI'IA[pjk,p,(X, 1, P)Di(u — u)Dy(u — u)

+e(1+ZFii+FT)
1.
Z - EFjAlfk,p/

+€(1 +2Fii+FT)

2.7)

(.X', t, ﬁ)Dk(ﬂ - u)Dl(E - I/t)

by Taylor’s formula and the convexity of ¢, where p = Vu + (1 — 8)Vu for some 6 € (0, 1). Thus

LK = KK L(w - u) + KFUDy( — )D(u — )}
>K K(u—u) lFl[Alj 5D D
> KeKtf - S YA (3 1, DDt = w)Dy(ut = u) (2.8)

+ KFUDi(w—0)Dj(u—u) + (1 + Y F'+ F7)}.

Since A is regular, by (2.2), we obtain

1
2 PrpI

> (e- 71|D(g —wl) Y F'+ (K - %)F”Di(g — w)D(u — u)

€ Y F' = SFUAY | (x,1, p)Diu — )Diu — u) + KFDi(u = w)D(u - )

by successively fixing €, and K.
Therefore, by (2.8), we have

LeKww > KeK(g—u)(g(l + ZFii + FT)) > (1 + ZFii +F7 (2.9)

for some positive constant €. O

Next, in case (ii), we have v, — 81 € I'*. Thus we derive

B

n+1

Fii > ZFﬁ Vi<i<n+l. (2.10)

Remark 1. If u is a strict subsolution or M = R", then we can derive (2.6) without the assumption
vy —val = B. Actually, when M = R", let d(x) = dist(x,OM), by consider u+ae® and u+ a(e’ - 1) for
interior and near boundary respectively in R", a strict subsolution can be derived from a non-strict one,
see remark 2.2 in [6]. Then (2.6) will be obtained by Jiang-Trudinger’s proof with a little modification.
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3. Gradient estimates

In this section, we derive the gradient estimates. We introduce the following growth conditions:
When |p| is sufficiently large,

p-Va(x,1,p), p- VA% (x, 1, p)/IEF < dn(x, (1 +|p), (3.1)
lp - Dyy(x, 1, p)l, |p - DA% (x, 1, p)/IEP < da(x, O)(1 + |pl") (3.2)

and
A (x, 1, p)| < Ga(x, DIEIMI(L + |pI") V€ neTiM (3.3)

hold for some functions ¢/, ¥», 3 > 0, and constants y € (0,4) and y, € (0, 2).
By the existence of viscosity supersolution u and classical subsolution u, we have

max |u| < C.
My
Since u is admissible, we have
0 < Au + trA(x, t, Vu) — u,.

The boundary gradient estimates are derived by subsolution u for the lower bound and by (3.3) with
the method of Lemma 10.1 in [12] for the upper bound.

Theorem 5. Let u € C*(My) be an admissible solution of (1.2). Suppose (1.6)—(1.7) and (3.1)—(3.3)
hold. Assume, in addition, that

n+l
ﬁzv¢1+22ﬁyﬁrmwﬁerwwmﬂj<a (3.4)

i=1

where v is a uniform positive constant. Then

max |Vu| < C5(1 + max |[Vul), (3.5)
MT PMT

where Cs is a positive constant depending on |ulcoiz,, and other known data.

Proof. Let ¢ € C*(My) is a positive function to be determined. Suppose |Vu|¢~ achieves a positive
maximum at an interior point (xo,%)) € My — PMy where a < 1 is a constant. Choose a smooth
orthonormal local frame ey, ..., e, about (xo, %) such that V,e; = 0 at (xo,%) if i # j and {U,;} is
diagonal. Define v = log|Vu| — alog ¢, then the function v also attains its maximum at (xo, #y) where,
fori=1,...,n,

VluVﬂu V,¢
Vi = — 04— :0 36
YT vae Ty :0)
and
Fv, >0 > F'V,v. (3.7)
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Thus, by (3.6) and (3.7), we have

O > FiiViiv - FTVI‘
= F''V;i(log |Vul) — F*(log |Vul), — aF"'V;;log ¢ + aF"(log ¢),
Vﬂ/l

FiiVi Viu +
uvu Vil

= |V |2 (FiiV,»ilu - FTVZMI) (38)
u

a-2d*
¢2
Differentiating both sides of Eq (1.2) with respect to x, we obtain, at (xo, #y),

+

Fi(V,6)* - gF"fvﬁqb.

F'VUii = F'Vu, = Y+ 4, Viju (3.9)

forallk=1,...,n.
Let ¢ = —u + supy, u+ 1. Note that, at (xo, %), V;ju = V;;u and

Viu. (3.10)

_ pl
V,’jkl/l - Vﬁku = Rkij

By (3.1), (3.2), (3.6), (3.9) and (3.10), we have

Vu , . You .
IV;IZ (FVie = F7 ) = IV;|2 F(Vyu = RV = FTVu,)
Vau . )
> ﬁF”(V,Uﬁ ~ V/(A") = F'Vyu,) - C (3.11)
u

> — C(1 + [VuP )1 + Z Fi.

Therefore, by substituting (3.11) into (3.8), we have

0>

y —2a* . "
PV g+ S V) + S iV
[Vul ¢ ¢ (3.12)

—C(1 + Va1 + Z Fi,

Notice that

i a_ a?|Vul? "
F”V,’i Vii + _F”Vii > — F”.
Vi Gz~ )

It follows from (3.12) that

a-2a* ,  a@Vul i
02— —F'(Va’ - =5 > F

— C(1 + [Vu"™2)(1 + Z Fi,

Without loss of generality we may consider V;u(xo, fy) > %IVu(xo, to)l > 0. Recall that U;;(xo, 7o) 1s
diagonal. By (3.3) and (3.6), we have

(3.13)

s2 VAl

¢ Viu (3.14)
- 5|Vu|2 +C(+|Vu) <0

a
Uy =——|Vu + A" +

IA

Electronic Research Archive Volume 30, Issue 9, 3266-3289.



3275

provided |Vu| is sufficiently large. The appearance of A' in the first line is due to the diagonality of
{U;;}. Therefore, by (3.4),

Azw(l+ ) fi+ F)
i=1
and a bound |Vu(xy, tp)| < C; follows from (3.13) by choosing a sufficiently small such that

_22 2
a72d D _ 4 S50
¢2 n 4¢2

holds for some uniform constant c;.
O

Remark 2. This assumptions follow from [7] and [3]. (3.3) with vy, € (0,2) is more of a technical
condition here. Actually, it will be better to obtain gradient estimates with quadratic growth conditions,
i.e y1 = 2, see examples in [4]. The reason why we need (3.3) is the regular assumption of A which
make us can not use barrier n = eX“™ in gradient estimates. From the proof of Lemma 4 you can see
the proof of the barrier is based on the gradient estimates. This requirement also occurs in Theorem
1.3 (ii) in [28]. 1

(3.4) is a natural assumption satisfied by many operators such as the k-Hessian operator o. It is
commonly used in deriving gradient estimate, for example in [29].

4. The estimates for |u,|

In this section, we derive the estimates for |u]|.

Theorem 6. Suppose that (1.6)—(1.7), (1.9) and (1.16) hold, A = A(x,t,Vu) and y = ¥y(x,t,Vu). Let
u € C*(My) be an admissible solution of (1.2)-(1.3) in My. Then there exists a positive constant C»
depending on |ulci sz, |Ulc2izy) W2,y and other known data such that

sup |u;| < C4(1 + sup |uy|). 4.1
MT pMT
Proof. We first show that
sup(—u;) < Cy4(1 + sup |u,]) “4.2)
MT PMT

for which we set
W = sup(-u,)e?,
My
where ¢ is a positive function to be chosen.

We may assume that W is attained at (xo, ty) € My —PM7. As in the proof of Theorem 5, we choose
an orthonormal local frame e, ..., e, about xy such that V,e; = 0 and {U;;(xo, %)} is diagonal. We
may assume —u,(xo, fo) > 0. Define v = log(—u,) + ¢. At (xo, tp), where the function v achieves its
maximum, we have, fori =1,...n,

\
V=2 V=0 4.3)

Us
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" Fv, 20> F'Vyy = F'Vyv + (FYAY — g, ) Vv, (4.4)
Thus, by (4.3) and (4.4), we have
0> F'Vyv— Fv,+ (FUAY — ¢, Vv
= F'V;ilog(—u;) = F"(log(=u,), + F'Vip — F'¢h,
+ (FIAY —y,)Vilog(-u,) + ¢) 45)

- ult(F”V,-iu, — Fuy + (FUAY =y, )Vt

+ Lo~ F'(Vip)*.
By differentiating equation (1.2) with respect to 7, we get

Fii(Uii)t - Fu, = U + wpk(vku)l- (4.6)

It follows from (4.5) and (4.6) that

0% (@, ~ F'A) - F'(V) + Lo
Cf 4.7)
>—(1+ ) F") = Fi(Vig)? + Lo,
Uy
Fix a positive constant @ € (0, 1) and let ¢ = 51; |Vul? + 6u + by, where p = eX®% as in Lemma 4 and
0 < b < 1 are positive constants to be determined. By straightforward calculations, we have

Vip =5 Z VeuViu + 6V + bV,
k

¢ = 6" " Vou(Voa), + 6w, + by,
k
V[,‘¢ = 51+a Z(Vl-ku)z + (51+a Z VkuV[,-ku + 5Vl','l/l + bV,ﬂ]
k k

It follows that ) o
L 28"V Fi'V s = F* (Vo) + FUAT Vgt = s, Vi)
61+a iirr2 1+a ii
+ TF U;,-Co Z F'"+6Lu+bLln (4.8)
l+a

> — Cé“"(l + Z F”) + %F”Uﬁ. +6Lu+bLny

and
(Vip)? < C* U2 + Ch? (4.9)
since b > ¢. Thus, (4.7) becomes, by (4.8) and (4.9),
l+a

bLy + %F”Uﬁ +6Lu < —%(1 + D FH £ o1+ ) F)+Cb? Y F (4.10)
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We first consider case (1): |[v, — va| > . Note that

il 51 iiyr2 1-a i
OF'Uy 2 =~ F'U; =6 ZF

It follows from that
51+a 1+a

8
7 —FiU2+6Lu> —Co(1 + Z Fify + F”U2
+0F"U; — §Fu, (4.11)
> —C5'(1 + Z F)
since u,(xg, ty) < 0. Therefore, by (4.10) and (4.11), we have
C .. .. ..

bLyp<—-=(1+ Y Fiy+cs"™(1+ ) F)+cCb* ) F 4.12
Lys =0+ ) F (1+ > F)+cp* >’ (4.12)

Choosing b and § such that bey — C§'~* — Cb*> > b; > 0 for a positive constant by, then a upper bound
of —u,(xo, 1y) derived by (2.6).
Case (i1): |v, — val < B. We see that (2.10) holds. Note that

l+a

iiyr2 u 1-a i
~F'U; +6F Uy 2 =26 >F

and iy
LK = KX Ly — u) + KF'Di(u — u)D (u — u)]

1
> KeKeof - ZFUAgk (61, YDy — u) Dyt — u)

) (4.13)
+ KFUDi(u — u)D j(u - u)}

>-C) F"
by the concavity of F and ¢, where C depends on |u|c1(z,) and other known data. We have, by (4.10),

61+a

: = FiU2-6Fu, < - ug,(l + Z Fiy + Co(1 + Z F')

+C(6" + b+ bY) Z Fi (4.14)
< - —(1 + ZF”) +Co' +CZF”.
Recalling that u, < 0, we get

L(F“U,.Z,. + 7).

FiU; = Fruy > Z F'+ F7)+ ™

Therefore, by the concavity of f, we have
—u( Z Fi+ F7) 2 f(=u1) = f(AV), —u,) + FiU,; — Fu,
>u( Y F'+ F)+ (F”U2 + Fu?) (4.15)
+ f(=ud) = ylu ],
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where 1 = (1,...,1) e R™1.
Note that lim, .o, f(¢1) = supp f > supy, ¢[u]. It follows from (1.6) that

fud) —ylul > f(-ud) — supylu] := 2b, (4.16)
My

provided —u,(xo, tp) is big enough, where b, is a positive constant. Therefore, by (4.15) and (4.16), we
have

— Z F'+ F)2 by + SL(F""Uﬁ + FT}). (4.17)

"
It follows from (2.10) and (4.17) that
—Fu, > = 2you,( Z Fi' + F7)
> —you D F"+ FT) +yoby + g_b(t),(FiiUizi +FTi) 4.18)
> —your Y F'+yoby + 8)/—:;F”Ul.2i,

where vy := SN 0.
Without loss of generality, we suppose —u, > y,0~* for fixed 6. Substituting (4.18) in (4.14) we
derive

.. C ..
(—=you; — C) Z Fii + 8ypby — C6'™ < ——(l+ ) FY). (4.19)
t

By (1.16), we see that b, can be sufficiently large, then a bound is derived from (4.19) and therefore
(4.2) holds.
Similarly, we can show

sup u; < Cy(1 + sup |u,|) (4.20)
MT pMT
by letting
51+a
¢== \Vul* — 6u + b(u — u).
Combining (4.2) and (4.20), the proof is finished. O

Remark 3. If u is a strict subsolution, then Theorem 6 follows without (1.16). In face, in this case we
have (2.6) holds without classification. Let W = supy, lule® and ¢ = n in Lemma 2.6, the theorem
will be proved easily.

By (1.13) and (1.14) we can the short time existence as Theorem 15.9 in [12]. So without of loss of
generality, we may assume that ¢ is defined on M X [0, )] for some small constant #, > 0 and

AT @(x, 0) + Alg]), —¢,(x,0)) = ylp] Vxe M. 4.21)
Since that u, = ¢, on S M7 and (4.21), we can obtain the estimate

sup lu;| < Cs. 4.22)

My
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5. Global estimates for second derivatives

In this section, we derive the global estimates for the second order derivatives. In particular, we
prove the following maximum principle.

Theorem 7. Let u € C*(My) be an admissible solution of (1.2) in My. Suppose that (1.6)—(1.7) and
(1.9—(1.11) hold. Then
sup [V2u| < Cy(1 + sup [V2ul), (5.1)

Mt PMT

where Cy > 0 depends on |u|ci iz, [Ulcrizp) [Wilcogizyy W2y and other known data.

Proof. Set

W= max max (Vgu+ A%(x, 1, Vu))e?,
(x,NeMy EET M EI=1 77

as in [7], where ¢ is a function to be determined. It suffices to estimate W. We may assume W is
achieved at (xo, t)) € My — PMy. Choose a smooth orthonormal local frame ey, ..., e, about x, such
that Vie; = 0, and {U;;} is diagonal at (xo, #y). We assume U (xo, %) > ... > U,,(xo, 1) and, without
loss of generality, we assume Uy > 1.

Define v = log Uy + ¢. At (xo, ty), where the function v attains its maximum, we have, for each
i=1,...,n,

_ViUy

11

Vv FV=0 (52)

and )
F'v,>02>F"V;v. (5.3)
Thus, by (5.3), we have
0>FiV,v—F,
= F'V;i(log Uyy) = F*(log Uyy), + F'Vip — F'¢,

o o o . (5.4)
= — U—%IF V,’U“ + U—“(F ViiUll - F (UU)[)
+ F'V,¢p — F7¢,.
Differentiating Eq (1.2) twice, we obtain, by (1.10), (3.9). (3.10) and (5.2),
FiiV“U,'i + Fij’leIUijVIUkl — 2Fij’TV1U,'jV1ut
+ F"(Viu)* — F'Viu
Viu) no 5.5)

\%

=CUn + Y5, ViuVyu + 4, Viyu
> -CUy — Uy, Vi,

Note that the regular condition of A means Azl » < 0fori # 1. Therefore by (3.9) and (5.2), we
FU(VA" = VA" 2 FUAN Vg = AL V) = CUY Y- F

+ FU(A,, Us = Ay L UL

pip1
> Uy FAL Vi + FTAL Vo, - CUy Y F" (5.6)
-CUy; - CZ FiU2.
i>2
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Note that
V,-jklv - Vk[,'jv :R’;;kV,-mv + V,-R}’;kvmv + R;;’kV.,-mv
+ Rﬁkvlmv + R’J’.}lemv + VkR;f:leV.
Thus we have
ViiUll > Vl] Uii + ViiA“ - VIIA” - CUll' (57)

It follows from (5.5), (5.6) and (5.7) that
F'NaUyy = F'(Un), 2 F'VW Uy = F'V g, = CUY ) FY
_ Fii(viiAll _ V“Aii) _ FT(A“);
> — FNY, UV Uy = 2F 7V, UV, (5.8)
+ F"(Viu,)* + U11(FiiAzk — ¥, )Vid
~C Y FU - CU (1 + ) Y.
i>2

Thus, by (5.4) and (5.8), we have, at (xo, #y),

C .. .
Lop<— » FUZ+C(1+ » FH+E, (5.9)
o) >
where

. 1 i, .
E = U_ZF”(ViUll)z + U_(F”’klleileUkz = 2FFV UiV ity + F¥(Viur)?).
0 1

Let 7 = eK@_ Define

o=y
where b and 6 are undetermined constants such that 0 < 6 < 1 < b. We find, at (xo, ),
Vip = 6V, juVyu + bV = 6VuU; — 6V uA” + bV, (5.10)
¢ = oV ju(Vju), + bn,, (5.11)
Vip > gUfl —C6 +6VjuV;u+ bV,n. (5.12)

From (3.10) and (3.9), we derive

F'V ¥, > F'V u(V Uy = V,A") = CIVul )" F"

> (Y, — F*AL YVuV o + FTV uV j(u;) (5.13)
—Cc(l+ Z Fi,
Therefore,
g iirr2 ii
Lo > bLy+SF'U; - Co(l + Y Fh. (5.14)
2
Next, by (5.10) we get
(Vip)? < C5*(1 + U3) + 2b*(Vi(u — u))* < C5*U? + Ch*. (5.15)
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Now we estimate E as in [16] and [17] (see [1] for details). Let
J={i:U; <-sUy}, K={i:U;>-sUp},

where 0 < s < 1/3 is a fixed number. Using an inequality of Andrews [30] and Gerhardt [31], we have,
by (5.15),
F F]]

—FiRN, U,V Uy > —_—
1Vij ViU Ujj U,

i#]

(Vl Ulj)

ii 11
>2Z Zn _F (le“)2 (5.16)
i>2
2(1 -
ﬁ Z(F” FUY(ViUn ) = CUR /).

Thus, we obtain

LS R ey P Z(V Un)’

11 ieJ i€eK 11 ieK
< Z F'(Vig) +C Y F'+CF" } (Vig)? (5.17)
ieJ
<C* Y F'+C8* Y F'UL+C Y F'+ C@* U3, + b)F'.
ieJ

Therefore, by (5.9), (5.14), (5.15) and (5.17), we have

C
bLy<(CO%+ — - = F”U2 + Ch> Z Fi
Un = (5.18)
+C(U3 + bZ)F“ +C(1+ Y F).

Case (1): |v, — val > B. It follows from (2.6) and (5.18) that

C 6y, )
(bs = C)(1 + ) F') <(Co” + - 5)F”Ug +CB Y F"
1 ieJ
+C(6*U3, + bHF'.

Choosing b sufficiently large such that be — C > 2, we have

> 7,
be . C O\ . y
—(1+ ) Fi<(Cs+— - =)FiU>+Cbh* ) F'
£ 3P <l - D an
+ C(6*U?, + bHF".
and we can get a bound Uy (xo, fy) < C by choosing ¢ sufficiently small since |U;| > sU;; for i € J.
Thus we derive a bound of U;;(xy, fy) and therefore (5.1) holds.

Case (ii): |v, — vi| < B. For every fixed C > 0, choosing ¢ sufficiently small such that ﬁ—i - Cé&* >
0o > 0. Without loss of generality, suppose Uy > QO for otherwise we are done. Then (5.18) becomes

o . ..
bLn+ SFUUZ <CP? DUFT+ C@UL + PF +C1+ Y P, (5.19)

i =
ieJ
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Next, let A := A(U(xo, 1)). In the view of (4.15)—(4.17), we have
AU D" F+ F7) 2 by, (5.20)

where by := 4(f(IAIL) - supy;, ¥{ul) > 0 provided || is large enough. By (2.10) and (5.20), we have
0 iiyr2 312 ii T 312 ii T 13
FU; 2 2000 (D F"+ F7) 2 () F+ F7) + eabs |,

where ¢, = 3 j%. Therefore, it follows from (4.13) and (5.19) that

lAP( D FT+ F7) + eabsll < COULF! + C(1+ Y F™, (5.21)

Then a bound for Uy is derived since 6 € (0, 1) and U;; < |A|.

6. Boundary estimates for second derivatives

In this section, we establish the estimates of second order derivatives on parabolic boundary M.
We may assume ¢ € C*(M7). We shall establish the estimate

max |VZu| < C, (6.1)
PMy

for some positive constant C, depending on |uc1yz,, [l cosz, » |Ulc2iz, » Wlce iz, » and other known data.

Fix a point (xo, ty) € S M7. We shall choose smooth orthonormal local frames ey, ..., e, around x,
such that when restricted to M, e, is the interior normal to M along the boundary when restricted to
OM. Since u —u = 0 on S M7 we have

Vop(u—u) = =V,(u—-wll(ey,e), Y1 <a,<n onSMr, (6.2)
where /7 denotes the second fundamental form of 0M. Therefore,
Vopul <C, Y1<a,B<n on SMy. (6.3)

Let p(x) and d(x) denote the distance from x € M to x, and M respectively and set

M5 ={X =(x,) € Mx(0,T] : p(x) < &}.

Now we shall use a perturbation method to obtain a strict subsolution from a non-strict one. Let
s(x, 1) = u(x, 1) + a(h(x) — 1) and S = {V;;s + A[s]}, where h(x) = ¢"*, a and b are constants to be
determined. We wish to show M = (F(S, —s,) — ¥[s]) — (F(U,—-u,) —y[u]) > 0 for some a and b. Note
that d is smooth near boundary and

Sy - U, = ab*hV,dV ;d + abhV;;d + abhAl] (x,1, p1)V,d,
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where p; = Vu + 0,abhVd for some 6; € (0,1). Thgrefore, if a is small enough for fixed b, s is
admissible since u is admissible and I is open. Let F (’)f = Fii (U, —u,), there is a positive constant c3
such that FjV,dV ;d > c3 > 0 since [Vd(x)| = 1. Thus, we derive

M > Fj)(ab®hVdV ;d + abhV;d + abhA (x,1, p)V,d)
— abh ,, (x, 1, p2)Vid
> ab*hc; — abC > 0,

where b > C/c3 > C/hcs and p, = Vu + 6,abhVd for some 6, € (0, 1).

Therefore a strict admissible subsolution with same boundary condition is derived near boundary
and (2.6) holds without the assumption |v, — v,| > B, see Remark 1. For convenience, we still use u to
denote the strict subsolution below.

For the mixed tangential-normal and pure normal second derivatives at (xg, %)), we shall use the
following barrier function as in [16],

V= A+ Asp’ — A3 ) Vi — )P, (6.4)

I<n

where
v=1-np=1-Kt"

and Ay, A,, Az are positive constants to be chosen. By differentiating Eq (1.2) and
Vii(Vie) = Vi + T4V ju + ri.kvﬂu + Vg, el
we obtain, by straightforward calculation,
LVi(u— @) <C(1+ Zf,-l/l,-l + Z f+F). Vi<ksn, (6.5)

where A = A(VZu + Alu)).
The following lemma is crucial to construct barrier functions.

Lemma 8. Suppose that (1.6)—(1.8) and (1.9)—(1.11) hold. Then for any positive constant K, there exist
uniform positive constants t,6 sufficiently small, and A,, Az, Az sufficiently large such that ¥ > K\p?
in M‘5T and
LY < -Ki(1+ fildil + Y fi+ F7) in Mj. (6.6)
Proof. First by Lemma 4, we have
Lv<—g(1+ ) fi+F)inM;. (6.7)
Similar to Proposition 2.19 of [16], we can show that
. 1
Hrr 17, > — 12
; FiUUy 2 ; fi, (6.8)
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for some index r. It follows that

D LViu=@)f = ) FIUU=C(1+ ) fldd+ ) F'+ F)

I<n I<n

AT k-clis Do B

i#r

(6.9)

We first consider the case that A, > 0. Notice that
Ly =L = —KeX ™[ L(u - u) + KF'Dj(u — u)Dj(u — u)]
> a0y fili—C(L+ Y F'+F7),

where ay = infpy, KK,

By (6.7), (6.8) and (6.9), we obtain, for any 0 < B < Ay,
T A3 2
L <(A; + B)Lv— BLv + CAy(1 +Zﬁ+F)—7#eri/li
+ CA3(1 + filil + Z fi+ FT)
— (A1 +B)s(1+ ) fi+ F7) = aoBfidi + CAs £l
A T
—foi/l?+C(B+A2+A3)(1 + D fi+ F)
i#r

(A + B)g(l + Zf,- + FT) + 2aOBZfi|/li| - % Zfiﬂ?

i#r i#r

IA

(6.10)

IA

— (aB = CA)flAil + C(B + Ay + As)(1 + ) fi+ F7).

Notice that

A 2(ayB)
=S4 2 2a0B ) Al - @B S §. (6.11)

: _ Aj
I£r 1#r -

Thus, we derive from (6.10) and (6.11) that

LY < = (A +B)g(1+ ) fi+ F7) = (@B — CA)flA

2(003)2 (6 12)
W,

+C(B+A; +A3)(1 +Zf,-+FT)+
If A, <0, similarly to (6.12), we have
LY < = (A +B)g(1+ ) fi+ F7) = (@B - CA)filAi

6.13
+C(B+A2+A3)(1+Zfi+FT)+Z(aAl—f)sz,-, @13

where a; = supy,, KeX® ™),
Checking (6.12) and (6.13), we can choose A; > A, > A3 > land A — B> a1B > ayB > A, >
Aj in (6.12) and (6.13) such that (6.6) holds and ¥ > K;p* in M5. o
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By (6.5) and (6.6), we can use Lemma 8 to choose suitable 9, N and A; > A, > A3 > 1 such that
in M?, LWV +V,(u—¢)<0,and ¥ + V,(u—¢) > 0 on PM?. Then it follows from the maximum
principle that ¥ + V,(u — ¢) > 0 in M9 and therefore

|V,ott(x0,t0)| < V,¥(x0,t0) < C, Ya<n. (6.14)

It remains to show that
Vnnu(xo, tO) <C (615)

since Au—u,+trA > 0. We shall use an idea of Trudinger [32] to prove that there exist uniform positive
constants ¢, Ry such that for all R > Ry, (I'[U],R, —u,) € I' and

fULUL R, —u;) > lu] + co on S Mr,

which implies (6.15) by Lemma 1.2 in [18], where A'[U] = (4}, ..., 4/ _,) denote the eigenvalues of the
(n—1) X (n— 1) matrix {Ugg}i<ap<n-1y and Y[u] = (-, -, Vu). Define

F(Uog, —up) = limf(A'({Uqg)). R, —uy)
and consider

m= min (F(Uaﬁ(x, 1), —u,(x, 1)) — Ylul(x, t)).

(x,H)eS Mt

Note that F is concave and m is monotonically increasing with respect to R, and that

c= min (F(U(x 0, —u,(x,0) - ylul(x,0) > 0
(x,)eS My
when R is sufficiently large.
We shall show m > 0 and we may assume m < c¢/2 (otherwise we are done) and suppose m is
achieved at a point (xg, #y) € S M7. Choose local orthonormal frames around x, as before and assume
Vou(xo, t0) > V,au(xo0, 19). Let oo = (Vyep, €,) and

~p OF
FYP = ——(Uap(x0, 10), —tts(x0, 10)),
81”64;

~  OF
Fy = E(Uaﬁ(xoa 10), —u(Xo, 1))-
Note that o3 = I1(e,, eg) on M and by (6.2), we have, at (xo, 7o),
Vot = wF Tap 2 F(U, g =) = F(Uup, =) + Fi(tt, = u,)
+ F (A [u] — A [ul)

> % + Hlu] — Hlu] (6.16)

> g + H, V(- u),
where Hlu] = F gﬁ A%[u] — y[u]. The last inequality is from the regularity of —A and the convexity of
Y with respect to p.
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Note that —A is regular, which means A% is concave respect to p, and u is strict subsolution near
the boundary, we have H,, , <0 and

0<V,(u—u)<cy
for some positive constant cy4. It follows from (6.16) that, at (xo, ty),

£ o, (6.17)

k—H, >
Pn 2C4

where k = F 0 op.
Let 9(x, 1) = k(x,t) — Hp, (x,t,V'@o(x, 1), V,u(xo, tp)). Since Vou = V,u = Vo0 on S M7, we derive

9(x,1) > c5 on BM‘ST NSMr (6.18)

for some small positive constant cs, where V' = (Vyp,...,V,_10).
Next, since H is concave with respect to p,, we have

H(x,t,V'¢,V,u(xo, to)) — H(x,t, V', V,u)

/ (6.19)
>H, (x,t, V'@, V,u(xo, 1)) (V,u(xo, to) — V,u)
onSMr. .
On the other hand, since u, = u, = ¢; on § Mz, by the concavity of F', we have
H(-x’ ta V,SO, Vnu(-x’ t)) - H(XO’ t()a V";D(XOa tO)a Vnu(xo’ tO))
+ FoP (Voptt = Vogtu(xo, 10)) + Fop, — Fp(xo, to) ©20)
= Fy Uas — wlul = Fiu, — Fo Uyg(xo, to) + Ylul(xo. 10) + Fiu(xo. to) '
> F(Uap, —tt) = Y[u] =m 2 0
on S M7. It follows from (6.2), (6.19) and (6.20) that
= I (Va(u — ) = V,(u — 9)(x0, 1))
> FP[V,(u — ¢)(X0, 1o )(Tap(X0, 10) — Tap) + Vapp(X0, t0) = Vapp]
+ H(x, t’ V,‘P, Vnu(x()’ tO)) - H(x()a tO’ V/SD(XO’ t())’ VnM(X(), tO)) (6 21)
+ H,, (x,1, V'@, V,u(xo, 10))(V (X0, t0) — V) + Fi(xo, 1) '
_ j:'(f)%
=0(x,1).
From the form of the function O(x, 7) in (6.21), since O(xy, fy) = 0, we have, on 0M‘5T NSMr,
V. (u— @) — V,(u— @) (F) < 9'Ox, 1
(u—9) (u — @)(Xo) (x,1) 622)

< (% — %) + C(0* + (1 — 10)°),

where X = (x,1), [ is a linear function of X — X, with /(0) = 0, and the constant C depends on |u|c1 and
other known data.
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Define
@ = V,(u = ¢) = V,(u = 9)(Fo) = X = o) — C(t = 19)°.
By extending ¢ smoothly to the interior near the boundary to be constant in the normal direction, By
(6.5), we have
LOSCA+ ) fi+ D A+ F).

We see from (6.20) and (6.2) that @ > 0 on S M7 and @(x, ty) = 0. Therefore, by the compatibility
condition (1.14), we have, when ¢ is sufficiently small, ¥ > 0 on PMj.
Therefore, by Lemma 8, we can choose suitable ¥ such that

{ﬁ(yf ~®) <0 inM°, 623

Y—-d>0 onPM..

By the maximum principle we find ¥ > @ in M?. It follows that V,,@(x, ty) < V,¥(xp,19) < C.
Therefore, we have an a priori upper bound for all eigenvalues of {U;;(xo, #)} and hence its eigen-
values are contained in a compact subset of I" by (1.8), and we see m > 0 by (1.6).
Consequently, there exist positive ¢g and R, such that

X (U(x,0),R, —u,(x,)) €T

and N
f(/l/(U(X, t)), R’ _ut(x9 t)) > lﬁ(x, t) + Ce

forall R > Ry and (x,1) € S Mr
Fori=1,...,n—1,Lemma 1.2 in [18] means A} = 4; + o(1) if |U,,| tends to infinity. Therefore, we
have

JQW), —u) >

for unbounded |U,,,|, which leads a contradiction and therefore (6.15) holds.
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