Processing math: 100%
Review Special Issues

Control techniques of switched reluctance motors in electric vehicle applications: A review on torque ripple reduction strategies


  • As electric vehicles (EVs) continue to acquire prominence in the transportation industry, improving the outcomes and efficiency of their propulsion systems is becoming increasingly critical. Switched Reluctance Motors (SRMs) have become a compelling option for EV applications due to their simplicity, magnet-free design, robustness, and cost-effectiveness, making them an attractive choice for the growing EV market. Despite all these features and compared to other electrical machines, SRMs suffer from some restrictions, such as torque ripple and audible noise generation, stemming from their markedly nonlinear characteristics, which affect their productivity and efficiency. Therefore, to address these problems, especially the torque ripple, it is crucial and challenging to enhance the performance of the SRM drive system. This paper proposed a comprehensive review of torque ripple minimization strategies of SRMs in EV applications. It covered a detailed overview and categorized and compared many strategies, including two general categories of torque ripple mitigation encompassing optimization design topologies and control strategy developments. Then, focused on control strategy improvements and divided them into torque and current control strategies, including the sub-sections. In addition, the research also provided an overview of SRM fundamental operations, converter topologies, and excitation angle approaches. Last, a comparison between each method in torque control and current control strategies was listed, including the adopted method, features, and drawbacks.

    Citation: Ameer L. Saleh, Fahad Al-Amyal, László Számel. Control techniques of switched reluctance motors in electric vehicle applications: A review on torque ripple reduction strategies[J]. AIMS Electronics and Electrical Engineering, 2024, 8(1): 104-145. doi: 10.3934/electreng.2024005

    Related Papers:

    [1] A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628
    [2] Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357
    [3] Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663
    [4] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [5] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [6] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265
    [7] Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477
    [8] Omar Kahouli, Saleh Albadran, Zied Elleuch, Yassine Bouteraa, Abdellatif Ben Makhlouf . Stability results for neutral fractional stochastic differential equations. AIMS Mathematics, 2024, 9(2): 3253-3263. doi: 10.3934/math.2024158
    [9] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [10] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
  • As electric vehicles (EVs) continue to acquire prominence in the transportation industry, improving the outcomes and efficiency of their propulsion systems is becoming increasingly critical. Switched Reluctance Motors (SRMs) have become a compelling option for EV applications due to their simplicity, magnet-free design, robustness, and cost-effectiveness, making them an attractive choice for the growing EV market. Despite all these features and compared to other electrical machines, SRMs suffer from some restrictions, such as torque ripple and audible noise generation, stemming from their markedly nonlinear characteristics, which affect their productivity and efficiency. Therefore, to address these problems, especially the torque ripple, it is crucial and challenging to enhance the performance of the SRM drive system. This paper proposed a comprehensive review of torque ripple minimization strategies of SRMs in EV applications. It covered a detailed overview and categorized and compared many strategies, including two general categories of torque ripple mitigation encompassing optimization design topologies and control strategy developments. Then, focused on control strategy improvements and divided them into torque and current control strategies, including the sub-sections. In addition, the research also provided an overview of SRM fundamental operations, converter topologies, and excitation angle approaches. Last, a comparison between each method in torque control and current control strategies was listed, including the adopted method, features, and drawbacks.



    Fractional differential equations (FDEs) are an effective mathematical tool to model and analyze many real life problems; it has been used by researchers and scientists to get better results than the integer order differential equations. Fractional order differential equations offer a superior framework for capturing the intricate dynamics of real-world phenomena compared to their integer-order counterparts. This superiority stems from the unique ability of fractional integrals and derivatives to account for the inherent hereditary and memory characteristics present in diverse processes and materials. By harnessing these fractional operators, models can more accurately depict the nuanced behaviors observed in nature, thereby enhancing our understanding and predictive capabilities across a wide range of disciplines and applications. Many fractional derivatives, including Caputo derivative, Atangana-Baleanu derivative, Coimbra derivative, and Riemann-Liouville (R-L) derivative, are frequently used to examine FDEs and fractional order stochastic differential equations (SDEs). In a similar vein, the Hilfer fractional derivative (HFD), which was just recently used to do so, was developed by Hilfer [21], which is a generalized version of R-L and Caputo derivatives. In actuality, fractional derivative and integrals indicate greater accuracy than integral models and also depict broader physical applications in seepage, flow in porous media, nanotechnology, fluid dynamics and traffic models [6,7,12,22,24,28,31].

    SDEs are the natural extension of deterministic systems. SDEs with impulses arise from many mathematical models of physical phenomena in different scientific fields for example, technology, physics, biology, economics, etc. They are important from the viewpoint of applications since they incorporate randomness into the mathematical description of the phenomena and provide a more accurate description of it. Certainly, in various fields like economics, bioengineering, chemistry, medicine, and biology, we often encounter situations where things change suddenly at specific points in time [5,23,29,32]. These abrupt changes can be explained by what we call "impulsive effects." These impulsive effects are like sudden pushes that happen at certain moments and have a big impact on the system, being studied. These pushes play a crucial role in understanding and modeling how things change in the aforementioned diverse fields. For the mathematical models of such phenomena, finding their solution is a challenging task. As a result, Boundani et al. [8,9] presented some specific conditions that help us to determine whether certain mathematical equations, involving randomness, can have solutions. These equations involve functional differential equations and a type of random behavior, called fractional Brownian motion.

    In [20], Hernandez and O'Regan introduced non-instantaneous (NI) impulses. Many researchers have utilized these impulses and studied the corresponding dynamical systems [3,4,27,36,39]. To better understand NI impulses, we can think about human blood sugar levels. When they have too much or too little, glucose they get insulin medication through the bloodstream, in fact it doesn't work instantly but takes some time to be absorbed [37]. This gradual effect is like NI, where the impact lasts for a while in many real situations. Sudden changes don't explain things well. For instance, in the treatment of diseases with medication, we need to describe how things change over time more smoothly. That's where NI impulsive differential equations come in handy. They help us to model these gradual changes, like how drugs affect the body in pharmacotherapy.

    Among the qualitative behaviors of different physical systems, different types of stabilities are the essential ones. One of these types of stabilities is Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) stability [11,16,26,30,33].

    In the literature, most of the results related to fractional stochastic differential equations (FSDEs) are given over infinite dimensional spaces [1,2,13,18,19,25,32,35,38], and very few have looked at similar results in finite spaces. There is no prior work on the specific topic of non-integers order impulses in finite-dimensional equations to the problem of fractional neutral SDEs including both noises. In FSDEs incorporating both retarded and advanced arguments, a significant characteristic emerges: The rate of change of the system at the present moment is influenced not only by its past history but also by its anticipated future states. This feature underscores the intricate interplay between past, present, and future dynamics, where the system's behavior is shaped by a combination of its memory effects and anticipatory responses.

    In the current manuscript, we investigate the following ψ-Hilfer fractional stochastic equation (HFSE):

    Dγ,βψ(ε)[Γ(ε)h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε),Dγ,βψ(ε)Γ(ε))+ε0g(s,Γ(s),Dγ,βψ(ε)Γ(ε))dB(s)+ε0λ(s,Γ(s),Dγ,βψ(ε)Γ(ε))dBH(s),ε (sk,εk+1]J:=(0,b],k=0,1,2,,m,Γ(ε)=hk(ε,Γ(ε)),ε(εk,sk],k=1,2,,m,I1v0+Γ(ε)/ε=0=Γ0,v=γ+βγβ,Γ(ε)=ϕ(ε),ε[0r,0],Γ(ε)=φ(ε),ε[b,b+h], (1.1)

    where Dγ,βψ(ε) is the ψ– Hilfer FD of order 0<γ<1 and of type 0<β1. Let J:=[0,b], b>0. The state vector ΓRn, ARn×n and nonlinear functions h : J×RnRn, Δ:J×RnRn, g:J×RnRn×n, λ:J×RnRn×n, and hk:J×RnRn are measurable and bounded functions. Also, Γ0 is F0 measurable Rn-valued stochastic variable and B is an n-dimensional Wiener process.

    Based on the value of H, the following kinds of the fractional Brownian motion (fBm) process exist:

    (1) if H=12, then the process is a Brownian motion or a Wiener process exists;

    (2) if H>12, then the increment of the process is positively correlated;

    (3) if H<12, then the increment of the process is negatively correlated.

    The contributions of this paper are described as below:

    ● Nonlinear ψ-HFSE is considered in Rn.

    ● The existence and uniqueness results are established by using the standard Banach contraction principle.

    ● The weaker sufficient conditions are derived by using the generalized Schaefer FPT for the system with measure of non-compactness (MNC).

    ● UHR stability results are derived for ψ-HFSE with NI impulse.

    ● An example is provided for the theoretical results.

    This paper is structured as follows: In Section 2, we present a number of lemmas and some fundamental definitions for fractional calculus. Section 3 derives the solution representation of ψ-Hilfer fractional SDEs with NI impulses. To demonstrate the key results, the generalized Schaefer's and contraction mapping principles are used in Section 4. In Section 5, UHR stability of a ψ-HFSE is discussed. Example is demonstrated for the validity of theoretical results in Section 6.

    Notations:

    (Ω,F,P) represents the complete probability space along a probability measure P on Ω.

    B(ε) and BH(ε) denote, respectively, the n-dimensional Brownian motion and fBm with Hurst index 12<H<1.

    {Fε|εJ} represents the filtration generated by {B(ε):0sε}.

    L2(Ω,Fε,P,Rn) : = L2(Ω,Rn) is the space of all Fε-measurable square integrable random variables with values in Rn.

    Let Jk = (εk,εk+1], k=1,2,,m be such that impulse times satisfy 0 = ε0 = s0<ε1<s1<ε2<<εmsm<εm+1 = b. Let C(J,L2(Ω,Rn)) denote Cn(J) and be the Banach space of all continuous maps from J into L2(Ω,Rn) of Fε-adapted square integrable functions Γ(ε) and for its norm supE||Γ(ε)||2<.

    Define the space

    Y=PCvn(J)=PCvn(J,L2(Ω,Rn))={Γ:JL2(Ω,Rn),Γ/JkCn(Jk,L2(Ω,Rn)),

    and there exist Γ(εk) and Γ(ε+k) with Γ(εk)=Γ(εk), k=1,,m, endowed with the norm

    ||Γ||2Y=maxk=0,1,,msupεJk{E||(εεk)(1v)Γ(ε)||}}.

    Clearly, Y is a Banach space.

    Lemma 2.1. [39] Let p2 and fLp(J,Rn×n) such that E|b0f(s)dB(s)|p<, then

    E|b0f(s)dB(s)|p(p(p1)2)p2bp22Eb0|f(s)|pds.

    Lemma 2.2. [10] Let φ:JL02 satisfy b0||φ(s)||2L02ds<, then we get

    E||ε0φ(s)dBH(s)||22Hε2H1ε0E||φ(s)||2L02ds.

    Definition 2.1. [17] The generalized ψ-Hilfer FD of order 0<γ<1 and of type 0β1 is represented by

    Dγ,βψ(t)f(t)=Iβ(nγ)ψ(t)(1ψ(t).ddt)mI1β(nγ)ψ(t)f(t).

    Definition 2.2. [10] Let z be a bounded linear operator. The two parameter Mittage-Leffler (M-L) function is defined by

    Mγ,β(z)=r=0zrΓ(rγ+β),γ,β>0,zC.

    One of the interesting properties of the M-L function, related with their Laplace integral, is given by

    0esεεβ1Mγ,β(±aεγ)dε=sγβ(sγIa).

    That is

    L{εβ1Mγ,β(±aεγ)}(s)=sγβ(sγIa).

    Lemma 2.3. [17] For γ(n1,n], β[0,1], the following Laplace formula for the ψ-Hilfer derivative is valid:

    Lψ{0Dγ,βψ(t)f(t)}=sγLψ{f(t)}m1n=0sm(1v)+γβn1(0I(1v)(mβ)nψ(t)f)(0).

    Corollary 2.1. [17] If f is a function whose classical Laplace transform is F(s), then the generalized Laplace transform of the function fψ=f(ψ(t)) is also F(s):

    L{F(s)}=F(s)L{f(ψ(ε))}=F(s).

    Example 2.1. [17]

    (a)Lψ{(ψ(ε)μ)}=Γ(μ+1)sμ+1,fors>0.(b)Lψ{ea(ψ(ε))}=1sa,fors>a.(c)Lψ{Mμ(A(ψ(ε))μ)}=sμ1sμA.(d)Lψ{(ψ(ε))μ1Mμ,μ(A(ψ(ε))μ)}=1sμA,forRe(μ)>0and |Asμ|<1.

    Example 2.2. Assume that Re(μ)>0 and |Asμ|<1. If Mγμ,v denotes the Prabhakar function, then we have

    Lψ{(ψ(ε))v1Mγμ,v(A(ψ(ε))μ)}=L{ψ(ε)v1Mγμ,v(A(ψ(ε)μ))}=sμγv(sμA)γ.

    Consider the linear deterministic system, which is represented in the following form:

    Dγ,βψ(ε)[Γ(ε)h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε)),I1v0+Γ(ε)/ε=0=Γ0,v=γ+βγβ.

    By the Laplace transformation, we get

    sγˆΓ(s)ˆh(s)sβ(1γ)(Γ(0)h(ε,0))=AˆΓ(s)+ˆΔ(s),(sγIA)(ˆΓ(s))=sβ(1γ)(Γ(0)h(ε,0))+ˆh(s)+ˆΔ(s),ˆΓ(s)=sβ(1γ)(sγIA)[Γ(0)h(ε,0)]+1(sγIA)ˆh(s)+1(sγIA)ˆΔ(s),

    where I is the identity matrix.

    Γ(s)=Lψ1sβ(1γ)(sγIA)[Γ(0)h(ε,0)]+Lψ11(sγIA)ˆh(s)+Lψ11(sγIA)ˆΔ(s).

    Substituting the LψT of the M-L function, one can obtain that

    Γ(ε)=ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds.

    Therefore, the solution of (1.1) is given as follows:

    Γ(ε)={Γ(ε)=ϕ(ε),ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(sk,εk+1],Γ(ε)=ϕ(ε),ε[b,b+h].

    Definition 3.1. [40] The set S is called a quasi-equicontinuous in T if, for ε > 0, there exists a δ > 0, such that if ΓS,KN,τ1,τ2TKT, and |τ2τ1|<δ, then |Γ(τ2)Γ(τ1)|<ε.

    Lemma 3.1. [34] The set SPC(J,Rn) is relatively compact if

    (i) S is uniformly bounded, i.e., ||Γ||PCk for each ΓS and some k>0;

    (ii) S is quasi-equicontinous in T.

    Definition 3.2. [14] An operator T : ZZ is said to be χ-condensing of any bounded set B of Z with χ-condensing(B) > 0, χ(T(B))<χ(B), where

    χ(B)=inf{k>0,B is covered by a finite number of sets of diameter k}

    is Kuratowskii MNC of a bounded set B of Z.

    Now, we state the generalized Schaefer's type FPT with χ-condensing operators.

    Theorem 3.1. [15] Let T : ZZ be an operator and Z be a separable Banach space satisfying

    (A1) T is χ-condensing and continuous.

    (A2) The set S = {ΓZ:Γ=δT(Γ) for some 0<δ<1} is bounded, then T has a fixed point.

    For convenience, define the following:

    M1=supξJ||Mγ,v(A(ψ(ε))γ)||2;M2=supξJ||Mγ,γ(A(bψ(ε))γ)||2.

    To derive the existence result, we imposed the following assumptions:

    (H1) The functions Δ,h,g,λ, and hk k=1,2,,m are Lipschitz continuous.

    (1) E||h(ε,u1)h(ε,u2)||2 Mh||u1u2||2Y;

    (2) E||Δ(ε,u1,v1)Δ(ε,u2,v2)||2 Mf1||u1u2||2Y+Mf2||v1v2||2Y;

    (3) E||g((ε,u1,v1))g((ε,u2,v2))||2 Mg1||u1u2||2Y+Mg2||v1v2||2Y;

    (4) E||λ(ε,u1,v1)λ(ε,u2,v2)||2 Mλ1||u1u2||2Y+Mλ2||v1v2||2Y;

    (5) E|hk(ε,u1)hk(ε,v1)||2 Mhk||u1v1||2Y,

    and hkC((εk,sk],L2(Ω,Rn)), where Mh,Mf,Mg,Mλ, and Mhk are positive constants, u1,u2,v1,v2Rn, and εTk.

    (H2) There exist lh, mh,nhY with lh=supξJlf(ε), mh=supξJmh(ε), and nh=supξJ nh(ε) such that

    E||h(ε,u1,v1)||2lh(ε)+mh(ε)||u1||2+nh(ε)||v1||2 for εT,u1,v1Rn.

    (H3) There exist lf, mf,nfY with lf=supξJlf(ε), mf=supξJmf(ε), and nf=supξJnf(ε) such that

    E||Δ(ε,u1,v1)||2lf(ε)+mf(ε)||u1||2+nf(ε)||v1||2 for εT,u1,v1Rn.

    (H4) There exist lg, mgY with lg=supξJlg(ε), mg=supξJmg(ε), and ng=supξJng(ε) such that

    E||g(ε,u1,v1)||2lg(ε)+mg(ε)||u1||2+ng(ε)||v1||2 for εT,u1,v1Rn.

    (H5) There exist lλ, mh,nhY with lλ=supξJlλ(ε), mλ=supξJmλ(ε), and nλ=supξJnλ(ε) such that

    E||λ(ε,u1,u2||2lλ(ε)+mλ(ε)||u1||2+nλ(ε)||v1||2 for εT,u1,v1Rn.

    (H6) There exist Mhk>0, for all uRn, such that

    E||hk(ε,u)||2Mhk(1+||u||2Y).

    To prove the existence and uniqueness of solution first, we need to transform the problem (1.1) into a fixed point problem and define an operator H : YY by

    HΓ(ε)={Γ(ε)=ϕ(ε),ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(β)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(β)dBH)ds, εϵ(sk,εk+1],Γ(ε)=φ(ε),ε[b,b+h].

    Let x:[0r,b+h]R be a function defined by

    x(ε)={Γ(ε)=ϕ(ε),ifε[0r,0],0,ifε(0,b],Γ(ε)=φ(ε),ifε[b,b+h].

    For each zC([0,b],R) with z(0)=0, we denote by u the function defined by

    u(ε)={Γ(ε)=ϕ(ε),ifε[0r,0],z(ε),ifε(0,b],Γ(ε)=φ(ε),ifε[b,b+h].

    Let us set Γ(ε)=z(ε)+x(ε) such that yε=zε+xε for each ε(0,b], where

    Γ(ε)={Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γη),Dγ,βψ(ε)ΓβdBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γη)),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1].
    z(ε)={Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1].

    Let Φ:YY be an operator given by

    Φz(ε)={0,ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1],0,ε[b,b+h].

    To show that the operator H has a fixed point, for this it is sufficient to show that the operator Φ has a fixed point and this fixed point will correspond to a solution of problem (1.1).

    Theorem 4.1. Assume that the Hypothesis (H1) holds, then the solution (1.1) has a unique solution of the problem (1.1), provided

    L0=max{L1,Lk,Lk}<1,k=1,2,,m, (4.1)

    where

    L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)],Lk=Mhk,Lk=4[bv1M1Mhk+M2(b)2γγ2{(Mh+Mf1+bMg1+2Hb2HMλ1)+(Mf2+bMg2+2Hb2HMλ2)×||A||+Mh+Mf1+bMg1+2Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2)}].

    Proof. Consider the operator Φ : YY defined by

    Φz(ε)={0,ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε[b,b+h]. (4.2)

    As Δ, h, g, λ, hk are all continuous, we have to prove that Φ is a contraction.

    Case 1. For z, yY and for ε[0,ε1], we have

    E||(Φz)(ε)(Φy)(ε)||23{(M2ψ(ε)2γγ2Mh||z(ϵ)y(ε)||2+M2ψ(ε)2γγ2Mf1||z(ϵ)y(ε)||2+M2ψ(ε)2γ+1γ2Mg1||z(ϵ)y(ε)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H1Mλ1||z(ϵ)y(ε)||2)+(M2ψ(ε)2γγ2Mf2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ2Mg2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H1Mλ2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.

    This implies

    ||(Φz)(ε)(Φy)(ε)||2Y3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hb2HMλ1)×||z(ϵ)y(ε)||2Y+3M2ψ(ε)2γγ2(Mf2+ψ(ε1)Mg2+2Hb2HMλ2)×||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2],||(Φz)(ε)(Φy)(ε)||2Y3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]||z(ε)y(ε)||2.

    Thus we take

    L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)].

    So, we get

    ||(Φz)(ε)(Φy)(ε)||2YL1||z(ε)y(ε)||2Y.

    Case 2. For ε(εk,sk], k=1,2,,m, we have

    E||(Φz)(ε)(Φy)(ε)||2YE||hk(ε,z(ε))hk(ε,y(ε))||2,||(Φz)(ε)(Φy)(ε)||2YMhk||z(ε)y(ε)||2Y.

    Take Lk:=Mhk and therefore,

    ||(Φz)(ε)(Φy)(ε)||2YLk||z(ε)y(ε)||2Y.

    Case 3. For z,yY and for ε(sk,εk+1], we have

    E||(Φz)(ε)(Φy)(ε)||24{(ψ(ε)sk)v1M1Mhk||z(ε)y(ε)||2+(M2(ψ(ε)sk)2γγ2Mh||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ2Mf1||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ2Mg1||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ22Hψ(ε)2H1Mλ1||z(ϵ)y(ε)||2)+(M2(ψ(ε)sk)2γγ2Mf2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2(ψ(ε)sk)2γγ2Mg2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2(ψ(ε)sk)2γγ22Hψ(ε)2H1Mλ2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.||(Φz)(ε)(Φy)(ε)||24{(ψ(ε)k+1sk)v1M1Mhk+(M2(ψ(ε)sk)2γγ2×[Mh+Mf1+(ψ(εk+1)sk)Mg1+2Hψ(ε)2HMλ1]×||z(ε)y(ε)||2)+(M2(ψ(ε)sk)2γγ2×[Mf2+(ψ(εk+1)sk)Mg2+2Hψ(ε)2HMλ2]×||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.

    Thus,

    ||(Φz)(ε)(Φy)(ε)||24{bv1M1Mhk+M2(b)2γγ2{Mh+Mf1+bMg1+2Hb2HMλ1+(Mf2+bMg2+2Hb2HMλ2)}×||A||+Mh+Mf1+bMg1+2Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2)}||z(ε)y(ε)||2:=Lk||z(ε)y(ε)||2Y.

    From the above three cases, we obtain that ||(Φz)(ε)(Φy)(ε)||2 L0||z(ε)y(ε)||2Y as per (4.1), Φ is contraction, and, thus, (1.1) has a unique fixed point z, which is a solution to problem (1.1).

    Remark 4.1. Banach contraction principle provides not only the existence results, but also uniqueness is assured. Also, the nonlinear functions could satisfy only Lipschitz conditions to prove existence and uniqueness results, even though conditions are stronger.

    Remark 4.2. It is to be noted that the assumption L0<1 in Theorem 4.1 shows a restrictive smallness on Lipschitz constants for the nonlinear functions h, g, Δ, and λ when compared with the periods of time, while the impulses are active or vice-versa. In order to relax such a kind of smallness, the generalized Schaefer's FPT is introduced.

    Theorem 4.2. Assume that (H2)(H5) hold, then the nonlinear operator Φ:YY has a fixed point, which is a solution of problem (1.1)

    Proof. Since Φ is well defined, we will present the proof by the following four steps.

    First, we prove that Φ is completely continuous (CC), that is, T is continuous, maps bounded sets into bounded sets, and maps bounded sets into quasi-equicontinuous sets.

    Step 1. To prove Φ is continuous.

    Since h, g, Δ,λ, and hK are all continuous, then it is clear that the operator Φ is continuous on J.

    Step 2. To prove Φ maps bounded sets in Y.

    In fact, it is sufficient to show that for any r>0, there exists an η>0 such that for each zBr={zY:||z||2Yz}.

    Case 1. For ε[0,ε1],zY

    ||(Φz)(ε)||2Y4{ψ(ε1)ν1M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2||h(ε,zs+xs),Dγ,βψ(ε)Γ(s)||+M2ψ(ε1)2γγ2||Δ(ε,zs+xs,Dγ,βψ(ε)Γ(s))||+M2ψ(ε1)2γ+1γ2||g(ε,zη+xη,Dγ,βψ(ε)Γ(s))||+2Hψ(ε)2H1M2ψ(ε1)2γ+1γ2||λ(ε,zη+xη,Dγ,βψ(ε)Γ(s))||}.

    Using (H2)(H4) and Lemmas 2.1 and 2.2, one can enumerate

    ||(Φz)(ε)||2Y4{M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh(ε)+mh(ε)||zs+xs||2Y)+M2ψ(ε1)2γγ2(lf(ε)+mf(ε)||zs+xs||2Y+nf(ε)||Dγ,βψ(ε)Γ(s)||2Y)+M2ψ(ε1)2γ+1γ2(lg(ε)+mg(ε)||zηxη||2Y+ng||Dγ,βψ(ε)Γ(s)||2)+2Hψ(ε)2H1M2ψ(ε1)2γ+1γ2(lλ(ε)+mλ(ε)||zη+xη||2Y+||Dγ,βψ(ε)Γ(s)||2)}4{M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh)+M2ψ(ε1)2γγ2(lf)+M2ψ(ε1)2γ+1γ2(lg)+M22Hψ(ε1)2Hγ2(lλ)}+4{M2ψ(ε1)2γγ2(mh)+M2ψ(ε1)2γγ2(mf)+M2ψ(ε1)2γ+1γ2(mg)+M22Hψ(ε1)2Hγ2(mλ)}||z||+4{M2ψ(ε1)2γγ2nf+M2ψ(ε1)2γ+1γ2ng+M2ψ(ε1)2γ+1γ2nλ}||Dγ,βψ(ε)Γ(s)||24{M1||Γ0h(ε,0)||2+M2ψ(ε1)2γγ2(lh+lf+ψ(ε)lg+2Hψ(ε)2Hlλ)}+4{M1||Γ0h(ε,0)||2+M2ψ(ε1)2γγ2(mh+mf+ψ(ε)mg+2Hψ(ε)2Hmλ)+(lh+lf+ψ(ε)lg+ψ(ε)lλ+(mh+mf+ψ(ε)mg+ψ(ε)mλ)1(nf+ψ(ε)ng+ψ(ε)mλ)}z:=η0.

    Case 2. For ε(εk,sk], k = 1, 2, , m,

    ||(Φz)(ε)||2E||hk(ε,zs+xs)||2Mhk(1+||z||2)ψ(ε)1vMhk(1+||z||2)maxψ(ε)1vMhk(1+z):=ηk,   k=1,2,3,m.

    Case 3. For ε(sk,εk+1], k=1,2,,m, ΓY, we have

    E||(Φz)(ε)||24{E||(ψ(ε)k+1sk)v1Mγ,v(A(sk)γ)hk(sk,Γ(sk))||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs,Dγ,βψ(ε)Γ(s))ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη,Dγ,βψ(ε)Γ(s))dB(η))ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,zη+xη,Dγ,βψ(ε)Γ(s))dBH)ds||2}.

    Thus

    E||(ΦΓ)(ε)||24{(ψ(ε)v1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1sk)2γγ2[lh+lf+(ψ(ε)k+1sk)lg+2H(ψ(ε)k+1sk)2Hlλ]}+4{(ψ(ε)v1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1sk)2γγ2[mh+mf+(ψ(ε)k+1sk)mg+2H(ψ(ε)k+1sk)2Hlλ]}+4{M2ψ(ε1)2γγ2nf+M2ψ(ε1)2γ+1γ2ng+M2ψ(ε1)2γ+1γ2nλ}||Dγ,βψ(ε)Γ(s)||24{bv1M1Mhk+M2b2γγ2[lh+lf+blg+2Hb2Hlλ]}+4{bv1M1Mhk+M2b2γγ2[mh+mf+bmg+2Hb2Hmλ]+[lh+lf+blg+blλ+(mh+mf+bmg+bmλ)14(nf)+bng+bmλ]}z:=ηb.

    Let η = {η0,ηk,ηb}, k=1,2,,m, then {ψ1v(Φz)(ε):zB} is a bounded set in Y, i.e., ||Φz||2Y η.

    Step 3. Φ is a quasi-equicontinous set in Y.

    Case 1. Let τ1, τ2 [0,ε1] with 0τ1τ2ε1. One could establish the following estimate:

    ||(Φz)(τ2)(Φz)(τ1)||2=sup{E||τ1v2(ΦΓ)(τ2)τ1v1(ΦΓ)(τ1)||2}8{E||Mγ,v(Aτγ2)||Γ0h(ε,0)||Mγ,v(Aτγ1)||Γ0h(ε,0)||||2+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lh+mhE||zs+xs||2+nh||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lh+mhE||zs+xs||2+nh||Dγ,βψ(ε)Γ(s)||2)ds+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lf+mfE||zs+xs||2+nf||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lf+mfE||zs+xs||2+nf||Dγ,βψ(ε)Γ(s)||2)ds+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lg+mgE||zη+xη||2+ng||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lg+mgE||zs+xs||2+ng||Dγ,βψ(ε)Γ(s)||2)ds+2Hτ2H12τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lλ+mλE||zs+xs||2+nλ||Dγ,βψ(ε)Γ(s)||2)ds+2H(τ2τ1)2H1τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2×(lλ+mλE||zs+xs||2+nλ||Dγ,βψ(ε)Γ(s)||2)ds}.

    We conclude that as τ2τ10 with ε sufficiently small, the right hand side of the above inequality tends to zero independently of zBr. Furthermore, the similar results are true for εk<τ1<τ2sk and sk<τ1<τ2εk+1 for k=1,2,,m. It proves the equicontinuous of Φ on Y. Thus, for τ1,τ2[0,b](εk,εk+1], k=1,2,,m, whenever B is a bounded set of Y as in Step 2, let zBr, then

    ||(Φz)(τ1)(Φy)(τ2)||2YM(r)(τ2τ1).

    Thus, Φ is quasi-equicontinuous, then Φ(z) is relatively compact by Lemma 3.1, which implies that Φ(z) is CC.

    Step 4. Φ has a Prior bound.

    It remains to estimate that the set (Φ)={zY:z=ΘΦz,0<Θ<1} is bounded.

    Let zΠ(Φ), then z=ΘΦ(z) for some Θ(0,1), by following the proof of Step 2 that ||z||Yη. This proves that the set Π(Φ) is bounded. Hence, by Theorem 3.1, Φ has a fixed point, which is the required solution on J.

    Here, we derive the UHR stability for (1.1). Let ω>0, ϕ0, and ζPC(J,Rn) be nondecreasing. Consider the following inequalities.

    E||Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]A˜Γ(ε)Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)||ωζ(ε),ε (sk,εk+1],k=0,1,2,,m,E||Γ(ε)hk(ε,Γ(ε))||2ωϕ,ε(εk,sk],k=1,2,,m,E||I1v0+Γ(ε)Γ0||2ωϕ,Γ(ε)=ϕ(ε),ε[0r,0],Γ(ε)=φ(ε),ε[b,b+h].

    Define a vector space as χ:

    χ=PC(J,Rn)C((sk,tk+1],Rn).

    Definition 5.1. System (1.1) is UHR stable with respect to (ζ,ϕ) if there exists C(M,L,P,ζ)>0 such that for each solution ˜Γχ of the inequality (5.1), there exists solution ΓPC(J,Rn) of (1.1) with

    E||˜Γ(ε)Γ(ε)||2C(M,L,p,ζ)ω(ζ(ε)+ϕ),εJ.

    Remark 5.1. A function ˜Γχ is a solution of (5.1) there is QKi=0 ((sk,εk+1],Rn] and qKi=0((εk,sk],Rn) such that:

    (1) E||Q(ε)||2ωζ(ε),εKi=0(sk,εk+1];E||q(ε)||2ωϕ,εKi=0(tk,sk];

    (2) Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s) +ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε (sk,εk+1],k=0,1,2,,m,

    (3) ˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε(εk,sk],k=0,1,2,,m.

    By Remark 5.1, we have

    Dγ,βψ(ε)[˜˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε (sk,εk+1],k=0,1,2,,m,˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε(εk,sk],k=0,1,2,,m,I1v0+˜Γ(ε)/ε=0=Γ0.

    Lemma 5.1. Let β[0,1], γ(0,1). If a function ˜Γχ is a solution of (5.1) then we have:

    (i)E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2ψ2γ(ε)γ2M2ωε0ζ(s)ds,ε[0,ε1].
    (ii)E||(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2b2γγ2M2ωεskζ(s)ds, ε(sk,εk+1],k=1,2,,m.

    By Remark 5.1, we have:

    Case 1. For ε[0,ε1], we have

    Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε).

    Thus

    ˜Γ(ε)=ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds.

    From above, we obtain

    E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2E||ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2ψ2γ(ε)γ2M2ωε0ζ(s)ds.

    Case 2. For ε(εk,sk], we have

    E||˜Γ(ε)hk(ε,˜Γ(ε))||2ωϕ.

    Case 3. For ε(sk,εk+1], we get

    Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε),then,˜Γ(ε)=(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds,+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds.

    Thus

    E||˜Γ(ε)(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2(ψ(ε)sk)2γγ2M2ωε0ζ(s)dsb2γγ2M2εε0ζ(s)ds.

    In order to prove stability, we assume the following assumptions:

    (H7) There exist positive constants Mk(k=1,2,,m) such that

    E||hk(ε,Γ(ε))hk(ε,z(ε))||2mk=1MkE||Γ(ε)z(ε)||2Yε(εk,sk].

    (H8) Let ζC(J,Rn) be a nondecreasing function if there exists cζ>0 such that ε0ζ(s)ds<cζζ(ε), εJ.

    Lemma 5.2. Let P0=P0 where p=1,2,,m, and the following inequality holds

    Γ(ε)a(ε)+ε0b(s)Γ(s)ds+Σ0<εk<εαkΓ(εˉk),ε0,

    where Γ,a,bPC(R+,R+), a is nondecreasing and b(ε)>0, αk>0, kP. For εR+,

    Γ(ε)a(ε)(1+α)Ke(ε0b(s)ds),ε(εK,εK+1],KP0,

    where α=supKP{αK} and ε0=0.

    Theorem 5.1. If the assumptions (H1),(H7), and (H8) are satisfied, then (1.1) is UHR stable with respect to (ζ,ϕ).

    Proof. Let ˜Γχ be a solution of inequality (5.1) and Γ be the unique solution of (1.1).

    Case 1. For ε[0,ε1], we have:

    E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2ψ2γ(ε)γ2M2εε0ψ(s)dsψ2γ(ε)γ2M2ωcζζ(ε)b2γγ2M2ωcζζ(ε)cpcζζ(ε),

    where cp=b2γγ2M2.

    Case 2. For ε(εk,sk], we have

    E||˜Γ(ε)hk(ε,˜Γ(ε))||2ωϕ.

    Case 3. For ε(sk,εk+1], we have

    E||˜Γ(ε)(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,Γ(sk))ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2(ψ(ε)sk)2γγ2M2ωε0ζ(s)dsb2γγ2M2ωcζζ(ε)cpcζζ(ε).

    Hence, for ε[0,ε1], we have:

    E||Γ(ε)˜Γ(ε)||2ψ(ε)2γγ2M2[ωcζζ(ε)+((Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2))||Γ(s)˜Γ(s)||2]b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2))||Γ(s)˜Γ(s)||2]. (5.1)

    For ε(εk,sk], we get

    E||Γ(ε)˜Γ(ε)||2=E||Γ(ε)hk(sk,˜Γ(sk))||2=E||Γ(ε)hk(sk,Γ(sk))+hk(sk,Γ(sk))hk(sk,˜Γ(sk))||22{E||Γ(ε)hk(sk,Γ(sk))||2+E||hk(sk,Γ(sk))hk(sk,˜Γ(sk))||2}2{ωϕ+Σki=0Mk||Γ(ε)˜Γ(ε)||2}. (5.2)

    For ε(sk,εk+1], k = 1, 2, , m,

    E||Γ(ε)˜Γ(ε)||25b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2))||Γ(s)˜Γ(s)||2].+5bv1M1Σki=1Mk||Γ(s)~Γ(s)||2. (5.3)

    Combining (5.2)–(5.4), one can get an inequality of the form given in Lemma 5.2. For εJ, since ε(εk,εk+1], KP0, we have

    E||Γ(ε)˜Γ(ε)||25{cpωcζζ(ε)+bv1M1Σki=1Mk||Γ(ε)˜Γ(ε)||2+cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2)]||Γ(s)˜Γ(s)||2+5bv1M1Σki=1Mk||Γ(s)~Γ(s)||2}+2ωϕ5cpωcζ(ζ(ε)+ϕ)(1+M)keε0Lds,

    where

    M=sup{bv1M1Mk},L=cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2)].

    Thus,

    E||Γ(ε)˜Γ(ε)||25C(M,L,p,ζ)ω(ζ(ε)+ϕ),εJ,

    where C(M,L,p,ζ) is a constant depending on M,L,p,ζ. Hence, (1.1) is UHR stable w.r.t (ζ,ϕ).

    Consider the following nonlinear ψ-HFSE with NI impulses driven by both noises. This type of fractional SDE can be applied in pharmacotherapy.

    D12,34ψ(ε)Γ1(ε)=Γ2(ε)+15(Γ1(ε)1+Γ21(ε)+Γ22(ε))+15(Γ1(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s))
    +Γ1(ε)eψ(ε)3β1(ε),Dγ,βψ(ε)Γ(s)+Γ1(ε)e2ψ(ε)5βH1(ε),Dγ,βψ(ε)Γ(s),
    D12,34ψ(ε)Γ2(ε)=Γ1(ε)+15(Γ2(ε)1+Γ21(ε)+Γ22(ε))+15(Γ2(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s))
    +Γ2(ε)eψ(ε)3β2(ε),Dγ,βψ(ε)Γ(s)+Γ2(ε)e2ψ(ε)3βH2(ε),Dγ,βψ(ε)Γ(s),
    ε(sk,εk+1],k=0,1,,m,
    Γ(ε)=14Γ(ε,εk),ε(0.9,sk),k=1,2,,m,
    Γ(0)=Γ0,ψ(ε)=sin(ε),

    where ΓR2, Γ12, β=34, 0<ε0<s0<ε1<<sm=1 are prefixed numbers, J=[0,1]. Here

    A=(0110),Δ(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))),
    h(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))),
    g(ε,Γ(ε))=(Γ1(ε)eψ(ε)300Γ2(ε)eψ(ε)3),λ(ε,Γ(ε))=(Γ1(ε)e2ψ(ε)500εΓ2(ε)eψ(ε)5).

    Calculate the M-L function by using [12]. We have

    Mγ,ν(Aψ(ε)γ)=(S1S2S3S4),

    where

    S1=S4=j=0(1)jb2jγΓ(1+2jγ)=0.3377,
    S2=S3=j=0(1)jb(2j+1)γΓ(1+(2j+1)γ)=1.666.

    Also calculate

    Mγ,ν(A(bs)γ)=(P1P2P3P4),

    where

    P1=P4=j=0(1)j(bs)2jγΓ(2jγ+γ)=0.7477,
    P2=P3=j=0(1)j(bs)(2j+1)γΓ[(2j+1)γ]=0.4203.

    Therefore, we need to check the hypotheses of nonlinear functions:

    E||h(ε,u1)h(ε,u2)||2130||u1u2||2,
    E||Δ(ε,u1,v1)Δ(ε,u2,v2)||2125||u1u2||2+135||v1v2||2,
    E||g(ε,u1,v1)g(ε,u2,v2)||219e2||u1u2||2+110e3||v1v2||2,
    E||λ(ε,u1,v1λ(ε,u2,v2)||2125e4ψ(ε)||u1u2||2+120e5ψ(ε)||v1v2||2,
    E||hk(ε,u)hk(ε,v||2116||uv||2,k=1,2,,m.

    We get M1=0.0862, M2=0.3824, Mhk=0.065, and γ=0.5. Hence we have L=max{L0,Lk,Lk}=0.52<1. Also,

    E||Γ(ε)˜Γ(ε)||25C(M,L,p,ζ)ε(ζ(ε)+ϕ),εJ,0.218.

    In this example, all the conditions stated in Theorems 4.1 and 5.1 are satisfied, so the example has a unique solution and is also UHR stable.

    With the help of Schaefer's FPT and the Banach contraction principles, we obtained the existence and uniqueness results for HSFEs with retarded and advanced arguments, selected the non-instantaneous impulses with both multiplicative and fractional noises, and obtained the UHR stability for HSFEs. UHR stability gives bounds between the exact and approximation solution, which is why this theory is very important in the numerical analysis as well as in approximation theory. We are hoping that our findings will have a great importance in the mentioned theories. Finally, a case study is provided to demonstrate the efficacy of the suggested outcomes. In the future, we can use the findings to investigate the controllability of HSFEs.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Anhui Province Natural Science Research Foundation (2023AH051810).

    The authors declare no conflicts of interest.



    [1] İnci M, Büyük M, Demir MH, İlbey G (2021) A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renewable and Sustainable Energy Reviews 137: 110648. https://doi.org/10.1016/j.rser.2020.110648 doi: 10.1016/j.rser.2020.110648
    [2] Mohanraj D, Gopalakrishnan J, Chokkalingam B, Mihet-Popa L (2022) Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple—Review. IEEE Access 10: 73635–73674. https://doi.org/10.1109/ACCESS.2022.3187515 doi: 10.1109/ACCESS.2022.3187515
    [3] Wang Z, Ching TW, Huang S, Wang H, Xu T (2021) Challenges Faced by Electric Vehicle Motors and Their Solutions. IEEE Access 9: 5228–5249. https://doi.org/10.1109/ACCESS.2020.3045716 doi: 10.1109/ACCESS.2020.3045716
    [4] Lan Y, Benomar Y, Deepak K, Aksoz A, Baghdadi ME, Bostanci E, et al. (2021) Switched reluctance motors and drive systems for electric vehicle powertrains: State of the art analysis and future trends. Energies (Basel) 14: 2079. https://doi.org/10.3390/en14082079
    [5] Fang G, Pinarello Scalcon F, Xiao D, Vieira RP, Gründling HA, Emadi A (2021) Advanced Control of Switched Reluctance Motors (SRMs): A Review on Current Regulation, Torque Control and Vibration Suppression. IEEE Open Journal of the Industrial Electronics Society 2: 280–301. https://doi.org/10.1109/OJIES.2021.3076807 doi: 10.1109/OJIES.2021.3076807
    [6] Gan C, Wu J, Sun Q, Kong W, Li H, Hu Y (2018) A Review on Machine Topologies and Control Techniques for Low-Noise Switched Reluctance Motors in Electric Vehicle Applications. IEEE Access 6: 31430–31443. https://doi.org/10.1109/ACCESS.2018.2837111 doi: 10.1109/ACCESS.2018.2837111
    [7] Abdel-Fadil R, Számel L (2018) State of the Art of Switched Reluctance Motor Drives and Control Techniques. 2018 Twentieth International Middle East Power Systems Conference (MEPCON), 779–784. https://doi.org/10.1109/MEPCON.2018.8635219 doi: 10.1109/MEPCON.2018.8635219
    [8] Abdel-Fadil R, Al-Amyal F, Számel L (2019) Torque Ripples Minimization Strategies of Switched Reluctance Motor - A Review. 2019 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), 41–46. https://doi.org/10.1109/CANDO-EPE47959.2019.9110960 doi: 10.1109/CANDO-EPE47959.2019.9110960
    [9] Watthewaduge G, Sayed E, Emadi A, Bilgin B (2020) Electromagnetic Modeling Techniques for Switched Reluctance Machines: State-of-the-Art Review. IEEE Open Journal of the Industrial Electronics Society 1: 218–234. https://doi.org/10.1109/OJIES.2020.3016242 doi: 10.1109/OJIES.2020.3016242
    [10] Ouannou A, Brouri A, Kadi L, Oubouaddi H (2022) Identification of switched reluctance machine using fuzzy model. Int J Syst Assur Eng 13: 2833–2846. https://doi.org/10.1007/s13198-022-01749-4 doi: 10.1007/s13198-022-01749-4
    [11] Ertugrul N, Cheok A (1998) Indirect angle estimation in switched reluctance motor drives using fuzzy logic based predictor/corrector. PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196) 1: 845–851. https://doi.org/10.1109/PESC.1998.701998 doi: 10.1109/PESC.1998.701998
    [12] Oubouaddi H, El Mansouri FE, Bouklata A, Larhouti R, Ouannou A, Brouri A (2023) Parameter Estimation of Electrical Vehicle Motor. WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL 18: 430–436. https://doi.org/10.37394/23203.2023.18.46 doi: 10.37394/23203.2023.18.46
    [13] Cai Y, Gao C (2007) Nonlinear Modeling of Switched Reluctance Motor Based on BP Neural Network. Third International Conference on Natural Computation (ICNC 2007) 1: 232–236. https://doi.org/10.1109/ICNC.2007.504 doi: 10.1109/ICNC.2007.504
    [14] Song S, Zhang M, Ge L (2015) A new fast method for obtaining flux-linkage characteristics of SRM. IEEE T Ind Electron 62: 4105–4117. https://doi.org/10.1109/TIE.2015.2390147 doi: 10.1109/TIE.2015.2390147
    [15] Deepak M, Janaki G, Bharatiraja C (2022) Power electronic converter topologies for switched reluctance motor towards torque ripple analysis. Materials Today: Proceedings 52: 1657–1665. https://doi.org/10.1016/j.matpr.2021.11.284 doi: 10.1016/j.matpr.2021.11.284
    [16] Han S, Diao K, Sun X (2021) Overview of multi-phase switched reluctance motor drives for electric vehicles. Adv Mech Eng 13: 16878140211045195. https://doi.org/10.1177/16878140211045195 doi: 10.1177/16878140211045195
    [17] Gaafar MA, Abdelmaksoud A, Orabi M, Chen H, Dardeer M (2022) Switched Reluctance Motor Converters for Electric Vehicles Applications: Comparative Review. IEEE T Transp Electr. https://doi.org/10.1109/TTE.2022.3192429 doi: 10.1109/TTE.2022.3192429
    [18] Deng X, Mecrow B (2019) Design and comparative evaluation of converter topologies for six‐phase switched reluctance motor drives. The Journal of Engineering 2019: 4017–4021. https://doi.org/10.1049/joe.2018.8031 doi: 10.1049/joe.2018.8031
    [19] Deskur J, Pajchrowski T, Zawirski K (2008) Optimal control of current commutation of high speed SRM drive. 2008 13th International Power Electronics and Motion Control Conference, 1204–1208. https://doi.org/10.1109/EPEPEMC.2008.4635432 doi: 10.1109/EPEPEMC.2008.4635432
    [20] Xue XD, Cheng KWE, Lin JK, Zhang Z, Luk KF, Ng TW, et al. (2010) Optimal control method of motoring operation for SRM drives in electric vehicles. IEEE T Veh Technol 59: 1191–1204. https://doi.org/10.1109/TVT.2010.2041260 doi: 10.1109/TVT.2010.2041260
    [21] Bober P, Ferková Ž (2022) Firing angle adjustment for switched reluctance motor efficiency increasing based on measured and simulated data. Electr Eng 104: 191–202. https://doi.org/10.1007/s00202-021-01346-x doi: 10.1007/s00202-021-01346-x
    [22] Fatemi SA, Cheshmehbeigi HM, Afjei E (2009) Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives. ECCTD 2009 - European Conference on Circuit Theory and Design Conference Program, 851–856. https://doi.org/10.1109/ECCTD.2009.5275117 doi: 10.1109/ECCTD.2009.5275117
    [23] Xu YZ, Zhong R, Chen L, Lu SL (2012) Analytical method to optimise turn-on angle and turn-off angle for switched reluctance motor drives. IET Electr Power Appl 6: 593–603. https://doi.org/10.1049/iet-epa.2012.0157 doi: 10.1049/iet-epa.2012.0157
    [24] Singh G, Singh B (2020) An Analytical Approach for optimizing Commutation Strategy of Switched Reluctance Motor Drive for Light Electric Vehicle. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 1–6. https://doi.org/10.1109/PESGRE45664.2020.9070763 doi: 10.1109/PESGRE45664.2020.9070763
    [25] Sozer Y, Torrey DA, Mese E (2003) Automatic control of excitation parameters for switched-reluctance motor drives. IEEE T Power Electron 18: 594–603. https://doi.org/10.1109/TPEL.2003.809352 doi: 10.1109/TPEL.2003.809352
    [26] Sozer Y, Torrey DA (2007) Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors. IET Electr Power Appl 1: 395–401. https://doi.org/10.1049/iet-epa:20060412 doi: 10.1049/iet-epa:20060412
    [27] Hamouda M, Szamel L (2018) A new technique for optimum excitation of switched reluctance motor drives over a wide speed range. Turk J Electr Eng Comput Sci 26: 2753–2767. https://doi.org/10.3906/elk-1712-153 doi: 10.3906/elk-1712-153
    [28] Abolfathi K, Babaei M, Tabrizian M, Alizadeh Bidgoli M (2022) Optimization of Switched Reluctance Machine Drives Using Multi-Task Learning Approach. Alex Eng J 61: 11129–11138. https://doi.org/10.1016/j.aej.2022.04.046 doi: 10.1016/j.aej.2022.04.046
    [29] Quraan L Al, Al-Amyal F, Laszlo S (2021) Adaptive Firing Angles Control for Switched Reluctance Motor. CANDO-EPE 2021 - Proceedings: IEEE 4th International Conference and Workshop in Obuda on Electrical and Power Engineering, 119–124. https://doi.org/10.1109/CANDO-EPE54223.2021.9667911 doi: 10.1109/CANDO-EPE54223.2021.9667911
    [30] Yang T, Zhou G, Zhang C, et al (2020) Current chopping control based on fuzzy logic rules for switched reluctance motor. Proceedings - 2020 Chinese Automation Congress (CAC), 1324–1328. https://doi.org/10.1109/CAC51589.2020.9327543 doi: 10.1109/CAC51589.2020.9327543
    [31] Cheshmehbeigi HM, Yari S, Yari AR, Afjei E (2009) Self-tuning approach to optimization of excitation angles for Switched-Reluctance Motor Drives using fuzzy adaptive controller. 2009 13th European Conference on Power Electronics and Applications, 1‒10.
    [32] Hamouda M, Számel L (2019) Optimum control parameters of switched reluctance motor for torque production improvement over the entire speed range. Acta Polytech Hung 16: 79–99. https://doi.org/10.12700/APH.16.3.2019.3.5 doi: 10.12700/APH.16.3.2019.3.5
    [33] Jian LZ, Tri NL, Le Thai N, Le PX (2015) Switching-off Angle Control for Switched Reluctance Motor Using Adaptive Neural Fuzzy Inference System. International Journal of Energy and Power Engineering 4: 39‒35. https://doi.org/10.11648/j.ijepe.20150401.16 doi: 10.11648/j.ijepe.20150401.16
    [34] Song S, Fang G, Hei R, Jiang J, Ma R, Liu W (2020) Torque Ripple and Efficiency Online Optimization of Switched Reluctance Machine Based on Torque per Ampere Characteristics. IEEE T Power Electr 35: 9610–9618. https://doi.org/10.1109/TPEL.2020.2974662 doi: 10.1109/TPEL.2020.2974662
    [35] Fan Z, Ge L, Huang J, Song S (2022) Power Regulation and Efficiency Optimization of Switched Reluctance Generator for More Electric Aircraft. 2022 International Conference on Electrical Machines and Systems (ICEMS), 1‒6. https://doi.org/10.1109/ICEMS56177.2022.9983204 doi: 10.1109/ICEMS56177.2022.9983204
    [36] Ben T, Nie H, Chen L, Jing L, Yan R (2022) Torque ripple reduction for switched reluctance motors using global optimization algorithm. J Power Electron 22: 1897–1907. https://doi.org/10.1007/s43236-022-00501-2 doi: 10.1007/s43236-022-00501-2
    [37] Borujeni MM, Rashidi A, Saghaeian Nejad SM (2015) Optimal four quadrant speed control of switched reluctance motor with torque ripple reduction based on EM-MOPSO. 6th Annual International Power Electronics, Drive Systems, and Technologies Conference (PEDSTC 2015), 310‒315. https://doi.org/10.1109/PEDSTC.2015.7093293 doi: 10.1109/PEDSTC.2015.7093293
    [38] Al-Amyal F, Hamouda M, Számel L (2021) Torque quality improvement of switched reluctance motor using ant colony algorithm. Acta Polytech Hung 18: 129–150. https://doi.org/10.12700/APH.18.7.2021.7.7 doi: 10.12700/APH.18.7.2021.7.7
    [39] Jha MK, Seth N, Tyagi N, Khan SA (2021) SRM Torque Ripple Reduction Using Grey Wolf and Teaching and Learning Based optimization in Hysteresis Control. 2021 International Conference on Intelligent Technologies, CONIT, 1‒7. https://doi.org/10.1109/CONIT51480.2021.9498374 doi: 10.1109/CONIT51480.2021.9498374
    [40] Zabihi N, Gouws R (2016) A review on switched reluctance machines for electric vehicles. IEEE International Symposium on Industrial Electronics (ISIE), 799‒804. https://doi.org/10.1109/ISIE.2016.7744992 doi: 10.1109/ISIE.2016.7744992
    [41] Zhou D, Chen H (2021) Four-Quadrant Position Sensorless Operation of Switched Reluctance Machine for Electric Vehicles over a Wide Speed Range. IEEE T Transp Electr 7: 2835–2847. https://doi.org/10.1109/TTE.2021.3070640 doi: 10.1109/TTE.2021.3070640
    [42] Qiu C, Guan Y, Liu Y, Fu X (2020) Position Sensorless Control of Switched Reluctance Motor Based on Full-bridge Power Converter. 2020 IEEE International Conference on Mechatronics and Automation (ICMA), 1014–1019. https://doi.org/10.1109/ICMA49215.2020.9233589 doi: 10.1109/ICMA49215.2020.9233589
    [43] Xu Y, Wang X, Xu Z, Zhang Y (2019) Analysis and Application of Control Strategy for Switched Reluctance Drive with Position Sensor. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 1363–1367. https://doi.org/10.1109/ITAIC.2019.8785465 doi: 10.1109/ITAIC.2019.8785465
    [44] Velmurugan G, Bozhko S, Yang T (2018) A Review of Torque Ripple Minimization Techniques in Switched Reluctance Machine. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), 1–6. https://doi.org/10.1109/ESARS-ITEC.2018.8607614 doi: 10.1109/ESARS-ITEC.2018.8607614
    [45] Diao K, Sun X, Bramerdorfer G, Cai Y, Lei G, Chen L (2022) Design optimization of switched reluctance machines for performance and reliability enhancements: A review. Renewable and Sustainable Energy Reviews 168: 112785. https://doi.org/10.1016/j.rser.2022.112785 doi: 10.1016/j.rser.2022.112785
    [46] Li S, Zhang S, Habetler TG, Harley RG (2019) Modeling, design optimization, and applications of switched reluctance machines - A review. IEEE T Ind Appl 55: 2660–2681. https://doi.org/10.1109/TIA.2019.2897965 doi: 10.1109/TIA.2019.2897965
    [47] Abdalmagid M, Sayed E, Bakr MH, Emadi A (2022) Geometry and Topology Optimization of Switched Reluctance Machines: A Review. IEEE Access 10: 5141–5170. https://doi.org/10.1109/ACCESS.2022.3140440 doi: 10.1109/ACCESS.2022.3140440
    [48] Bostanci E, Moallem M, Parsapour A, Fahimi B (2017) Opportunities and Challenges of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study. IEEE T Transp Electr 3: 58–75. https://doi.org/10.1109/TTE.2017.2649883 doi: 10.1109/TTE.2017.2649883
    [49] Lee J, Seo JH, Kikuchi N (2010) Topology optimization of switched reluctance motors for the desired torque profile. Structural and Multidisciplinary Optimization 42: 783–796. https://doi.org/10.1007/s00158-010-0547-1 doi: 10.1007/s00158-010-0547-1
    [50] Kocan S, Rafajdus P, Bastovansky R, Lenhard R, Stano M (2021) Design and optimization of a high-speed switched reluctance motor. Energies (Basel) 14: 6733. https://doi.org/10.3390/en14206733 doi: 10.3390/en14206733
    [51] Qiao W, Diao K, Han S, Sun X (2022) Design optimization of switched reluctance motors based on a novel magnetic parameter methodology. Electr Eng 104: 4125–4136. https://doi.org/10.1007/s00202-022-01610-8 doi: 10.1007/s00202-022-01610-8
    [52] Yan W, Chen H, Liu X, Ma X, Lv Z, Wang X, et al. (2019) Design and multi-objective optimisation of switched reluctance machine with iron loss. IET Electr Power Appl 13: 435–444. https://doi.org/10.1049/iet-epa.2018.5699 doi: 10.1049/iet-epa.2018.5699
    [53] Ajamloo AM, Ibrahim MN, Sergeant P (2023) Design, Modelling and Optimization of a High Power Density Axial Flux SRM with Reduced Torque Ripple for Electric Vehicles. Machines 11: 759. https://doi.org/10.3390/machines11070759 doi: 10.3390/machines11070759
    [54] Lan Y, Frikha MA, Croonen J, Benômar Y, El Baghdadi M, Hegazy O (2022) Design Optimization of a Switched Reluctance Machine with an Improved Segmental Rotor for Electric Vehicle Applications. Energies (Basel) 15: 5772. https://doi.org/10.3390/en15165772 doi: 10.3390/en15165772
    [55] Torres J, Moreno-Torres P, Navarro G, Blanco M, Nájera J, Santos-Herran M, et al. (2021) Asymmetrical rotor skewing optimization in switched reluctance machines using differential evolutionary algorithm. Energies (Basel) 14: 3194. https://doi.org/10.3390/en14113194 doi: 10.3390/en14113194
    [56] Omar M, Sayed E, Abdalmagid M, Bilgin B, Bakr MH, Emadi A (2022) Review of Machine Learning Applications to the Modeling and Design Optimization of Switched Reluctance Motors. IEEE Access 10: 130444–130468. https://doi.org/10.1109/ACCESS.2022.3229043 doi: 10.1109/ACCESS.2022.3229043
    [57] Hadapad BS, Naik RL (2021) An Investigation on Torque Control Strategies for Switched Reluctance Motor. 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), 161–167. https://doi.org/10.1109/ICEECCOT52851.2021.9707962 doi: 10.1109/ICEECCOT52851.2021.9707962
    [58] Inderka RB, Menne M, De Doncker RWAA (2002) Control of switched reluctance drives for electric vehicle applications. IEEE T Ind Electron 49: 48–53. https://doi.org/10.1109/41.982247 doi: 10.1109/41.982247
    [59] Khalili H, Afjei E, Najafi A (2007) Torque ripple minimization in SRM drives using phase/current profiles. 2007 International Aegean Conference on Electrical Machines and Power Electronics, 273–275. https://doi.org/10.1109/ACEMP.2007.4510516 doi: 10.1109/ACEMP.2007.4510516
    [60] Mikail R, Sozer Y, Husain I, Islam MS, Sebastian T (2011) Torque ripple minimization of switched reluctance machines through current profiling. 2011 IEEE Energy Conversion Congress and Exposition, 3568‒3574.
    [61] Mikail R, Husain I, Sozer Y, Islam MS, Sebastian T (2013) Torque-ripple minimization of switched reluctance machines through current profiling. IEEE T Ind Appl 49: 1258–1267. https://doi.org/10.1109/TIA.2013.2252592 doi: 10.1109/TIA.2013.2252592
    [62] Dúbravka P, Rafajdus P, Makyš P, Szabó L (2017) Control of switched reluctance motor by current profiling under normal and open phase operating condition. IET Electr Power Appl 11: 548–556. https://doi.org/10.1049/iet-epa.2016.0543 doi: 10.1049/iet-epa.2016.0543
    [63] Shaked NT, Rabinovici R (2005) New procedures for minimizing the torque ripple in switched reluctance motors by optimizing the phase-current profile. IEEE Trans Magn 41: 1184–1192. https://doi.org/10.1109/TMAG.2004.843311 doi: 10.1109/TMAG.2004.843311
    [64] Mitra R, Uddin W, Sozer Y, Husain I (2013) Torque ripple minimization of Switched Reluctance Motors using speed signal based phase current profiling. 2013 IEEE Energytech, 1‒5. https://doi.org/10.1109/EnergyTech.2013.6645357 doi: 10.1109/EnergyTech.2013.6645357
    [65] Venkatesha L, Ramanarayanan V (2000) A comparative study of pre-computed current methods for torque ripple minimisation in switched reluctance motor. Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), 119–125.
    [66] Chai JY, Liaw CM (2010) Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling. IET Electr Power Appl 4: 380–396. https://doi.org/10.1049/iet-epa.2009.0061 doi: 10.1049/iet-epa.2009.0061
    [67] Wang JJ (2016) A common sharing method for current and flux-linkage control of switched reluctance motor. Electr Pow Syst Res 131: 19–30. https://doi.org/10.1016/j.epsr.2015.09.015 doi: 10.1016/j.epsr.2015.09.015
    [68] Harikrishnan R, Fernandez FM (2017) Improved online torque-sharing-function based low ripple torque control of switched reluctance motor drives. 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1–6. https://doi.org/10.1109/PEDES.2016.7914374 doi: 10.1109/PEDES.2016.7914374
    [69] Fan J, Lee YK (2021) Extending Maximum Speed of Torque Sharing Function Method in Switched Reluctance Motor. 3rd International Conference on Electrical, Communication and Computer Engineering, ICECCE 2021. https://doi.org/10.1109/ICECCE52056.2021.9514235 doi: 10.1109/ICECCE52056.2021.9514235
    [70] Ye J, Bilgin B, Emadi A (2015) An Offline Torque Sharing Function for Torque Ripple Reduction in Switched Reluctance Motor Drives. IEEE T Energy Conver 30: 726–735. https://doi.org/10.1109/TEC.2014.2383991 doi: 10.1109/TEC.2014.2383991
    [71] Ferkova Z, Bober P (2021) An off-line Optimization of Torque Sharing Functions for Switched Reluctance Motor Control. 2021 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics, ECMSM. https://doi.org/10.1109/ECMSM51310.2021.9468872
    [72] Al-Amyal F, Al Quraan L, Szamel L (2020) Torque Sharing Function Optimization for Extended Speed Range Control in Switched Reluctance Motor Drive. CANDO-EPE 2020 - Proceedings, IEEE 3rd International Conference and Workshop in Obuda on Electrical and Power Engineering, 119–124. https://doi.org/10.1109/CANDO-EPE51100.2020.9337792 doi: 10.1109/CANDO-EPE51100.2020.9337792
    [73] Hamouda M, ullah QS, Számel L (2018) Compensation of Switched Reluctance Motor Torque Ripple based on TSF Strategy for Electric Vehicle Applications. 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), 1–6. https://doi.org/10.1109/PGSRET.2018.8686003 doi: 10.1109/PGSRET.2018.8686003
    [74] Li C, Zhang C, Liu J, Bian D (2021) A High-Performance Indirect Torque Control Strategy for Switched Reluctance Motor Drives. Math Probl Eng 2021: 1‒15. https://doi.org/10.1155/2021/6618539 doi: 10.1155/2021/6618539
    [75] Xia Z, Bilgin B, Nalakath S, Emadi A (2021) A New Torque Sharing Function Method for Switched Reluctance Machines with Lower Current Tracking Error. IEEE T Ind Electron 68: 10612–10622. https://doi.org/10.1109/TIE.2020.3037987 doi: 10.1109/TIE.2020.3037987
    [76] Chen T, Cheng G (2022) Comparative Investigation of Torque-ripple Suppression Control Strategies Based on Torque-sharing Function for Switched Reluctance Motor. CES Transactions on Electrical Machines and Systems 6: 170–178. https://doi.org/10.30941/CESTEMS.2022.00023 doi: 10.30941/CESTEMS.2022.00023
    [77] Al-Amyal F, Számel L (2022) Research on Novel Hybrid Torque Sharing Function for Switched Reluctance Motors. IEEE Access 10: 91306–91315. https://doi.org/10.1109/ACCESS.2022.3202296 doi: 10.1109/ACCESS.2022.3202296
    [78] Feng L, Sun X, Yang Z, Diao K (2023) Optimal Torque Sharing Function Control for Switched Reluctance Motors Based on Active Disturbance Rejection Controller. IEEE/ASME T Mech. https://doi.org/10.1109/TMECH.2023.3240986 doi: 10.1109/TMECH.2023.3240986
    [79] Jamil MU, Kongprawechnon W, Chayopitak N (2017) Average Torque Control of a Switched Reluctance Motor Drive for Light Electric Vehicle Applications. IFAC-PapersOnLine 50: 11535–11540. https://doi.org/10.1016/j.ifacol.2017.08.1628 doi: 10.1016/j.ifacol.2017.08.1628
    [80] Inderka RB, De Doncker RWAA (2003) High-Dynamic Direct Average Torque Control for Switched Reluctance Drives. IEEE T Ind Appl 39: 1040–1045. https://doi.org/10.1109/TIA.2003.814579 doi: 10.1109/TIA.2003.814579
    [81] Ferková Ž, Bober P (2020) Switched reluctance motor efficiency increasing by firing angle adjustment for average torque control. 13th International Conference ELEKTRO 2020, ELEKTRO 2020 - Proceedings. https://doi.org/10.1109/ELEKTRO49696.2020.9130193 doi: 10.1109/ELEKTRO49696.2020.9130193
    [82] Fernando N, Barnes M (2015) Average torque control with current-peak regulation in switched reluctance motors. Proceedings of the International Conference on Power Electronics and Drive Systems, 762–766. https://doi.org/10.1109/PEDS.2015.7203478 doi: 10.1109/PEDS.2015.7203478
    [83] Hannoun H, Hilairet M, Marchand C (2010) Design of an SRM speed control strategy for a wide range of operating speeds. IEEE T Ind Electron 57: 2911–2921. https://doi.org/10.1109/TIE.2009.2038396 doi: 10.1109/TIE.2009.2038396
    [84] Pillai A, Anuradha S, Gangadharan KV, Umesht P, Bhaktha S (2021) Modeling and Analysis of Average Torque Control Strategy on Switched Reluctance Motor for E-mobility. Proceedings of CONECCT 2021: 7th IEEE International Conference on Electronics, Computing and Communication Technologies. https://doi.org/10.1109/CONECCT52877.2021.9622731 doi: 10.1109/CONECCT52877.2021.9622731
    [85] Hamouda M, Számel L (2018) Reduced Torque Ripple based on a Simplified Structure Average Torque Control of Switched Reluctance Motor for Electric Vehicles. 2018 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), 109–114. https://doi.org/10.1109/CANDO-EPE.2018.8601133 doi: 10.1109/CANDO-EPE.2018.8601133
    [86] Cheng H, Chen H, Yang Z (2015) Average torque control of switched reluctance machine drives for electric vehicles. IET Electr Power Appl 9: 459–468. https://doi.org/10.1049/iet-epa.2014.0424 doi: 10.1049/iet-epa.2014.0424
    [87] Fan J, Lee Y (2020) A Novel Average Torque Control of Switched Reluctance Motor Based on Flux-Current Locus Control. IEEE Can J Electr Comput Eng 43: 273–281. https://doi.org/10.1109/CJECE.2020.2971732 doi: 10.1109/CJECE.2020.2971732
    [88] Nagel NJ, Lorenz RD (2000) Rotating vector methods for smooth torque control of a switched reluctance motor drive. IEEE T Ind Appl 36: 540–548. https://doi.org/10.1109/28.833772 doi: 10.1109/28.833772
    [89] Aiso K, Akatsu K (2020) High Speed SRM Using Vector Control for Electric Vehicle. CES Transactions on Electrical Machines and Systems 4: 61–68. https://doi.org/10.30941/CESTEMS.2020.00009 doi: 10.30941/CESTEMS.2020.00009
    [90] Nagel NJ, Lorenz RD (1999) Complex rotating vector methods for smooth torque control of a saturated switched reluctance motor. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2591–2598.
    [91] Husain T, Elrayyah A, Sozer Y, Husain I (2016) Flux-weakening control of switched reluctance machines in rotating reference frame. IEEE T Ind Appl 52: 267–277. https://doi.org/10.1109/TIA.2015.2469778 doi: 10.1109/TIA.2015.2469778
    [92] Ghani MRA, Farah N, Tamjis MR (2016) Vector control of switched reluctance motor using fuzzy logic and artificial neutral network controllers. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 4412–4417. https://doi.org/10.1109/ICEEOT.2016.7755553 doi: 10.1109/ICEEOT.2016.7755553
    [93] Nakao N, Akatsu K (2014) Vector control specialized for switched reluctance motor drives. Proceedings - 2014 International Conference on Electrical Machines, ICEM, 943–949. https://doi.org/10.1109/ICELMACH.2014.6960294 doi: 10.1109/ICELMACH.2014.6960294
    [94] Vilela WM, de Andrade KM, Santos HE, de Alvarenga BP, de Oliveira ES, de Paula GT (2022) Novel Vector Control Approach for Switched Reluctance Machines Based on Non-Sinusoidal dq Transform. J Control Autom Elec 33: 345–358. https://doi.org/10.1007/s40313-021-00810-0 doi: 10.1007/s40313-021-00810-0
    [95] Quraan L Al, Saleh AL, Szamel L (2024) Indirect Instantaneous Torque Control for Switched Reluctance Motor Based on Improved Torque Sharing Function. IEEE Access 12: 11810–11821. https://doi.org/10.1109/ACCESS.2024.3355389 doi: 10.1109/ACCESS.2024.3355389
    [96] Al-Amyal F, Hamouda M, Számel L (2022) Performance improvement based on adaptive commutation strategy for switched reluctance motors using direct torque control. Alex Eng J 61: 9219–9233. https://doi.org/10.1016/j.aej.2022.02.039 doi: 10.1016/j.aej.2022.02.039
    [97] Al-Amyal F, Számel L, Hamouda M (2023) An enhanced direct instantaneous torque control of switched reluctance motor drives using ant colony optimization. Ain Shams Eng J 14: 101967 https://doi.org/10.1016/j.asej.2022.101967 doi: 10.1016/j.asej.2022.101967
    [98] Chen Y, Jiang Q, Zhai L, Liang F, Yao W (2020) Direct Instantaneous Torque Control of Switched Reluctance Motor Using Adaptive Excitation Angle. Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications, ICIEA, 1359–1364. https://doi.org/10.1109/ICIEA48937.2020.9248263 doi: 10.1109/ICIEA48937.2020.9248263
    [99] Hamouda M, Menaem AA, Rezk H, Ibrahim MN, Számel L (2021) Comparative evaluation for an improved direct instantaneous torque control strategy of switched reluctance motor drives for electric vehicles. Mathematics 9: 302. https://doi.org/10.3390/math9040302 doi: 10.3390/math9040302
    [100] Ren P, Zhu J, Jing Z, Guo Z, Xu A (2022) Improved DITC strategy of switched reluctance motor based on adaptive turn-on angle TSF. Energy Reports 8: 1336–1343. https://doi.org/10.1016/j.egyr.2022.08.076 doi: 10.1016/j.egyr.2022.08.076
    [101] Wang S, Hu Z, Cui X (2020) Research on Novel Direct Instantaneous Torque Control Strategy for Switched Reluctance Motor. IEEE Access 8: 66910–66916. https://doi.org/10.1109/ACCESS.2020.2986393 doi: 10.1109/ACCESS.2020.2986393
    [102] Sun Q, Wu J, Gan C (2021) Optimized Direct Instantaneous Torque Control for SRMs with Efficiency Improvement. IEEE T Ind Electron 68: 2072–2082. https://doi.org/10.1109/TIE.2020.2975481 doi: 10.1109/TIE.2020.2975481
    [103] Cheng Y (2021) Modified PWM Direct Instantaneous Torque Control System for SRM. Math Probl Eng 2021: 1‒13. https://doi.org/10.1155/2021/1158360 doi: 10.1155/2021/1158360
    [104] Hamouda M, Menaem AA, Rezk H, Ibrahim MN, Számel L (2020) An improved indirect instantaneous torque control strategy of switched reluctance motor drives for light electric vehicles. Energy Reports 6: 709–715. https://doi.org/10.1016/j.egyr.2020.11.142 doi: 10.1016/j.egyr.2020.11.142
    [105] Valencia DF, Tarvirdilu-Asl R, Garcia C, Rodriguez J, Emadi A (2021) A Review of Predictive Control Techniques for Switched Reluctance Machine Drives. Part Ⅱ: Torque Control, Assessment and Challenges. IEEE T ENERGY CONVER 36: 1323‒1335. https://doi.org/10.1109/TEC.2021.3047981 doi: 10.1109/TEC.2021.3047981
    [106] Valencia DF, Tarvirdilu-Asl R, Garcia C, Rodriguez J, Emadi A (2021) A Review of Predictive Control Techniques for Switched Reluctance Machine Drives. Part Ⅰ: Fundamentals and Current Control. IEEE T ENERGY CONVER 36: 1313‒1322. https://doi.org/10.1109/TEC.2021.3047983 doi: 10.1109/TEC.2021.3047983
    [107] Valencia DF, Tarvirdilu-Asl R, Garcia C, Rodriguez J, Emadi A (2021) Vision, Challenges, and Future Trends of Model Predictive Control in Switched Reluctance Motor Drives. IEEE Access 9: 69926–69937. https://doi.org/10.1109/ACCESS.2021.3078366 doi: 10.1109/ACCESS.2021.3078366
    [108] Li J, Ding W, Yuan J, Liu Z, Hu R (2021) An Improved Model Predictive Control Method of Switched Reluctance Motor Based on Direct Torque Control. ICEMS 2021 - 2021 24th International Conference on Electrical Machines and Systems, 2568–2572. https://doi.org/10.23919/ICEMS52562.2021.9634421 doi: 10.23919/ICEMS52562.2021.9634421
    [109] Yuan R, Cheng Q, Song S, Ge L, Zhao X, Ma R, et al. (2021) A Method of Torque Ripple Suppression of SRM based on Model Predictive Control. 6th IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE, 229–234. https://doi.org/10.1109/PRECEDE51386.2021.9681010 doi: 10.1109/PRECEDE51386.2021.9681010
    [110] Ding W, Li J, Yuan J (2022) An Improved Model Predictive Torque Control for Switched Reluctance Motors with Candidate Voltage Vectors Optimization. IEEE T Ind Electron 70: 4595‒4607. https://doi.org/10.1109/TIE.2022.3190895 doi: 10.1109/TIE.2022.3190895
    [111] Hu H, Cao X, Yan N, Deng Z (2019) A New Predictive Torque Control Based Torque Sharing Function for Switched Reluctance Motors. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1–5. https://doi.org/10.1109/ICEMS.2019.8922297 doi: 10.1109/ICEMS.2019.8922297
    [112] Tarvirdilu-Asl R, Nalakath S, Bilgin B, Emadi A (2019) A Finite Control Set Model Predictive Torque Control for Switched Reluctance Motor Drives with Adaptive Turn-off Angle. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 840–845. https://doi.org/10.1109/IECON.2019.8927841 doi: 10.1109/IECON.2019.8927841
    [113] Fang G, Ye J, Xiao D, Xia Z, Emadi A (2022) Low-Ripple Continuous Control Set Model Predictive Torque Control for Switched Reluctance Machines Based on Equivalent Linear SRM Model. IEEE T Ind Electron 69: 12480–12495. https://doi.org/10.1109/TIE.2021.3130344 doi: 10.1109/TIE.2021.3130344
    [114] Song S, Liu J, Zhao Y, Ge L, Ma R, Liu W (2022) High-Dynamic Four-Quadrant Speed Adjustment of Switched Reluctance Machine with Torque Predictive Control. IEEE T Ind Electron 69: 7733–7743. https://doi.org/10.1109/TIE.2021.3108707 doi: 10.1109/TIE.2021.3108707
    [115] Li C, Du Q, Liu X (2022) Indirect predictive torque control for switched reluctance motor in EV application. Energy Reports 8: 857–865. https://doi.org/10.1016/j.egyr.2022.02.236 doi: 10.1016/j.egyr.2022.02.236
    [116] Ren P, Zhu J, Guo Z, Song X, Jing Z, Xu A (2021) Comparison of Different Strategies to Minimize Torque Ripples for Switched Reluctance Motor. Proceedings of 2021 IEEE 4th International Electrical and Energy Conference, CIEEC. https://doi.org/10.1109/CIEEC50170.2021.9510709 doi: 10.1109/CIEEC50170.2021.9510709
    [117] Sahoo SK, Panda SK, Xu JX (2003) Iterative learning based torque controller for switched reluctance motors. IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), 2459‒2464.
    [118] Sahoo NC, Xu JX, Panda SK (1998) An Iterative Learning Approach to Torque Ripple Minimization in Switched Reluctance Motors. IFAC Proceedings 31: 303–308. https://doi.org/https://doi.org/10.1016/S1474-6670(17)40045-0 doi: 10.1016/S1474-6670(17)40045-0
    [119] Sahoo NC, Xu JX, Panda SK (2001) Low torque ripple control of switched reluctance motors using iterative learning. IEEE T Energy Conver 16: 318–326. https://doi.org/10.1109/60.969470 doi: 10.1109/60.969470
    [120] Sahoo SK, Panda SK, Xu JX (2004) Iterative learning control based direct instantaneous torque control of switched reluctance motors. PESC Record - IEEE Annual Power Electronics Specialists Conference, 4832–4837. https://doi.org/10.1109/PESC.2004.1354854 doi: 10.1109/PESC.2004.1354854
    [121] Wang SC, Liu Y-H, Wang SJ, Chen YC, Lin SZ (2007) Adaptive Iterative Learning Control of Switched Reluctance Motors for Minimizing Energy Conversion Loss and Torque Ripple. 2007 IEEE Power Electronics Specialists Conference, 1796–1802. https://doi.org/10.1109/PESC.2007.4342273 doi: 10.1109/PESC.2007.4342273
    [122] Sahoo SK, Panda SK, Xu JX (2007) Application of Spatial Iterative Learning Control for Direct Torque Control of Switched Reluctance Motor Drive. 2007 IEEE Power Engineering Society General Meeting, 1–7. https://doi.org/10.1109/PES.2007.385538 doi: 10.1109/PES.2007.385538
    [123] Sahoo SK, Panda SK, Xu JX (2005) Indirect torque control of switched reluctance motors using iterative learning control. IEEE T Power Electron 20: 200–208. https://doi.org/10.1109/TPEL.2004.839807 doi: 10.1109/TPEL.2004.839807
    [124] Mahalakshmi G, Kanthalakshmi S (2022) Design of Iterative Learning Controller for Switched Reluctance Motor with Least Torque Ripple. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), 299–304. https://doi.org/10.1109/ICACCS54159.2022.9785310 doi: 10.1109/ICACCS54159.2022.9785310
    [125] Muthulakshmi S, Dhanasekaran R (2017) Intelligent controller based speed control of front end asymmetric converter fed switched reluctance motor. Proceedings of 2016 International Conference on Advanced Communication Control and Computing Technologies, ICACCCT, 426–431. https://doi.org/10.1109/ICACCCT.2016.7831675 doi: 10.1109/ICACCCT.2016.7831675
    [126] Rajendran A, Karthik B (2020) Design and analysis of fuzzy and PI controllers for switched reluctance motor drive. Materials Today: Proceedings, 1608–1612. https://doi.org/10.1016/j.matpr.2020.07.166 doi: 10.1016/j.matpr.2020.07.166
    [127] Sahoo NC, Panda SK, Dash PK (2000) A current modulation scheme for direct torque control of switched reluctance motor using fuzzy logic. Mechatronics 10: 353–370. https://doi.org/https://doi.org/10.1016/S0957-4158(99)00039-2 doi: 10.1016/S0957-4158(99)00039-2
    [128] Wang SY, Liu FY, Chou JH (2018) Adaptive TSK fuzzy sliding mode control design for switched reluctance motor DTC drive systems with torque sensorless strategy. Applied Soft Computing Journal 66: 278–291. https://doi.org/10.1016/j.asoc.2018.02.023 doi: 10.1016/j.asoc.2018.02.023
    [129] Song X, Zhu J, Ren P, Lv X (2021) An improved fuzzy control for switched reluctance motor based on torque sharing function. Proceedings - 2021 6th International Conference on Automation, Control and Robotics Engineering, CACRE, 119–123. https://doi.org/10.1109/CACRE52464.2021.9501376 doi: 10.1109/CACRE52464.2021.9501376
    [130] Jing B, Dang X, Liu Z, Long S (2022) Torque Ripple Suppression of Switched Reluctance Motor Based on Fuzzy Indirect Instant Torque Control. IEEE Access 10: 75472–75481. https://doi.org/10.1109/ACCESS.2022.3190082 doi: 10.1109/ACCESS.2022.3190082
    [131] Ramamurthy SS, Balda JC (2001) Intelligent and adaptive on-line direct electromagnetic torque estimator for switched reluctance motors based on artificial neural networks. IEMDC 2001 - IEEE International Electric Machines and Drives Conference, 826–830.
    [132] Ranadheer P, Prabakaran N (2021) A Novel Analysis of SRM Drive System For Speed & Flux Control By An Advanced ARNN Control Scheme. 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 878–883. https://doi.org/10.1109/ICAC3N53548.2021.9725781 doi: 10.1109/ICAC3N53548.2021.9725781
    [133] Pushparajesh V, Nandish BM, Marulasiddappa HB (2021) Hybrid intelligent controller based torque ripple minimization in switched reluctance motor drive. Bulletin of Electrical Engineering and Informatics 10: 1193–1203. https://doi.org/10.11591/eei.v10i3.3039 doi: 10.11591/eei.v10i3.3039
    [134] Gouda E, Hamouda M, Amin ARA (2017) Artificial intelligence based torque ripple minimization of Switched Reluctance Motor drives. 2016 18th International Middle-East Power Systems Conference, MEPCON 2016 – Proceedings, 943–948. https://doi.org/10.1109/MEPCON.2016.7837010 doi: 10.1109/MEPCON.2016.7837010
    [135] Jing B, Dang X, Liu Z, Ji J (2023) Torque Ripple Suppression of Switched Reluctance Motor with Reference Torque Online Correction. Machines 11: 179. https://doi.org/10.3390/machines11020179 doi: 10.3390/machines11020179
    [136] Xu J, Huang C, Cao W, Wu Y (2022) Torque Ripple Control Strategy of Switched Reluctance Motor Based on BP Neural Network. Journal of Physics: Conference Series 2242: 012036. https://doi.org/10.1088/1742-6596/2242/1/012036 doi: 10.1088/1742-6596/2242/1/012036
    [137] Murugan M, Jeyabharath R (2011) Neuro Fuzzy Controller Based Direct Torque Control for SRM Drive. 2011 International Conference on Process Automation, Control and Computing, 1–6. https://doi.org/10.1109/PACC.2011.5979036 doi: 10.1109/PACC.2011.5979036
    [138] Kalaivani L, Marimuthu NS, Subburaj P (2011) Intelligent control for torque-ripple minimization in switched reluctance motor. 2011 1st International Conference on Electrical Energy Systems, 182–186. https://doi.org/10.1109/ICEES.2011.5725325 doi: 10.1109/ICEES.2011.5725325
    [139] Pushparajesh V, Nandish BM, Marulasiddappa HB (2021) Torque ripple minimization in switched reluctance motor using ANFIS controller. WSEAS Transactions on Systems and Control 16: 171–182. https://doi.org/10.37394/23203.2021.16.14 doi: 10.37394/23203.2021.16.14
    [140] Hajatipour M, Farrokhi M (2008) Adaptive intelligent speed control of switched reluctance motors with torque ripple reduction. Energy Convers Manag 49: 1028–1038. https://doi.org/10.1016/j.enconman.2007.09.019 doi: 10.1016/j.enconman.2007.09.019
    [141] Srihari T, Jeyabaharath R, Veena P (2016) ANFIS Based Space Vector Modulation-DTC for Switched Reluctance Motor Drive. Circuits and Systems 07: 2940–2947. https://doi.org/10.4236/cs.2016.710252 doi: 10.4236/cs.2016.710252
    [142] Daryabeigi E, Arab markadeh Gh, Lucas C, Askari A (2009) Switched reluctance motor (SRM) control, with the developed brain emotional learning based intelligent controller (BELBIC), considering torque ripple reduction. 2009 IEEE International Electric Machines and Drives Conference, 979–986. https://doi.org/10.1109/IEMDC.2009.5075323 doi: 10.1109/IEMDC.2009.5075323
    [143] Kandhasamy S (2020) Machine learning based SRM control using FPGAs for torque ripple minimization. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 675–680. https://doi.org/10.1109/ICAIIC48513.2020.9065241 doi: 10.1109/ICAIIC48513.2020.9065241
    [144] Abshari M, Hooshmandi Safa H, Saghaiannejad SM (2017) Indirect torque control of SRM by intelligent controller with considering torque ripple reduction. 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), 270–275. https://doi.org/10.1109/PEDSTC.2017.7910336 doi: 10.1109/PEDSTC.2017.7910336
    [145] Amor LB, Dessaint L-A, Akhrif O, Olivier G (2002) Adaptive input-output linearization of a switched reluctance motor for torque control. Proceedings of IECON'93-19th Annual Conference of IEEE Industrial Electronics, 2155–2160.
    [146] Haiqing Y, Panda SK, Chii LY (1996) Performance comparison of feedback linearization control with PI control for four-quadrant operation of switched reluctance motors. Proceedings of Applied Power Electronics Conference – APEC'96, 2: 956–962. https://doi.org/10.1109/APEC.1996.500553 doi: 10.1109/APEC.1996.500553
    [147] Nan Z, Baoming G, Zhuo L, Yun W, Ferreira FJ, de Almeida AT (2008) Nonlinear feedback linearization control for SRM-rotor suspending in shaft direction. 2008 International Conference on Electrical Machines and Systems, 1365–1368.
    [148] Enayati B, Mirzaeian B, Saghaiannejad SM, Moallem M (2005) Coefficient determination of adaptive feedback linearization method, using multi-objective optimization based on genetic algorithm for position control of switched reluctance motors. 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005. https://doi.org/10.1109/IECON.2005.1569163 doi: 10.1109/IECON.2005.1569163
    [149] Shang W, Ma H, Wang C (2013) Internal model control of switched reluctance motor with torque observer for plant-model mismatches. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering 227: 403–412. https://doi.org/10.1177/0959651812468694 doi: 10.1177/0959651812468694
    [150] Liu D, Wang G, Liu J, Fan Y, Mu D (2022) An Improved Vector Control Strategy for Switched Reluctance Motor Drive Based on the Two-Degree-of-Freedom Internal Model Control. Applied Sciences 12: 5407. https://doi.org/10.3390/app12115407 doi: 10.3390/app12115407
    [151] Baoming G, Xiangheng W, Pengsheng S, Jingping J (2002) Nonlinear internal-model control for switched reluctance drives. IEEE T Power Electron 17: 379–388. https://doi.org/10.1109/TPEL.2002.1004245 doi: 10.1109/TPEL.2002.1004245
    [152] Buja GS, Menis R, Valla MI (1993) Variable Structure Control of An SRM Drive. IEEE T Ind Electron 40: 56–63. https://doi.org/10.1109/41.184821 doi: 10.1109/41.184821
    [153] Bian C, Man Y, Song C, Ren S (2006) Variable structure control of switched reluctance motor and its application. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2490–2493. https://doi.org/10.1109/WCICA.2006.1712809 doi: 10.1109/WCICA.2006.1712809
    [154] Su JP, Ciou YJ, Hu JJ (2005) A new variable structure control scheme and its application to speed control of switched reluctance motors. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 257–262.
    [155] Xuanju D, Peng X, Haoming Y, Shan L, Dawei W (2012) Phase plane-based variable structure control for switched reluctance motor direct torque control. 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), 775–781.
    [156] Shi T, Niu L, Li W (2010) Torque-ripple minimization in switched reluctance motors using sliding mode variable structure control. Proceedings of the 29th Chinese Control Conference, 332–337.
    [157] Sahoo SK, Panda SK, Xu JX (2005) Direct torque controller for switched reluctance motor drive using sliding mode control. Proceedings of the International Conference on Power Electronics and Drive Systems, 1129–1134. https://doi.org/10.1109/PEDS.2005.1619857 doi: 10.1109/PEDS.2005.1619857
    [158] Ro HS, Jeong HG, Lee KB (2013) Torque ripple minimization of switched reluctance motor using direct torque control based on sliding mode control. IEEE International Symposium on Industrial Electronics.
    [159] Li YZ (2010) Slid mode control of switch reluctance motor based on torque inverse model. 2010 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2010, 398–401.
    [160] Taylor J, Valencia DF, Bilgin B, Narimani M, Emadi A (2020) Comparison of Current Control Strategies for Low- and High-Power Switched Reluctance Motor Drives. 2020 IEEE Transportation Electrification Conference & Expo (ITEC), 198–203. https://doi.org/10.1109/ITEC48692.2020.9161762 doi: 10.1109/ITEC48692.2020.9161762
    [161] Xue XD, Cheng KWE, Ho SL (2005) Study of power factor in SRM drives under current hysteresis chopping control. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2741–2746. https://doi.org/10.1109/IAS.2005.1518847 doi: 10.1109/IAS.2005.1518847
    [162] Hu Y, Ding W (2016) Study on energy ratio of switched reluctance motor drive based on open loop, CCC and DITC. 2016 11th International Conference on Ecological Vehicles and Renewable Energies, EVER 2016. https://doi.org/10.1109/EVER.2016.7476344 doi: 10.1109/EVER.2016.7476344
    [163] Pratapgiri S (2017) Hysteresis current control of switched reluctance motor using three term inductance model. 2016 IEEE 7th Power India International Conference, PIICON 2016. https://doi.org/10.1109/POWERI.2016.8077220 doi: 10.1109/POWERI.2016.8077220
    [164] Nashed MNF, Mahmoud SM, El-Sherif MZ, Abdel-Aliem ES (2014) Hysteresis Current Control of Switched Reluctance Motor in Aircraft Applications. International Journal of Power Electronics and Drive System 4: 376‒392. https://doi.org/10.9790/3021-04352540 doi: 10.9790/3021-04352540
    [165] Cheng H, Chen H, Wang Q, Xu S, Yang S (2017) Design and control of switched reluctance motor drive for electric vehicles. 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016.
    [166] Wu Y, Huang C, Cao W, Dai L (2022) Segmental PWM Variable Duty Cycle Control of Switched Reluctance Motor Based on Current Chopping. Proceedings of 2022 IEEE 5th International Electrical and Energy Conference, CIEEC, 417–422.
    [167] Yaich M, Ghariani M (2017) Artificial intelligence-based control for torque ripple minimization in switched reluctance motor drives. 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 320–327. https://doi.org/10.1109/STA.2017.8314904 doi: 10.1109/STA.2017.8314904
    [168] Lai C, Zheng Y, Labak A, Kar NC (2014) Investigation and analysis of iterative learning-based current control algorithm for switched reluctance motor applications. 2014 International Conference on Electrical Machines (ICEM), 796–802. https://doi.org/10.1109/ICELMACH.2014.6960272 doi: 10.1109/ICELMACH.2014.6960272
    [169] Yi Z, Li X, Hexu S, Yan D (2010) An optimal torque controller based on iterative learning control for switched reluctance motors for electric vehicles. Proceedings - 2010 International Conference on Optoelectronics and Image Processing, ICOIP 2010, 230–233. https://doi.org/10.1109/ICOIP.2010.136 doi: 10.1109/ICOIP.2010.136
    [170] Tariq I, Muzzammel R, Alqasmi U, Raza A (2020) Artificial Neural Network-Based Control of Switched Reluctance Motor for Torque Ripple Reduction. Math Probl Eng 2020: 1‒31. https://doi.org/10.1155/2020/9812715 doi: 10.1155/2020/9812715
    [171] Mukhopadhyay J, Choudhuri S, Sengupta S (2022) ANFIS based speed and current control with torque ripple minimization using hybrid SSD-SFO for switched reluctance motor. Sustain Energy Techn 49: 101712. https://doi.org/10.1016/j.seta.2021.101712 doi: 10.1016/j.seta.2021.101712
    [172] Alharkan H, Saadatmand S, Ferdowsi M, Shamsi P (2021) Optimal tracking current control of switched reluctance motor drives using reinforcement Q-learning scheduling. IEEE Access 9: 9926–9936. https://doi.org/10.1109/ACCESS.2021.3050167 doi: 10.1109/ACCESS.2021.3050167
    [173] Peng W, Pelletier J, Mollet Y, Gyselinck J (2018) Torque Sharing Function and Firing Angle Control of Switched Reluctance Machines - Hysteresis Current Control Versus PWM. Proceedings - 2018 23rd International Conference on Electrical Machines, ICEM, 1717–1723. https://doi.org/10.1109/ICELMACH.2018.8506706 doi: 10.1109/ICELMACH.2018.8506706
    [174] Schulz SE, Rahman KM (2003) High-Performance Digital PI Current Regulator for EV Switched Reluctance Motor Drives. IEEE T Ind Appl 39: 1118–1126. https://doi.org/10.1109/TIA.2003.814580 doi: 10.1109/TIA.2003.814580
    [175] Peng F, Ye J, Emadi A (2016) A Digital PWM Current Controller for Switched Reluctance Motor Drives. IEEE T Power Electron 31: 7087–7098. https://doi.org/10.1109/TPEL.2015.2510028 doi: 10.1109/TPEL.2015.2510028
    [176] Shao B, Emadi A (2010) A digital PWM control for switched reluctance motor drives. 2010 IEEE Vehicle Power and Propulsion Conference, VPPC 2010. https://doi.org/10.1109/ICMECH.2011.5971278 doi: 10.1109/ICMECH.2011.5971278
    [177] Banerjee R, Sengupta M, Dalapati S (2014) Design and implementation of current mode control in a switched reluctance drive. 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1–5. https://doi.org/10.1109/PEDES.2014.7042041 doi: 10.1109/PEDES.2014.7042041
    [178] Deng X, Ma O, Xu P (2018) Sensorless Control of a Four Phase Switched Reluctance Motor Using Pulse Injection. Proceedings of 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC, 1066–1070. https://doi.org/10.1109/IAEAC.2018.8577869 doi: 10.1109/IAEAC.2018.8577869
    [179] Milasi RM, Moallem M (2014) A novel multi-loop self-tunning adaptive PI control scheme for switched reluctance motors. IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 337–342. https://doi.org/10.1109/IECON.2014.7048521 doi: 10.1109/IECON.2014.7048521
    [180] Elmorshedy MF, Xu W, El-Sousy FFM, Islam MR, Ahmed AA (2021) Recent Achievements in Model Predictive Control Techniques for Industrial Motor: A Comprehensive State-of-the-Art. IEEE Access 9: 58170–58191. https://doi.org/10.1109/ACCESS.2021.3073020 doi: 10.1109/ACCESS.2021.3073020
    [181] Ahmad SS, Thirumalasetty M, Narayanan G (2022) Predictive Current Control of Switched Reluctance Machine for Accurate Current Tracking to Enhance Torque Performance. 2022 IEEE IAS Global Conference on Emerging Technologies, GlobConET, 840–845. https://doi.org/10.1109/GlobConET53749.2022.9872462 doi: 10.1109/GlobConET53749.2022.9872462
    [182] Mikail R, Husain I, Sozer Y, Islam MS, Sebastian T (2014) A fixed switching frequency predictive current control method for switched reluctance machines. IEEE T Ind Appl 50: 3717–3726. https://doi.org/10.1109/TIA.2014.2322144 doi: 10.1109/TIA.2014.2322144
    [183] Hui C, Li M, Hui W, Shen SQ, Wang W (2017) Torque ripple minimization for switched reluctance motor with predictive current control method. 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 1–4. https://doi.org/10.1109/ICEMS.2017.8056096 doi: 10.1109/ICEMS.2017.8056096
    [184] Liu D, Wang G, Liu J, Fan Y (2021) A novel model predictive control for switched reluctance motors based on torque sharing functions. Proceedings - 2021 6th International Conference on Automation, Control and Robotics Engineering, CACRE, 179–184. https://doi.org/10.1109/CACRE52464.2021.9501348 doi: 10.1109/CACRE52464.2021.9501348
    [185] Li B, Ling X, Huang Y, Gong L, Liu C (2017) An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor. Sensors 17: 1146. https://doi.org/10.3390/s17051146 doi: 10.3390/s17051146
    [186] Valencia DF, Filho SR, Callegaro AD, Preindl M, Emadi A (2019) Virtual-Flux Finite Control Set Model Predictive Control of Switched Reluctance Motor Drives. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 1465–1470. https://doi.org/10.1109/IECON.2019.8927295 doi: 10.1109/IECON.2019.8927295
    [187] Li Y, Tang Y, Chang J Bin, Li AH (2011) Continuous sliding mode control and simulation of SRM. Proceedings of the 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing, 314–317. https://doi.org/10.1109/COGINF.2011.6016158 doi: 10.1109/COGINF.2011.6016158
    [188] Yuefeng Y, Yihuang Z (2005) Sliding mode-PI control of switched reluctance motor drives for EV. ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, 603–607. https://doi.org/10.1109/ICEMS.2005.202601 doi: 10.1109/ICEMS.2005.202601
    [189] Rain X, Hilairet M, Talj R (2010) Second order sliding mode current controller for the switched reluctance machine. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, 3301–3306. https://doi.org/10.1109/IECON.2010.5675042 doi: 10.1109/IECON.2010.5675042
    [190] Manolas I, Papafotiou G, Manias SN (2014) Sliding mode PWM for effective current control in Switched Reluctance Machine drives. 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 1606–1612. https://doi.org/10.1109/IPEC.2014.6869799 doi: 10.1109/IPEC.2014.6869799
    [191] Ye J, Malysz P, Emadi A (2015) A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives. IEEE J Emerg Sel Top Power Electron 3: 381–394. https://doi.org/10.1109/JESTPE.2014.2357717 doi: 10.1109/JESTPE.2014.2357717
    [192] Hu K, Ye J, Velni JM, Guo L, Yang B (2019) A Fixed-Switching-Frequency Sliding Mode Current Controller for Mutually Coupled Switched Reluctance Machines Using Asymmetric Bridge Converter. 2019 IEEE Transportation Electrification Conference and Expo (ITEC), 1–6. https://doi.org/10.1109/ITEC.2019.8790584 doi: 10.1109/ITEC.2019.8790584
    [193] Zhang R, Qian X, Jin L, Zhang Y, Zhan T, Nie J (2014) An adaptive sliding mode current control for switched reluctance motor. IEEE Transportation Electrification Conference and Expo, ITEC Asia-Pacific, 1‒6.
    [194] Scalcon FP, Fang G, Filho CJ, Gründling HA, Vieira RP, Nahid-Mobarakeh B (2022) A PWM Fixed-Gain Super-Twisting Sliding Mode Current Controller for Switched Reluctance Motors. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 1–6. https://doi.org/10.1109/IECON49645.2022.9968860 doi: 10.1109/IECON49645.2022.9968860
    [195] Dhale SB, Mobarakeh B-N, Nalakath S, Emadi A (2022) Digital Sliding Mode Based Model-Free PWM Current Control of Switched Reluctance Machines. IEEE T Ind Electron 69: 8760–8769. https://doi.org/10.1109/TIE.2021.3116554 doi: 10.1109/TIE.2021.3116554
  • This article has been cited by:

    1. Hamza Khalil, Akbar Zada, Sana Ben Moussa, Ioan-Lucian Popa, Afef Kallekh, Qualitative Analysis of Impulsive Stochastic Hilfer Fractional Differential Equation, 2024, 23, 1575-5460, 10.1007/s12346-024-01149-y
    2. Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Existence and Stability of Neutral Stochastic Impulsive and Delayed Integro-Differential System via Resolvent Operator, 2024, 8, 2504-3110, 659, 10.3390/fractalfract8110659
    3. Wei Zhang, Jinbo Ni, Some New Results on Itô–Doob Hadamard Fractional Stochastic Pantograph Equations in Lp Spaces, 2024, 23, 1575-5460, 10.1007/s12346-024-01190-x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3947) PDF downloads(557) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog