Increased use of renewable energy sources in distribution grids has led to the growing concern over unintentional islanding. Among the available islanding detection methods, the passive methods have larger non-detection zones and are susceptible to system faults. However, they have no effect on power quality like active methods. We present a hybrid method for the islanding detection of synchronous generator-based renewable energy sources. Here, the larger non-detection zone issue of the passive islanding detection method was reduced by combining it with a wavelet transform. The rate of change of a voltage unbalanced factor was computed from the sequence components of the renewable energy source terminal voltage. Then, the factor was analyzed using a wavelet transform, and a threshold for the factor was found. The robustness of the method was tested for several islanding as well as non-islanding situations. The efficacy of the method was also tested in multi-source test systems. From the analysis, it was observed that the proposed method was fast, reliable, and had a zero non-detection zone.
Citation: Mamun Mishra, Bibhuti Bhusan Pati. A hybrid IDM using wavelet transform for a synchronous generator-based RES with zero non-detection zone[J]. AIMS Electronics and Electrical Engineering, 2024, 8(1): 146-164. doi: 10.3934/electreng.2024006
Increased use of renewable energy sources in distribution grids has led to the growing concern over unintentional islanding. Among the available islanding detection methods, the passive methods have larger non-detection zones and are susceptible to system faults. However, they have no effect on power quality like active methods. We present a hybrid method for the islanding detection of synchronous generator-based renewable energy sources. Here, the larger non-detection zone issue of the passive islanding detection method was reduced by combining it with a wavelet transform. The rate of change of a voltage unbalanced factor was computed from the sequence components of the renewable energy source terminal voltage. Then, the factor was analyzed using a wavelet transform, and a threshold for the factor was found. The robustness of the method was tested for several islanding as well as non-islanding situations. The efficacy of the method was also tested in multi-source test systems. From the analysis, it was observed that the proposed method was fast, reliable, and had a zero non-detection zone.
[1] | IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems (2003) IEEE Standard 1547-2003. |
[2] | Khamis A, Shareef H, Bizkevelci E, Khatib T (2013) A review of islanding detection techniques for renewable distributed generation systems. Renew Sust Energ Rev 28: 483–493. https://doi.org/10.1016/j.rser.2013.08.025 doi: 10.1016/j.rser.2013.08.025 |
[3] | Li C, Cao C, Cao Y, Kuang Y, Zeng L, Fang B (2014) A review of islanding detection methods for microgrid. Renew Sust Energ Rev 35: 211–220. https://doi.org/10.1016/j.rser.2014.04.026 doi: 10.1016/j.rser.2014.04.026 |
[4] | Velasco D, Trujillo CL, Garcera G, Figueres E (2010) Review of anti-islanding techniques in distributed generators. Renew Sust Energ Rev 14: 1608–1614. https://doi.org/10.1016/j.rser.2010.02.011 doi: 10.1016/j.rser.2010.02.011 |
[5] | Mishra M, Chandak S, Rout PK (2019) Taxonomy of Islanding detection techniques for distributed generation in microgrid. Renew Energ Focus 31: 9–30. https://doi.org/10.1016/j.ref.2019.09.001 doi: 10.1016/j.ref.2019.09.001 |
[6] | Freitas W, Xu W, Affonso CM, Huang Z (2005) Comparative analysis between ROCOF and vector surge relays for distributed generation applications. IEEE T Power Del 20: 1315–1324. https://doi.org/10.1109/TPWRD.2004.834869 doi: 10.1109/TPWRD.2004.834869 |
[7] | Liu F, Kang Y, Zhang D, Y. S., and Lin X (2010)Improved SMS islanding detection method for grid-connected converter. IET Renew Power Gen 4: 36–42. https://doi.org/10.1049/iet-rpg.2009.0019 doi: 10.1049/iet-rpg.2009.0019 |
[8] | Zeineldin HH, Salama MMA (2011) Impact of load frequency dependence on the NDZ and performance of the SFS islanding detection method. IEEE T Ind Electron 58: 139–146. https://doi.org/10.1109/TIE.2009.2033482 doi: 10.1109/TIE.2009.2033482 |
[9] | Velasco D, Trujillo C, Garcera G, Figueres E (2011) An active anti-islanding method based on phase-PLL perturbation. IEEE T Power Electron 26: 1056–1066. https://doi.org/10.1109/TPEL.2010.2089643 doi: 10.1109/TPEL.2010.2089643 |
[10] | Papadimitriou CN, Kleftakis VA, Hatziargyriou ND (2015) A novel islanding detection method for microgrids based on variable impedance insertion. Electr Power Syst Res 121: 58‒66. https://doi.org/10.1016/j.epsr.2014.12.004 doi: 10.1016/j.epsr.2014.12.004 |
[11] | Seyedi M, Taher SA, Ganji B, Guerrero JM (2019) A hybrid islanding detection technique for inverter‐based distributed generator units. Int Trans Electr Energ Syst 29: e12113. https://doi.org/10.1002/2050-7038.12113 doi: 10.1002/2050-7038.12113 |
[12] | Pouryekta A, Ramachandaramurthy VK, Mithulananthan N, Arulampalam A (2018) Islanding Detection and Enhancement of Microgrid Performance. IEEE Syst J 12: 3131‒3141. https://doi.org/10.1109/JSYST.2017.2705738 doi: 10.1109/JSYST.2017.2705738 |
[13] | Raza S, Mokhlis H, Arof H, Laghari JA, Wang L (2015) Application of signal processing techniques for islanding detection of distributed generation in distribution network: A review. Energ Convers Manage 96: 613‒624. https://doi.org/10.1016/j.enconman.2015.03.029 doi: 10.1016/j.enconman.2015.03.029 |
[14] | Hussain A, Kim CH, Mehdi A (2021) A Comprehensive Review of Intelligent Islanding Schemes and Feature Selection Techniques for Distributed Generation System. IEEE Access 9: 146603‒146624. https://doi.org/10.1109/ACCESS.2021.3123382 doi: 10.1109/ACCESS.2021.3123382 |
[15] | Avdakovic S, Nuhanovic A, Kusljugic M, Music M (2012) Wavelet transform applications in power system dynamics. Electr Power Syst Res 83: 237‒245. https://doi.org/10.1016/j.epsr.2010.11.031 doi: 10.1016/j.epsr.2010.11.031 |
[16] | Dwivedi UD, Singh SN (2010) Enhanced detection of power-quality events using intra and interscale dependencies of wavelet coefficients. IEEE T Power Deliver 25: 358–366. https://doi.org/10.1109/TPWRD.2009.2027482 doi: 10.1109/TPWRD.2009.2027482 |
[17] | Laaksonen H (2013) Novel wavelet transform based islanding detection algorithms. Int Rev Electr Eng 8: 1796‒1805. |
[18] | Hanif M, Dwivedi UD, Basu M, Gaughan K (2010) Wavelet based islanding detection of DC–AC inverter interfaced DG systems. 45th international universities power engineering conference (UPEC), 1–5. |
[19] | Karegar HK, Sobhani B (2012) Wavelet transform method for islanding detection of wind turbines. Renew Energy 38: 94–106. https://doi.org/10.1016/j.renene.2011.07.002 doi: 10.1016/j.renene.2011.07.002 |
[20] | Hanif M, Basu M, Gaughan K (2012) Development of EN50438 compliant wavelet-based islanding detection technique for three-phase static distributed generation systems. IET Renew Power Gen 6: 289–301. https://doi.org/10.1049/iet-rpg.2011.0290 doi: 10.1049/iet-rpg.2011.0290 |
[21] | Sharma R, Singh P (2012) Islanding detection and control in grid based system using wavelet transform. 5th IEEE power india conference, 1–4. https://doi.org/10.1109/PowerI.2012.6479557 doi: 10.1109/PowerI.2012.6479557 |
[22] | Paiva SC, Ribeiro RLA, Alves DK, Costa FB, Rocha TOA (2020) A wavelet-based hybrid islanding detection system applied for distributed generators interconnected to AC microgrids. Int J Electr Power Energ Syst 121: 106032. https://doi.org/10.1016/j.ijepes.2020.106032 doi: 10.1016/j.ijepes.2020.106032 |
[23] | Nsaif YM, Lipu MSH, Ayob A, Yusof Y, Hussain A (2021) Fault Detection and Protection Schemes for Distributed Generation Integrated to Distribution Network: Challenges and Suggestions. IEEE Access 9: 142693‒142717, https://doi.org/10.1109/ACCESS.2021.3121087 doi: 10.1109/ACCESS.2021.3121087 |
[24] | Bekhradian R, Sanaye-Pasand M (2022) A Comprehensive Survey on Islanding Detection Methods of Synchronous Generator-Based Microgrids: Issues, Solutions and Future Works. IEEE Access 10: 76202‒76219, https://doi.org/10.1109/ACCESS.2022.3192554 doi: 10.1109/ACCESS.2022.3192554 |
[25] | Menon V, Nehrir MH (2007) A Hybrid Islanding Detection Technique Using Voltage Unbalance and Frequency Set Point. IEEE T Power Syst 22: 442‒448. https://doi.org/10.1109/TPWRS.2006.887892 doi: 10.1109/TPWRS.2006.887892 |
[26] | Chang WY (2010) A hybrid islanding detection method for distributed synchronous generators. The 2010 International Power Electronics Conference - ECCE ASIA -, 1326‒1330. https://doi.org/10.1109/IPEC.2010.5544559 doi: 10.1109/IPEC.2010.5544559 |
[27] | Pouryekta A, Ramachandaramurthy VK (2018) A Hybrid Islanding Detection Method For Distribution Systems. Distributed Generation & Alternative Energy Journal 33: 44‒67. https://doi.org/10.1080/21563306.2018.12029914 doi: 10.1080/21563306.2018.12029914 |
[28] | Singh SK, Rawal M, Rawat MS, Gupta TN (2022) A Hybrid Islanding Detection Technique for Synchronous Generator Based Microgrids. Power Electronics and High Voltage in Smart Grid: Select Proceedings of SGESC 2021, 365‒374. https://doi.org/10.1007/978-981-16-7393-1_31 doi: 10.1007/978-981-16-7393-1_31 |
[29] | Larik NA, Tahir MF, Elbarbary ZMS, Yousaf MZ, Khan MA (2022) A comprehensive literature review of conventional and modern islanding detection methods. Energy Strategy Rev 44: 101007. https://doi.org/10.1016/j.esr.2022.101007 doi: 10.1016/j.esr.2022.101007 |