Review

Exploring the challenges and opportunities of image processing and sensor fusion in autonomous vehicles: A comprehensive review

  • Received: 22 June 2023 Revised: 26 September 2023 Accepted: 07 October 2023 Published: 18 October 2023
  • Autonomous vehicles are at the forefront of future transportation solutions, but their success hinges on reliable perception. This review paper surveys image processing and sensor fusion techniques vital for ensuring vehicle safety and efficiency. The paper focuses on object detection, recognition, tracking, and scene comprehension via computer vision and machine learning methodologies. In addition, the paper explores challenges within the field, such as robustness in adverse weather conditions, the demand for real-time processing, and the integration of complex sensor data. Furthermore, we examine localization techniques specific to autonomous vehicles. The results show that while substantial progress has been made in each subfield, there are persistent limitations. These include a shortage of comprehensive large-scale testing, the absence of diverse and robust datasets, and occasional inaccuracies in certain studies. These issues impede the seamless deployment of this technology in real-world scenarios. This comprehensive literature review contributes to a deeper understanding of the current state and future directions of image processing and sensor fusion in autonomous vehicles, aiding researchers and practitioners in advancing the development of reliable autonomous driving systems.

    Citation: Deven Nahata, Kareem Othman. Exploring the challenges and opportunities of image processing and sensor fusion in autonomous vehicles: A comprehensive review[J]. AIMS Electronics and Electrical Engineering, 2023, 7(4): 271-321. doi: 10.3934/electreng.2023016

    Related Papers:

  • Autonomous vehicles are at the forefront of future transportation solutions, but their success hinges on reliable perception. This review paper surveys image processing and sensor fusion techniques vital for ensuring vehicle safety and efficiency. The paper focuses on object detection, recognition, tracking, and scene comprehension via computer vision and machine learning methodologies. In addition, the paper explores challenges within the field, such as robustness in adverse weather conditions, the demand for real-time processing, and the integration of complex sensor data. Furthermore, we examine localization techniques specific to autonomous vehicles. The results show that while substantial progress has been made in each subfield, there are persistent limitations. These include a shortage of comprehensive large-scale testing, the absence of diverse and robust datasets, and occasional inaccuracies in certain studies. These issues impede the seamless deployment of this technology in real-world scenarios. This comprehensive literature review contributes to a deeper understanding of the current state and future directions of image processing and sensor fusion in autonomous vehicles, aiding researchers and practitioners in advancing the development of reliable autonomous driving systems.



    加载中


    [1] World Health Organization (2018) Global Status Report on Road Safety. WHO: Geneva, Switzerland.
    [2] Othman K (2021) Public acceptance and perception of autonomous vehicles: a comprehensive review. AI and Ethics 1: 355-387. https://doi.org/10.1007/s43681-021-00041-8 doi: 10.1007/s43681-021-00041-8
    [3] Autonomous Vehicle Market to Garner Growth 63.5%. Available from: https://www.precedenceresearch.com/autonomous-vehicle-market
    [4] Glon, R, Edelstein, S (2020) The History of Self-Driving Cars. Available from: https://www.digitaltrends.com/cars/history-of-self-driving-cars-milestones/
    [5] Wiggers K (2020) Waymo's Autonomous Cars Have Driven 20 Million Miles on Public Roads. Available from: https://venturebeat.com/2020/01/06/waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/
    [6] Othman K (2022) Exploring the implications of autonomous vehicles: A comprehensive review. Innovative Infrastructure Solutions 7: 165. https://doi.org/10.1007/s41062-022-00763-6 doi: 10.1007/s41062-022-00763-6
    [7] Shuttleworth J (2019) SAE Standard News: J3016 Automated-Driving Graphic Update. Available from: https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
    [8] Autopilot. Available from: https://www.tesla.com/en_IE/autopilot
    [9] Othman K (2021) Impact of autonomous vehicles on the physical infrastructure: Changes and challenges. Designs 5: 40. https://doi.org/10.3390/designs5030040 doi: 10.3390/designs5030040
    [10] Othman K (2023) Exploring the evolution of public acceptance towards autonomous vehicles with the level of knowledge. Innovative Infrastructure Solutions 8: 208. https://doi.org/10.1007/s41062-023-01180-z doi: 10.1007/s41062-023-01180-z
    [11] Othman K (2022) Multidimension analysis of autonomous vehicles: the future of mobility. Civil Engineering Journal 7: 71-93. https://doi.org/10.28991/CEJ-SP2021-07-06 doi: 10.28991/CEJ-SP2021-07-06
    [12] Mozaffari S, Al-Jarrah OY, Dianati M, Jennings P, Mouzakitis A (2020) Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review. IEEE Trans Intell Transp Syst, 1-15.
    [13] Mehra A, Mandal M, Narang P, Chamola V (2020) ReViewNet: A Fast and Resource Optimized Network for Enabling Safe Autonomous Driving in Hazy Weather Conditions. IEEE Trans Intell Transp Syst, 1-11. https://doi.org/10.1109/TITS.2020.3013099 doi: 10.1109/TITS.2020.3013099
    [14] Othman K (2023) Public attitude towards autonomous vehicles before and after crashes: A detailed analysis based on the demographic characteristics. Cogent Engineering 10: 2156063. https://doi.org/10.1109/TITS.2020.3013099 doi: 10.1109/TITS.2020.3013099
    [15] Velasco-Hernandez G, Yeong DJ, Barry J, Walsh J (2020) Autonomous Driving Architectures, Perception and Data Fusion: A Review. Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP 2020), Cluj-Napoca, Romania, 3-5. https://doi.org/10.1109/ICCP51029.2020.9266268
    [16] Giacalone J, Bourgeois L, Ancora A (2019) Challenges in aggregation of heterogeneous sensors of Autonomous Driving Systems. Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11-13. https://doi.org/10.1109/SAS.2019.8706005
    [17] Liu X, Baiocchi O (2016) A comparison of the definitions for smart sensors, smart objects and Things in IoT. Proceedings of the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 13-15.
    [18] Wojciechowicz T, Smart Sensor vs Base Sensor—What's the Difference? Symmetry Blog. Available from: https://www.semiconductorstore.com/blog/2018/Smart-Sensor-vs-Base-Sensor-Whats-the-Difference-Symmetry-Blog/3538/#: ~: text = By%20using%20a%20smart%20sensor, achieve%20on%20a%20base%20sensor
    [19] Fayyad J, Jaradat MA, Gruyer D, Najjaran H (2020) Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review. Sensors 20: 4220. https://doi.org/10.3390/s20154220 doi: 10.3390/s20154220
    [20] What Are Convolutional Neural Networks? IBM. 2020. Available from: https://www.ibm.com/cloud/learn/convolutional-neural-networks
    [21] Saha S (2018) A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way. Data Science and ML. Saturn Cloud. Available from: https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
    [22] Brownlee J (2019) A Gentle Introduction to the Rectified Linear Unit (ReLU). In Deep Learning Performance. Machine Learning Mastery. Available from: https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
    [23] What is LIDAR? Learn How Lidar Works. Velodyne Lidar. 2022. Available from: https://velodynelidar.com/what-is-lidar/
    [24] Wang P (2021) Research on comparison of LIDAR and camera in autonomous driving. Journal of Physics: Conference Series 2093: 012032. https://doi.org/10.1088/1742-6596/2093/1/012032 doi: 10.1088/1742-6596/2093/1/012032
    [25] ScienceDirect (2018) Inertial measurement. Inertial Measurement - an overview. Available from: https://www.sciencedirect.com/topics/engineering/inertial-measurement
    [26] Camera, radar and LIDAR: A comparison of the three types of sensors and their limitations. 2021. Available from: https://autocrypt.io/camera-radar-lidar-comparison-three-types-of-sensors/
    [27] The use of radar technology in Autonomous Vehicles. 2022. Cadence. Available from: https://resources.system-analysis.cadence.com/blog/msa2022-the-use-of-radar-technology-in-autonomous-vehicles
    [28] Dobler S, Kondel V (2023) LiDAR and Radar Battle For Autonomous Vehicle Turf. Determining the future of autonomous driving system. Available from: https://www.oliverwyman.com/our-expertise/insights/2023/jul/lidar-radar-future-of-autonomous-driving-systems.html
    [29] Minaee S, Boykov Y, Forikli F, Plaza A, Kehtarnavaz N, Terzopoulos D (2021) Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44: 3523-3542. https://doi.org/10.1109/tpami.2021.3059968 doi: 10.1109/tpami.2021.3059968
    [30] Sensor fusion. Sensor Fusion - an overview. ScienceDirect Topics. 2017. Available from: https://www.sciencedirect.com/topics/engineering/sensor-fusion
    [31] Nabati R, Qi H (2019) RRPN: Radar Region Proposal Network for Object Detection in Autonomous Vehicles. 2019 IEEE International Conference on Image Processing (ICIP), 3093-3097. https://doi.org/10.1109/ICIP.2019.8803392
    [32] Lewis G (2016) Object Detection for Autonomous Vehicles.
    [33] Satilmis Y, Tufan F, Şara M, Karslı M, Eken S, Sayar A (2019) CNN Based Traffic Sign Recognition for Mini Autonomous Vehicles. Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology-ISAT 2018: Part II, 85-94. https://doi.org/10.1007/978-3-319-99996-8_8
    [34] Shen X, Batkovic I, Govindarajan V, Falcone P, Darrell T, Borrelli F (2020) ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots. 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 1170-1175. https://doi.org/10.1109/IV47402.2020.9304795
    [35] Gao H, Cheng B, Wang J, Li K, Zhao J, Li D (2018) Object Classification using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment. IEEE T Ind Inform 14: 4224-4231. https://doi.org/10.1109/TII.2018.2822828 doi: 10.1109/TII.2018.2822828
    [36] Saez A, Bergasa L, Romeral E, Guillén M, Barea R, Sanz R (2018) CNN-based Fisheye Image Real-Time Semantic Segmentation. 2018 IEEE Intelligent Vehicles Symposium (IV), 1039-1044. https://doi.org/10.1109/IVS.2018.8500456
    [37] Hofesmann E (2020) IoU a better detection evaluation metric. Towards Data Science. Available from: https://towardsdatascience.com/iou-a-better-detection-evaluation-metric-45a511185be1
    [38] Farag W, Saleh Z (2018) Behavior Cloning for Autonomous Driving using Convolutional Neural Networks. 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 1-7. https://doi.org/10.1109/3ICT.2018.8855753
    [39] Iftikhar S, Asim M, Zhang Z, El-Latif AAA (2022) Advance generalization technique through 3D CNN to overcome the false positives pedestrian in autonomous vehicles. Telecommun Syst 80: 545-557.
    [40] Gao Y, Tian F, Li J, Fang Z, Al-Rubaye S, Song W, et al. (2022) Joint optimization of depth and ego-motion for intelligent autonomous vehicles. IEEE T Intell Transp Syst. https://doi.org/10.1109/TITS.2022.3159275
    [41] Liang T, Bao H, Pan W, Pan F (2022) Traffic sign detection via improved sparse R-CNN for autonomous vehicles. J Adv Transport 2022: 1-16. https://doi.org/10.1155/2022/3825532 doi: 10.1155/2022/3825532
    [42] Zhu C, Mehrabi A, Xiao Y, Wen Y (2019) CrowdParking: Crowdsourcing Based Parking Navigation in Autonomous Driving Era. 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1401-1405. https://doi.org/10.1109/ICEAA.2019.8879201
    [43] Park M, Kim H, Park S (2021) A Convolutional Neural Network-Based End-to-End Self-Driving Using LiDAR and Camera Fusion: Analysis Perspectives in a Real-World Environment. Electronics 10: 2608. https://doi.org/10.3390/electronics10212608 doi: 10.3390/electronics10212608
    [44] Shen X, Lacayo M, Guggilla N, Borrelli F (2022) ParkPredict+: Multimodal Intent and Motion Prediction for Vehicles in Parking Lots with CNN and Transformer. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 3999-4004. https://doi.org/10.1109/ITSC55140.2022.9922162
    [45] Heinen MR, Osorio FS, Heinen FJ, Kelber C (2006) SEVA3D: Using Arti cial Neural Networks to Autonomous Vehicle Parking Control. 2006 IEEE International Joint Conference on Neural Network Proceedings, 4704-4711. https://doi.org/10.1109/IJCNN.2006.247124
    [46] Wang Y, Ren B (2020) Quadrotor-Enabled Autonomous Parking Occupancy Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 8287-8292. https://doi.org/10.1109/IROS45743.2020.9341081
    [47] Min C, Xu J, Xiao L, Zhao D, Nie Y, Dai B (2021) Attentional Graph Neural Network for Parking-slot Detection. IEEE Robotic Autom Lett 6: 3445-3450. https://doi.org/10.1109/LRA.2021.3064270 doi: 10.1109/LRA.2021.3064270
    [48] Bernuth AV, Volk G, Bringmann O (2019) Simulating Photo-realistic Snow and Fog on Existing Images for Enhanced CNN Training and Evaluation. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 41-46. https://doi.org/10.1109/ITSC.2019.8917367
    [49] Lei Y, Emaru T, Ravankar AA, Kobayashi Y, Wang S (2020) Semantic Image Segmentation on Snow Driving Scenarios. 2020 IEEE International Conference on Mechatronics and Automation (ICMA), 1094-1100. https://doi.org/10.1109/ICMA49215.2020.9233538
    [50] Bijelic M, Gruber T, Mannan F, Kraus F, Ritter W, Dietmayer K, et al. (2020) Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11682-11692. https://doi.org/10.1109/CVPR42600.2020.01170
    [51] Cai Y, Sun X, Wang H, Chen L, Jiang H (2016) Night-Time Vehicle Detection Algorithm Based on Visual Saliency and Deep Learning. Journal of Sensors 2016: 1-7. https://doi.org/10.1155/2016/8046529 doi: 10.1155/2016/8046529
    [52] Liu Q, Li X, Yuan S, Li Z (2021) Decision-Making Technology for Autonomous Vehicles: Learning-Based Methods, Applications and Future Outlook. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), 30-37. https://doi.org/10.1109/ITSC48978.2021.9564580
    [53] Jiménez F, Clavijo M, Cerrato A (2022) Perception, Positioning and Decision-Making Algorithms Adaptation for an Autonomous Valet Parking System Based on Infrastructure Reference Points Using One Single LiDAR. Sensors 22: 979. https://doi.org/10.3390/s22030979 doi: 10.3390/s22030979
    [54] Ferguson D, Baker C, Likhachev M, Dolan J (2008) A reasoning framework for autonomous urban driving. 2008 IEEE Intelligent Vehicles Symposium, 775-780. https://doi.org/10.1109/IVS.2008.4621247
    [55] Babu M, Oza Y, Singh AK, Krishna KM, Medasani S (2018) Model Predictive Control for Autonomous Driving Based on Time Scaled Collision Cone. 2018 European Control Conference (ECC), 641-648. https://doi.org/10.23919/ECC.2018.8550510
    [56] Zhang X, Liniger A, Sakai A, Borrelli F (2018) Autonomous Parking Using Optimization-Based Collision Avoidance. 2018 IEEE Conference on Decision and Control (CDC), 4327-4332. https://doi.org/10.1109/CDC.2018.8619433
    [57] Gindullina E, Mortag S, Dudin M, Badia L (2021) Multi-Agent Navigation of a Multi-Storey Parking Garage via Game Theory. 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Pisa, Italy, 280-285. https://doi.org/10.1109/WoWMoM51794.2021.00052
    [58] Sheng W, Li B, Zhong X (2021) Autonomous Parking Trajectory Planning With Tiny Passages: A Combination of Multistage Hybrid A-Star Algorithm and Numerical Optimal Control. IEEE Access 9: 102801-102810. https://doi.org/10.1109/ACCESS.2021.3098676 doi: 10.1109/ACCESS.2021.3098676
    [59] Hongbo G, Guotao X, Xinyu Z, Bo C (2017) Autonomous parking control for intelligent vehicles based on a novel algorithm. The Journal of China Universities of Posts and Telecommunications 24: 51-56. https://doi.org/10.1016/S1005-8885(17)60223-1 doi: 10.1016/S1005-8885(17)60223-1
    [60] Li Q, Li R, Ji K, Dai W (2015) Kalman filter and its application. In 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), 74-77. IEEE.
    [61] Kato S, Tokunaga S, Maruyama Y, Maeda S, Hirabayashi M, Kitsukawa Y, et al. (2018) Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), 287-296. https://doi.org/10.1109/ICCPS.2018.00035
    [62] Li Q, Queralta JP, Gia TN, Zou Z, Westerlund T (2020) Multi Sensor Fusion for Navigation and Mapping in Autonomous Vehicles: Accurate Localization in Urban Environments. Unmanned Systems 8: 229-237.
    [63] Realpe M, Vintimilla B, Vlacic L (2016) MULTI-SENSOR FUSION MODULE IN A FAULT TOLERANT PERCEPTION SYSTEM FOR AUTONOMOUS VEHICLES. Journal of Automation and Control Engineering 4: 460-466. https://doi.org/10.18178/joace.4.6.460-466 doi: 10.18178/joace.4.6.460-466
    [64] Saxena S, Isukapati IK, Smith SF, Dolan JM (2019) Multiagent Sensor Fusion for Connected & Autonomous Vehicles to Enhance Navigation Safety. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2490-2495. https://doi.org/10.1109/ITSC.2019.8917298
    [65] Nabati R, Qi H (2020) Radar-Camera Sensor Fusion for Joint Object Detection and Distance Estimation in Autonomous Vehicles. arXiv, abs/2009.08428.
    [66] Farag W (2020) Kalman-filter-based sensor fusion applied to road-objects detection and tracking for autonomous vehicles. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 235: 1125-1138. https://doi.org/10.1177/0959651820975523 doi: 10.1177/0959651820975523
    [67] Liu Y, Fan X, Lv C, Wu J, Li L, Ding D (2017) An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles. Mech Syst Signal Process 100: 605-616. https://doi.org/10.1016/j.ymssp.2017.07.051 doi: 10.1016/j.ymssp.2017.07.051
    [68] Ouyang Z, Cui J, Dong X, Li Y, Niu J (2021) SaccadeFork: A lightweight multi-sensor fusion-based target detector. Informa Fusion 77: 172-183. https://doi.org/10.1016/j.inffus.2021.07.004 doi: 10.1016/j.inffus.2021.07.004
    [69] Aldibaja M, Kuramoto A, Yanase R, Kim TH, Yonada K, Suganuma N (2018) Lateral Road-mark Reconstruction Using Neural Network for Safe Autonomous Driving in Snow-wet Environments. 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR), 486-493. https://doi.org/10.1109/IISR.2018.8535758
    [70] Convolutional Neural Network (CNN). Developers Breach. Available from: https://developersbreach.com/convolution-neural-network-deep-learning/
    [71] Jocher G, Keita Z (2022) YOLO Object Detection Explained: A Beginner's Guide. DataCamp. Available from: https://www.datacamp.com/blog/yolo-object-detection-explained
    [72] Chablani M (2017) YOLO — You only look once, real time object detection explained. Towards Data Science. Available from: https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006
    [73] Scanbot SDK (2022) YOLO object detection and its applications in computer vision. Available from: https://www.linkedin.com/pulse/yolo-object-detection-its-applications-computer-vision-scanbotsdk/
    [74] Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788.
    [75] Gandhi R (2018) R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms. Towards Data Science. Available from: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
    [76] Ananth S (2019) Faster R-CNN for object detection. Towards Data Science. Available from: https://towardsdatascience.com/faster-r-cnn-for-object-detection-a-technical-summary-474c5b857b46
    [77] Pujara A (2020) Concept of AlexNet: - Convolutional Neural Network. Analytics Vidhya. Available from: https://medium.com/analytics-vidhya/concept-of-alexnet-convolutional-neural-network-6e73b4f9ee30
    [78] Ertan H (2021) CNN-LSTM based Models for Multiple Parallel Input and Multi-Step Forecast. Towards Data Science. Available from: https://towardsdatascience.com/cnn-lstm-based-models-for-multiple-parallel-input-and-multi-step-forecast-6fe2172f7668
    [79] Romera E, Álvarez JM, Bergasa LM, Arroyo R (2017) ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation. IEEE T Intell Transp Syst 19: 263-272. https://doi.org/10.1109/TITS.2017.2750080 doi: 10.1109/TITS.2017.2750080
    [80] Sanchez-Lengeling B, Reif E, Pearce A, Wiltschko AB (2021) A Gentle Introduction to Graph Neural Networks. Distill.pub. Available from: https://distill.pub/2021/gnn-intro/
    [81] Wood T, Transformer Neural Network Definition. DeepAI. Available from: https://deepai.org/machine-learning-glossary-and-terms/transformer-neural-network
    [82] Rjoub G, Wahab OA, Bentahar J, Bataineh AS (2021) Improving autonomous vehicles safety in snow weather using federated YOLO CNN learning. In Mobile Web and Intelligent Information Systems: 17th International Conference, MobiWIS 2021, Virtual Event, 121-134. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-83164-6_10
    [83] Zaghari N, Fathy M, Jameii SM, Shahverdy M (2021) The improvement in obstacle detection in autonomous vehicles using YOLO non-maximum suppression fuzzy algorithm. The Journal of Supercomputing 77: 13421-13446. https://doi.org/10.1007/s11227-021-03813-5 doi: 10.1007/s11227-021-03813-5
    [84] Kavitha R, Nivetha S (2021) Pothole and object detection for an autonomous vehicle using yolo. In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 1585-1589. IEEE.
    [85] Pandey R, Malik A (2021) Object detection and movement prediction for autonomous vehicle: a review. In 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), 60-65. IEEE. https://doi.org/10.1109/ICSCCC51823.2021.9478167
    [86] Mseddi WS, Sedrine MA, Attia R (2021) YOLOv5 based visual localization for autonomous vehicles. In 2021 29th European Signal Processing Conference (EUSIPCO), 746-750. IEEE.
    [87] Liang S, Wu H, Zhen L, Hua Q, Garg S, Kaddoum G, et al. (2022) Edge YOLO: Real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles. IEEE T Intell Transp Syst 23: 25345-25360. https://doi.org/10.1109/TITS.2022.3158253 doi: 10.1109/TITS.2022.3158253
    [88] Mohanapriya S, Natesan P, Indhumathi P, Mohanapriya STP, Monisha R (2021) Object and lane detection for autonomous vehicle using YOLO V3 algorithm. In AIP Conference Proceedings 2387: 140009. AIP Publishing LLC. https://doi.org/10.1063/5.0068836
    [89] Dewi C, Chen RC, Jiang X, Yu H (2022) Deep convolutional neural network for enhancing traffic sign recognition developed on Yolo V4. Multimed Tools Appl 81: 37821-37845. https://doi.org/10.1007/s11042-022-12962-5 doi: 10.1007/s11042-022-12962-5
    [90] Benjumea A, Teeti I, Cuzzolin F, Bradley A (2021) YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. arXiv preprint arXiv: 2112.11798.
    [91] Kosuru VSR, Venkitaraman AK (2022) Preventing the False Negatives of Vehicle Object Detection in Autonomous Driving Control Using Clear Object Filter Technique. In 2022 Third International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), 1-6. IEEE. https://doi.org/10.1109/ICSTCEE56972.2022.10100170
    [92] Fanthony IV, Husin Z, Hikmarika H, Dwijayanti S, Suprapto BY (2021) YOLO Algorithm-Based Surrounding Object Identification on Autonomous Electric Vehicle. In 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 151-156. IEEE. https://doi.org/10.23919/EECSI53397.2021.9624275
    [93] Motwani NP, Soumya S, Singh U (2022) Object Detection and Tracking for Autonomous Vehicles using Deep Learning Technique-YOLO. In 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), 1-6. IEEE. https://doi.org/10.1109/SMARTGENCON56628.2022.10083703
    [94] Valeja Y, Pathare S, Patel D, Pawar M (2021) Traffic Sign Detection using Clara and Yolo in Python. In 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS) 1: 367-371. IEEE. https://doi.org/10.1109/ICACCS51430.2021.9442065
    [95] Prakash M, Janarthanan M, Devi D (2023) Multiple Objects Identification for Autonomous Car using YOLO and CNN. 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), 597-601. IEEE. https://doi.org/10.1109/ICICCS56967.2023.10142751
    [96] Unlu E, Zenou E, Riviere N, Dupouy PE (2019) An autonomous drone surveillance and tracking architecture. In 2019 Autonomous Vehicles and Machines Conference, AVM 2019 31: 35-1 - 35-7. https://doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-035
    [97] Iftikhar S, Asim M, Zhang Z, El-Latif AAA (2022) Advance generalization technique through 3D CNN to overcome the false positives pedestrian in autonomous vehicles. Telecommun Syst 80: 545-557. https://doi.org/10.1007/s11235-022-00930-1 doi: 10.1007/s11235-022-00930-1
    [98] Dazlee NMAA, Khalil SA, Abdul-Rahman S, Mutalib S (2022) Object detection for autonomous vehicles with sensor-based technology using yolo. International Journal of Intelligent Systems and Applications in Engineering, 10: 129-134. https://doi.org/10.18201/ijisae.2022.276 doi: 10.18201/ijisae.2022.276
    [99] Masmoudi M, Ghazzai H, Frikha M, Massoud Y (2019) Object detection learning techniques for autonomous vehicle applications. In 2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 1-5. IEEE. https://doi.org/10.1109/ICVES.2019.8906437
    [100] Farrukh FUD, Zhang C, Jiang Y, Zhang Z, Wang Z, Wang Z, et al. (2020) Power efficient tiny yolo cnn using reduced hardware resources based on booth multiplier and wallace tree adders. IEEE Open Journal of Circuits and Systems 1: 76-87. https://doi.org/10.1109/OJCAS.2020.3007334 doi: 10.1109/OJCAS.2020.3007334
    [101] Wang G, Guo J, Chen Y, Li Y, Xu Q (2019) A PSO and BFO-based learning strategy applied to faster R-CNN for object detection in autonomous driving. IEEE Access 7: 18840-18859. https://doi.org/10.1109/ACCESS.2019.2897283 doi: 10.1109/ACCESS.2019.2897283
    [102] Li X, Xie Z, Deng X, Wu Y, Pi Y (2022) Traffic sign detection based on improved faster R-CNN for autonomous driving. The Journal of Supercomputing, 1-21. https://doi.org/10.1007/s11227-021-04230-4
    [103] Bin Issa R, Das M, Rahman MS, Barua M, Rhaman MK, Ripon KSN, et al. (2021) Double deep Q-learning and faster R-Cnn-based autonomous vehicle navigation and obstacle avoidance in dynamic environment. Sensors 21: 1468. https://doi.org/10.3390/s21041468 doi: 10.3390/s21041468
    [104] Li P, Chen X, Shen S (2019) Stereo r-cnn based 3d object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7644-7652. https://doi.org/10.1109/CVPR.2019.00783
    [105] Chen ST, Cornelius C, Martin J, Chau DH (2019) Shapeshifter: Robust physical adversarial attack on faster r-cnn object detector. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Proceedings, Part I 18, 52-68. Springer International Publishing. https://doi.org/10.1007/978-3-030-10925-7_4
    [106] Mostafa T, Chowdhury SJ, Rhaman MK, Alam MGR (2022) Occluded Object Detection for Autonomous Vehicles Employing YOLOv5, YOLOX and Faster R-CNN. In 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 0405-0410. IEEE. https://doi.org/10.1109/IEMCON56893.2022.9946565
    [107] Yang W, Li Z, Wang C, Li J (2020) A multi-task Faster R-CNN method for 3D vehicle detection based on a single image. Appl Soft Comput 95: 106533. https://doi.org/10.1016/j.asoc.2020.106533 doi: 10.1016/j.asoc.2020.106533
    [108] Liang T, Bao H, Pan W, Pan F (2022) Traffic sign detection via improved sparse R-CNN for autonomous vehicles. J Adv Transport 2022: 1-16. https://doi.org/10.1155/2022/3825532 doi: 10.1155/2022/3825532
    [109] Kukreja R, Rinchen S, Vaidya B, Mouftah HT (2020) Evaluating traffic signs detection using faster r-cnn for autonomous driving. In 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 1-6. IEEE. https://doi.org/10.1109/CAMAD50429.2020.9209289
    [110] Amin S, Galasso F (2017) Geometric proposals for faster R-CNN. In 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 1-6. IEEE. https://doi.org/10.1109/AVSS.2017.8078518
    [111] Chan PH, Huggett A, Souvalioti G, Jennings P, Donzella V (2022) Influence of AVC and HEVC compression on detection of vehicles through Faster R-CNN. IEEE T Intell Transp Syst. https://doi.org/10.36227/techrxiv.19808566.v1
    [112] Kortmann F, Talits K, Fassmeyer P, Warnecke A, Meier N, Heger J, et al. (2020) Detecting various road damage types in global countries utilizing faster r-cnn. In 2020 IEEE International Conference on Big Data (Big Data), 5563-5571. IEEE. https://doi.org/10.1109/BigData50022.2020.9378245
    [113] Qian R, Liu Q, Yue Y, Coenen F, Zhang B (2016) Road surface traffic sign detection with hybrid region proposal and fast R-CNN. In 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 555-559. IEEE. https://doi.org/10.1109/FSKD.2016.7603233
    [114] Nabati R, Qi H (2019) Rrpn: Radar region proposal network for object detection in autonomous vehicles. In 2019 IEEE International Conference on Image Processing (ICIP), 3093-3097. IEEE. https://doi.org/10.1109/ICIP.2019.8803392
    [115] Cheng P, Liu W, Zhang Y, Ma H (2018) LOCO: local context based faster R-CNN for small traffic sign detection. In MultiMedia Modeling: 24th International Conference, MMM 2018, Bangkok, Thailand, February 5-7, 2018, Proceedings, Part I 24, 329-341. Springer International Publishing. https://doi.org/10.1007/978-3-319-73603-7_27
    [116] Bi R, Xiong J, Tian Y, Li Q, Choo KKR (2022) Achieving lightweight and privacy-preserving object detection for connected autonomous vehicles. IEEE Internet Things 10: 2314-2329.
    [117] Fan Q, Brown L, Smith J (2016) A closer look at Faster R-CNN for vehicle detection. In 2016 IEEE intelligent vehicles symposium (IV), 124-129. IEEE. https://doi.org/10.1109/IVS.2016.7535375
    [118] Chen L, Lin S, Lu X, Cao D, Wu H, Guo C, et al. (2021) Deep neural network based vehicle and pedestrian detection for autonomous driving: A survey. IEEE T Intell Transp Syst 22: 3234-3246. https://doi.org/10.1109/TITS.2020.2993926 doi: 10.1109/TITS.2020.2993926
    [119] Saleh K, Hossny M, Hossny A, Nahavandi S (2017) Cyclist detection in lidar scans using faster r-cnn and synthetic depth images. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 1-6. IEEE. https://doi.org/10.1109/ITSC.2017.8317599
    [120] Carranza-García M, Torres-Mateo J, Lara-Benítez P, García-Gutiérrez J (2020) On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data. Remote Sensing 13: 89. https://doi.org/10.3390/rs13010089 doi: 10.3390/rs13010089
    [121] Adam K, Mohd II, Younis YM (2021) The impact of the soft errors in convolutional neural network on GPUs: Alexnet as case study. Procedia Computer Science 182: 89-94. https://doi.org/10.1016/j.procs.2021.02.012 doi: 10.1016/j.procs.2021.02.012
    [122] Tan L, Yu K, Lin L, Cheng X, Srivastava G, Lin JCW, et al. (2021) Speech emotion recognition enhanced traffic efficiency solution for autonomous vehicles in a 5G-enabled space-air-ground integrated intelligent transportation system. IEEE T Intell Transp Syst 23: 2830-2842. https://doi.org/10.1109/TITS.2021.3119921 doi: 10.1109/TITS.2021.3119921
    [123] Szymak P, Gasiorowski M (2020) Using pretrained alexnet deep learning neural network for recognition of underwater objects. NAŠE MORE: znanstveni časopis za more I pomorstvo 67: 9-13. https://doi.org/10.17818/NM/2020/1.2 doi: 10.17818/NM/2020/1.2
    [124] Gao H, Cheng B, Wang J, Li K, Zhao J, Li D (2018) Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE T Ind Inform 14: 4224-4231. https://doi.org/10.1109/TII.2018.2822828 doi: 10.1109/TII.2018.2822828
    [125] Zhu Z, Hu Z, Dai W, Chen H, Lv Z (2022) Deep learning for autonomous vehicle and pedestrian interaction safety. Safety Sci 145: 105479. https://doi.org/10.1016/j.ssci.2021.105479 doi: 10.1016/j.ssci.2021.105479
    [126] Kocić J, Jovičić N, Drndarević V (2019) An end-to-end deep neural network for autonomous driving designed for embedded automotive platforms. Sensors 19: 2064. https://doi.org/10.3390/s19092064 doi: 10.3390/s19092064
    [127] Kumaar S, Mannar S, Omkar SN (2018) Juncnet: A deep neural network for road junction disambiguation for autonomous vehicles. arXiv preprint arXiv: 1809.01011.
    [128] Magee A (2019) Place-based navigation for autonomous vehicles with deep learning neural networks. Doctoral dissertation, Monterey, CA; Naval Postgraduate School.
    [129] Kaymak Ç, Uçar A (2019) Semantic image segmentation for autonomous driving using fully convolutional networks. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), 1-8. IEEE. https://doi.org/10.1109/IDAP.2019.8875923
    [130] Xie G, Shangguan A, Fei R, Ji W, Ma W, Hei X (2020) Motion trajectory prediction based on a CNN-LSTM sequential model. Sci China Inform Sci 63: 1-21. https://doi.org/10.1007/s11432-019-2761-y doi: 10.1007/s11432-019-2761-y
    [131] Kortli Y, Gabsi S, Voon LFLY, Jridi M, Merzougui M, Atri M (2022) Deep embedded hybrid CNN-LSTM network for lane detection on NVIDIA Jetson Xavier NX. Knowl-based syst 240: 107941. https://doi.org/10.1016/j.knosys.2021.107941 doi: 10.1016/j.knosys.2021.107941
    [132] Li P, Abdel-Aty M, Yuan J (2020) Real-time crash risk prediction on arterials based on LSTM-CNN. Accident Anal Prev 135: 105371. https://doi.org/10.1016/j.aap.2019.105371 doi: 10.1016/j.aap.2019.105371
    [133] Dong B, Liu H, Bai Y, Lin J, Xu Z, Xu X, Kong Q (2021) Multi-modal trajectory prediction for autonomous driving with semantic map and dynamic graph attention network. arXiv preprint arXiv: 2103.16273.
    [134] Zhao M, Li Y, Asif S, Zhu Y, Tang F (2022) C-LSTM: CNN and LSTM Based Offloading Prediction Model in Mobile Edge Computing (MEC). In 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR), 245-251. IEEE. https://doi.org/10.1109/HPSR54439.2022.9831405
    [135] Li X, Ying X, Chuah MC (2019) Grip++: Enhanced graph-based interaction-aware trajectory prediction for autonomous driving. arXiv preprint arXiv: 1907.07792.
    [136] Zhi Z, Liu D, Liu L (2022) A performance compensation method for GPS/INS integrated navigation system based on CNN-LSTM during GPS outages. Measurement 188: 110516. https://doi.org/10.1016/j.measurement.2021.110516 doi: 10.1016/j.measurement.2021.110516
    [137] Anbalagan S, Raja G, Gurumoorthy S, Suresh RD, Dev K (2023) IIDS: Intelligent Intrusion Detection System for Sustainable Development in Autonomous Vehicles. IEEE T Intell Transp Syst. https://doi.org/10.1109/TITS.2023.3271768
    [138] Ziya TAN, KARAKOSE M (2020) Comparative study for deep reinforcement learning with CNN, RNN, and LSTM in autonomous navigation. In 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), 1-5. IEEE.
    [139] Poibrenski A, Klusch M, Vozniak I, Müller C (2021) Multimodal multi-pedestrian path prediction for autonomous cars. ACM SIGAPP Applied Computing Review 20: 5-17. https://doi.org/10.1145/3447332.3447333 doi: 10.1145/3447332.3447333
    [140] Sáez Á, Bergasa LM, López-Guillén E, Romera E, Tradacete M, Gómez-Huélamo C, et al. (2019) Real-time semantic segmentation for fisheye urban driving images based on ERFNet. Sensors 19: 503. https://doi.org/10.3390/s19030503 doi: 10.3390/s19030503
    [141] Breitenstein J, Löhdefink J, Fingscheidt T (2022) Joint Prediction of Amodal and Visible Semantic Segmentation for Automated Driving. In European Conference on Computer Vision, 633-645. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25056-9_40
    [142] Deng L, Cao H, Dong Q, Jiang Y (2023) Semi-supervised lane detection for continuous traffic scenes. Traffic Inj Prev, 1-6. https://doi.org/10.1080/15389588.2023.2219794
    [143] Yao S, Lan F, Chen J (2022) Visual Odometry Integrated Semantic Constraints towards Autonomous Driving (No. 2022-01-7095). SAE Technical Paper. https://doi.org/10.4271/2022-01-7095
    [144] Divakarla U, Bhat R, Madagaonkar SB, Pranav DV, Shyam C, Chandrashekar K (2023) Semantic Segmentation for Autonomous Driving. In Information and Communication Technology for Competitive Strategies (ICTCS 2022) Intelligent Strategies for ICT, 683-694. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9304-6_61
    [145] Kachhoria R, Jaiswal S, Lokhande M, Rodge J (2023) Lane detection and path prediction in autonomous vehicle using deep learning. In Intelligent Edge Computing for Cyber Physical Applications, 111-127. Academic Press. https://doi.org/10.1016/B978-0-323-99412-5.00012-5
    [146] Chen T, Chen A (2022) Road Sign Recognition Method Based on Segmentation and Attention Mechanism. Mob Inform Syst 2022. https://doi.org/10.1155/2022/6389580
    [147] Song C, Tan SJ, Khor A, Cao P, Zhao Y, Li G (2022) Method of Vehicle Behavior Analysis for Real-Time Video Streaming Based on Mobilenet-YOLOV4 and ERFNET. In 2022 IEEE 7th International Conference on Intelligent Transportation Engineering (ICITE), 473-480. IEEE. https://doi.org/10.1109/ICITE56321.2022.10101430
    [148] Ye D, Han R (2022) Image semantic segmentation method based on improved ERFNet model. The Journal of Engineering 2022: 180-190. https://doi.org/10.1049/tje2.12104 doi: 10.1049/tje2.12104
    [149] Zhang L, Jiang F, Yang J, Kong B, Hussain A (2023) A real‐time lane detection network using two‐directional separation attention. Comput‐Aided Civ Inf. https://doi.org/10.1111/mice.13051
    [150] Fan J, Wang F, Chu H, Hu X, Cheng Y, Gao B (2022) Mlfnet: Multi-level fusion network for real-time semantic segmentation of autonomous driving. IEEE Transactions on Intelligent Vehicles 8: 756-767. https://doi.org/10.1109/TIV.2022.3176860 doi: 10.1109/TIV.2022.3176860
    [151] Mullick K, Jain H, Gupta S, Kale AA (2023) Domain Adaptation of Synthetic Driving Datasets for Real-World Autonomous Driving. arXiv preprint arXiv: 2302.04149.
    [152] Zhang L, Jiang F, Yang J, Kong B, Hussain A, Gogate M, et al. (2022) DNet-CNet: A novel cascaded deep network for real-time lane detection and classification. J Amb Intel Hum Comput 14: 10745-10760. https://doi.org/10.1007/s12652-022-04346-2 doi: 10.1007/s12652-022-04346-2
    [153] Florea H, Petrovai A, Giosan I, Oniga F, Varga R, Nedevschi S (2022) Enhanced perception for autonomous driving using semantic and geometric data fusion. Sensors 22: 5061. https://doi.org/10.3390/s22135061 doi: 10.3390/s22135061
    [154] Bouzidi W, Bouaafia S, Hajjaji MA, Bergasa LM, Enhanced U-Net Approach: Semantic Segmentation for Self-Driving Cars Applications.
    [155] PETROVAI A (2022) Deep Learning-based Visual Perception for Autonomous Driving. Doctoral dissertation, Technical University of Cluj-Napoca.
    [156] Breitenstein J, Fingscheidt T (2022) Amodal Cityscapes: A New Dataset, its Generation, and an Amodal Semantic Segmentation Challenge Baseline. In 2022 IEEE Intelligent Vehicles Symposium (IV), 1018-1025. IEEE. https://doi.org/10.1109/IV51971.2022.9827342
    [157] An TH, Kang J, Min KW (2023) Network adaptation for color image semantic segmentation. IET Image Process.
    [158] Karine A, Napoléon T, Jridi M (2022) Semantic Images Segmentation for Autonomous Driving Using Self-Attention Knowledge Distillation. In 2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 198-202. IEEE. https://doi.org/10.1109/SITIS57111.2022.00044
    [159] Yang X, Yu Y, Zhang Z, Huang Y, Liu Z, Niu Z, et al. (2023) Lightweight lane marking detection CNNs by self soft label attention. Multimedia Tools and Applications 82: 5607-5626. https://doi.org/10.1007/s11042-022-13442-6 doi: 10.1007/s11042-022-13442-6
    [160] Chniti H, Mahfoudh M (2022) Designing a Model of Driving Scenarios for Autonomous Vehicles. In Knowledge Science, Engineering and Management: 15th International Conference, KSEM 2022, Singapore, August 6-8, 2022, Proceedings, Part II, 396-405. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-10986-7_32
    [161] Zhuang Y, Pu Z, Yang H, Wang Y (2022) Edge-Artificial Intelligence-Powered Parking Surveillance With Quantized Neural Networks. IEEE Intel Transp Syst Mag 14: 107-121. https://doi.org/10.1109/MITS.2022.3182358 doi: 10.1109/MITS.2022.3182358
    [162] Serras B, Gonçalves C, Dias T, Osório AL (2022) Extending the Synoptics of Things (SoT) framework to manage iSoS technology landscapes. In 2022 International Young Engineers Forum (YEF-ECE), 80-85. IEEE. https://doi.org/10.1109/YEF-ECE55092.2022.9849899
    [163] Atar S, Singh S, Agrawal S, Chaurasia R, Sule S, Gadamsetty S, et al. (2022) LCPP: Low Computational Processing Pipeline for Delivery Robots. ICAART (3), 130-138. https://doi.org/10.5220/0010786300003116
    [164] Geldhauser C, Matt AD, Stussak C (2022) I AM AI Gradient Descent-an Open-Source Digital Game for Inquiry-Based CLIL Learning. In Proceedings of the AAAI Conference on Artificial Intelligence 36: 12751-12757). https://doi.org/10.1609/aaai.v36i11.21553
    [165] Li J, Xu W, Deng L, Xiao Y, Han Z, Zheng H (2023) Deep learning for visual recognition and detection of aquatic animals: A review. Rev Aquacult 15: 409-433. https://doi.org/10.1111/raq.12726 doi: 10.1111/raq.12726
    [166] Ramalingam S, A Study and Review of Classical, Machine Learning and Deep Learning Methods of Software Reliability Estimation for Safety-Critical Systems.
    [167] Gamal O, Imran M, Roth H, Wahrburg J (2020) Assistive parking systems knowledge transfer to end-to-end deep learning for autonomous parking. In 2020 6th International conference on mechatronics and robotics engineering (ICMRE), 216-221. IEEE. https://doi.org/10.1109/ICMRE49073.2020.9065014
    [168] Kashyap A, Iqbal M, Pattabiraman K, Seltzer M (2021) ReLUSyn: Synthesizing Stealthy Attacks for Deep Neural Network Based Cyber-Physical Systems. arXiv preprint arXiv: 2105.10393.
    [169] Heinen, MR, Osório FS, Heinen FJ, Kelber C (2006) Seva3d: Using arti cial neural networks to autonomous vehicle parking control. In The 2006 IEEE International Joint Conference on Neural Network Proceedings, 4704-4711. IEEE. https://doi.org/10.1109/IJCNN.2006.247124
    [170] Heinen MR, Osório FS, Heinen FJ, Kelber C (2006) Autonomous vehicle parking and pull out using artificial neural networks. In Proceedings of the I Workshop on Computational Intelligence (WCI).
    [171] Min C, Xu J, Xiao L, Zhao D, Nie Y, Dai B (2021) Attentional graph neural network for parking-slot detection. IEEE Robot Autom Lett 6: 3445-3450. https://doi.org/10.1109/LRA.2021.3064270 doi: 10.1109/LRA.2021.3064270
    [172] Zhang W, Liu H, Liu Y, Zhou J, Xiong H (2020) Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction. In Proceedings of the AAAI Conference on Artificial Intelligence 34: 1186-1193. https://doi.org/10.1609/aaai.v34i01.5471
    [173] Park J, Chun J, Kim SH, Kim Y, Park J (2021) Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning. Int J Prod Res 59: 3360-3377. https://doi.org/10.1080/00207543.2020.1870013 doi: 10.1080/00207543.2020.1870013
    [174] Lee H, Lee S, Kim J, Jung H, Yoon KJ, Gandla S, et al. (2023) Stretchable array electromyography sensor with graph neural network for static and dynamic gestures recognition system. npj Flex Electron 7: 20. https://doi.org/10.1038/s41528-023-00246-3 doi: 10.1038/s41528-023-00246-3
    [175] Meyer E, Brenner M, Zhang B, Schickert M, Musani B, Althoff M (2023) Geometric deep learning for autonomous driving: Unlocking the power of graph neural networks with CommonRoad-Geometric. 2023 IEEE Intelligent Vehicles Symposium (IV), 1-8. https://doi.org/10.1109/IV55152.2023.10186741
    [176] Singh D, Srivastava R (2022) Graph Neural Network with RNNs based trajectory prediction of dynamic agents for autonomous vehicle. Appl Intell 52: 12801-12816. https://doi.org/10.1007/s10489-021-03120-9 doi: 10.1007/s10489-021-03120-9
    [177] Singh D, Srivastava R (2022) Multi-scale graph-transformer network for trajectory prediction of the autonomous vehicles. Intel Serv Robot 15: 307-320. https://doi.org/10.1007/s11370-022-00422-w doi: 10.1007/s11370-022-00422-w
    [178] Klimke M, Völz B, Buchholz M (2022) Cooperative Behavior Planning for Automated Driving using Graph Neural Networks. In 2022 IEEE Intelligent Vehicles Symposium (IV), 167-174. IEEE. https://doi.org/10.1109/IV51971.2022.9827230
    [179] Lee D, Gu Y, Hoang J, Marchetti-Bowick M (2019) Joint interaction and trajectory prediction for autonomous driving using graph neural networks. arXiv preprint arXiv: 1912.07882.
    [180] Jin K, Wang H, Liu C, Zhai Y, Tang L (2022) Graph neural network based relation learning for abnormal perception information detection in self-driving scenarios. In 2022 International Conference on Robotics and Automation (ICRA), 8943-8949. IEEE. https://doi.org/10.1109/ICRA46639.2022.9812411
    [181] Yang F, Li X, Liu Q, Li Z, Gao X (2022) Generalized single-vehicle-based graph reinforcement learning for decision-making in autonomous driving. Sensors 22: 4935. https://doi.org/10.3390/s22134935 doi: 10.3390/s22134935
    [182] Cao D, Li J, Ma H, Tomizuka M (2021) Spectral temporal graph neural network for trajectory prediction. In 2021 IEEE International Conference on Robotics and Automation (ICRA), 1839-1845. IEEE. https://doi.org/10.1109/ICRA48506.2021.9561461
    [183] Diehl F, Brunner T, Le MT, Knoll A (2019) Graph neural networks for modelling traffic participant interaction. In 2019 IEEE Intelligent Vehicles Symposium (IV), 695-701. IEEE. https://doi.org/10.1109/IVS.2019.8814066
    [184] Ma C, Li Y, Yang F, Zhang Z, Zhuang Y, Jia H, et al. (2019) Deep association: End-to-end graph-based learning for multiple object tracking with conv-graph neural network. In Proceedings of the 2019 on International Conference on Multimedia Retrieval, 253-261.
    [185] Wang L, Zhang X, Zeng W, Liu W, Yang L, Li J, et al. (2022) Global perception-based robust parking space detection using a low-cost camera. IEEE Transactions on Intelligent Vehicles 8: 1439-1448. https://doi.org/10.1109/TIV.2022.3186035 doi: 10.1109/TIV.2022.3186035
    [186] Shi R, Yang S, Chen Y, Wang R, Zhang M, Lu J, et al. (2023) CNN‐Transformer for visual‐tactile fusion applied in road recognition of autonomous vehicles. Pattern Recogn Lett 166: 200-208. https://doi.org/10.1016/j.patrec.2022.11.023 doi: 10.1016/j.patrec.2022.11.023
    [187] Singh D, Srivastava R (2022) Multi-scale graph-transformer network for trajectory prediction of the autonomous vehicles. Intel Serv Robot 15: 307-320. https://doi.org/10.1007/s11370-022-00422-w doi: 10.1007/s11370-022-00422-w
    [188] Zhang H, Yang Z, Xiong H, Zhu T, Long Z, Wu W (2023) Transformer Aided Adaptive Extended Kalman Filter for Autonomous Vehicle Mass Estimation. Processes 11: 887. https://doi.org/10.3390/pr11030887 doi: 10.3390/pr11030887
    [189] Li G, Qiu Y, Yang Y, Li Z, Li S, Chu W, et al. (2022) Lane change strategies for autonomous vehicles: a deep reinforcement learning approach based on transformer. IEEE Transactions on Intelligent Vehicles.
    [190] Rafiq G, Rafiq M, Choi, GS (2023) Spectral representation learning and fusion for autonomous vehicles trip description exploiting recurrent transformer. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3287783
    [191] Shao H, Wang L, Chen R, Li H, Liu Y (2023) Safety-enhanced autonomous driving using interpretable sensor fusion transformer. In Conference on Robot Learning, 726-737. PMLR.
    [192] Tseng CH, Zhang J, Sun MT, Sakai K, Ku WS (2022) Multi-modal Transformer Path Prediction for Autonomous Vehicle. arXiv preprint arXiv: 2208.07256.
    [193] Hu H, Wang Q, Zhang Z, Li Z, Gao Z (2023) Holistic transformer: A joint neural network for trajectory prediction and decision-making of autonomous vehicles. Pattern Recogn 141: 109592. https://doi.org/10.1016/j.patcog.2023.109592 doi: 10.1016/j.patcog.2023.109592
    [194] Mozaffari S, Koufos K, Dianati M (2023) Multimodal Manoeuvre and Trajectory Prediction for Autonomous Vehicles Using Transformer Networks. IEEE Robot Autom Lett 8: 6123-6130. https://doi.org/10.1109/LRA.2023.3301720 doi: 10.1109/LRA.2023.3301720
    [195] Tian Y, Wang J, Wang Y, Zhao C, Yao F, Wang X (2022) Federated vehicular transformers and their federations: Privacy-preserving computing and cooperation for autonomous driving. IEEE Transactions on Intelligent Vehicles. https://doi.org/10.1109/TIV.2022.3197815
    [196] Xu R, Xiang H, Tu Z, Xia X, Yang MH, Ma J (2022) V2X-ViT: Vehicle-to-everything cooperative perception with vision transformer. In Computer Vision-ECCV 2022: 17th European Conference, 107-124. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-19842-7_7
    [197] Chen W, Wang F, Sun H (2021) S2tnet: Spatio-temporal transformer networks for trajectory prediction in autonomous driving. In Asian Conference on Machine Learning 454-469. PMLR.
    [198] Postnikov A, Gamayunov A, Ferrer G (2021) Transformer based trajectory prediction. arXiv preprint arXiv: 2112.04350.
    [199] Ngiam J, Caine B, Vasudevan V, Zhang Z, Chiang HT, Ling J, et al. (2021) Scene Transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv: 2106.08417.
    [200] Khosyi'in M, Budisusila EN, Prasetyowati SAD, Suprapto BY, Nawawi Z (2021) Design of Autonomous Vehicle Navigation Using GNSS Based on Pixhawk 2.1. In 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 175-180. IEEE. https://doi.org/10.23919/EECSI53397.2021.9624244
    [201] Schütz A, Sánchez-Morales DE, Pany T (2020) Precise positioning through a loosely-coupled sensor fusion of GNSS-RTK, INS and LiDAR for autonomous driving. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), 219-225. IEEE. https://doi.org/10.1109/PLANS46316.2020.9109934
    [202] Swaminathan HB, Sommer A, Becker A, Atzmueller M (2022) Performance Evaluation of GNSS Position Augmentation Methods for Autonomous Vehicles in Urban Environments. Sensors 22: 8419. https://doi.org/10.3390/s22218419 doi: 10.3390/s22218419
    [203] Elsayed H, El-Mowafy A, Wang K (2023) Bounding of correlated double-differenced GNSS observation errors using NRTK for precise positioning of autonomous vehicles. Measurement 206: 112303. https://doi.org/10.1016/j.measurement.2022.112303 doi: 10.1016/j.measurement.2022.112303
    [204] Jianghui GE, Hua CH, Jiang GU, Guangcai LI, Na WE (2020) Three multi-frequency and multi-system GNSS high-precision point positioning methods and their performance in complex urban environment. Acta Geodaetica et Cartographica Sinica 49: 1.
    [205] Lee W, Geneva P, Yang Y, Huang G (2022) Tightly-coupled GNSS-aided Visual-Inertial Localization. In 2022 International Conference on Robotics and Automation (ICRA), 9484-9491. IEEE. https://doi.org/10.1109/ICRA46639.2022.9811362
    [206] Wen W, Hsu LT (2021) 3D LiDAR aided GNSS real-time kinematic positioning. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), 2212-2220. https://doi.org/10.33012/2021.18072
    [207] Li T, Zhang H, Gao Z, Chen Q, Niu X (2018) High-accuracy positioning in urban environments using single-frequency multi-GNSS RTK/MEMS-IMU integration. Remote sensing 10: 205. https://doi.org/10.3390/rs10020205 doi: 10.3390/rs10020205
    [208] Jia M, Lee H, Khalife J, Kassas ZM, Seo J (2021) Ground vehicle navigation integrity monitoring for multi-constellation GNSS fused with cellular signals of opportunity. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), 3978-3983. IEEE. https://doi.org/10.1109/ITSC48978.2021.9564686
    [209] Sadli R, Afkir M, Hadid A, Rivenq A, Taleb-Ahmed A (2022) Map-Matching-Based Localization Using Camera and Low-Cost GPS for Lane-Level Accuracy. Sensors 22: 2434. https://doi.org/10.3390/s22072434 doi: 10.3390/s22072434
    [210] Somogyi H, Soumelidis A (2020) Comparison of High-Precision GNSS systems for development of an autonomous localization system. In 2020 23rd International Symposium on Measurement and Control in Robotics (ISMCR), 1-6. IEEE. https://doi.org/10.1109/ISMCR51255.2020.9263762
    [211] Geng J, Guo J, Chang H, Li X (2019) Toward global instantaneous decimeter-level positioning using tightly coupled multi-constellation and multi-frequency GNSS. J Geodesy 93: 977-991. https://doi.org/10.1007/s00190-018-1219-y doi: 10.1007/s00190-018-1219-y
    [212] Liu S (2020) Engineering autonomous vehicles and robots: the dragonfly modular-based approach. John Wiley & Sons. https://doi.org/10.1002/9781119570516
    [213] Meng Q, Hsu LT (2021) Integrity for autonomous vehicles and towards a novel alert limit determination method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 235: 996-1006. https://doi.org/10.1177/0954407020965760 doi: 10.1177/0954407020965760
    [214] Abosekeen A, Noureldin A, Korenberg MJ (2019) Improving the RISS/GNSS land-vehicles integrated navigation system using magnetic azimuth updates. IEEE T Intell Transp Syst 21: 1250-1263. https://doi.org/10.1109/TITS.2019.2905871 doi: 10.1109/TITS.2019.2905871
    [215] Rodriguez-Solano C, Nick T, Gleb Z, Xiaoming C, Ken D, Lorenz G (2021) Protection level of the trimble RTX positioning engine for autonomous applications. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), 1577-1595. https://doi.org/10.33012/2021.17889
    [216] Bressler J, Reisdorf P, Obst M, Wanielik G (2016) GNSS positioning in non-line-of-sight context—A survey. In 2016 IEEE 19th international conference on intelligent transportation systems (ITSC), 1147-1154. IEEE. https://doi.org/10.1109/ITSC.2016.7795701
    [217] Patel RH, Härri J, Bonnet C (2017) Impact of localization errors on automated vehicle control strategies. In 2017 IEEE Vehicular Networking Conference (VNC), 61-68. IEEE. https://doi.org/10.1109/VNC.2017.8275649
    [218] Tao Z, Bonnifait P (2016) Sequential data fusion of GNSS pseudoranges and Dopplers with map-based vision systems. IEEE Transactions on Intelligent Vehicles 1: 254-265. https://doi.org/10.1109/TIV.2017.2658185 doi: 10.1109/TIV.2017.2658185
    [219] Kato S, Tokunaga S, Maruyama Y, Maeda S, Hirabayashi M, Kitsukawa Y, et al. (2018) Autoware on board: Enabling autonomous vehicles with embedded systems. In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), 287-296. IEEE. https://doi.org/10.1109/ICCPS.2018.00035
    [220] Kato S, Takeuchi E, Ishiguro Y, Ninomiya Y, Takeda K, Hamada T (2015) An open approach to autonomous vehicles. IEEE Micro 35: 60-68. https://doi.org/10.1109/MM.2015.133 doi: 10.1109/MM.2015.133
    [221] Raju VM, Gupta V, Lomate S (2019) Performance of open autonomous vehicle platforms: Autoware and Apollo. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), 1-5. IEEE. https://doi.org/10.1109/I2CT45611.2019.9033734
    [222] Tsukada M, Oi T, Ito A, Hirata M, Esaki H (2020) AutoC2X: Open-source software to realize V2X cooperative perception among autonomous vehicles. In 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 1-6. IEEE. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348525
    [223] Kawabata N, Kuwabara Y, Kawasaki T (2021) Self-Localization of Autonomous Car Using Autoware. IEICE Technical Report 120: 103-108.
    [224] Carballo A, Wong D, Ninomiya Y, Kato S, Takeda K (2019) Training engineers in autonomous driving technologies using autoware. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 3347-3354. IEEE. https://doi.org/10.1109/ITSC.2019.8917152
    [225] Dhakal S, Qu D, Carrillo D, Yang Q, Fu S (2021) Oasd: An open approach to self-driving vehicle. In 2021 Fourth International Conference on Connected and Autonomous Driving (MetroCAD), 54-61. IEEE. https://doi.org/10.1109/MetroCAD51599.2021.00017
    [226] Tun WN, Kim S, Lee JW, Darweesh H (2019) Open-source tool of vector map for path planning in autoware autonomous driving software. 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), 1-3. IEEE. https://doi.org/10.1109/BIGCOMP.2019.8679340
    [227] Rong G, Shin BH, Tabatabaee H, Lu Q, Lemke S, Možeiko M, et al. (2020) Lgsvl simulator: A high fidelity simulator for autonomous driving. In 2020 IEEE 23rd International conference on intelligent transportation systems (ITSC), 1-6. IEEE. https://doi.org/10.1109/ITSC45102.2020.9294422
    [228] Akai N, Morales LY, Yamaguchi T, Takeuchi E, Yoshihara Y, Okuda H, et al. (2017) Autonomous driving based on accurate localization using multilayer LiDAR and dead reckoning. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 1-6. IEEE. https://doi.org/10.1109/ITSC.2017.8317797
    [229] Garcia J, Feng Y, Shen J, Almanee S, Xia Y, Chen AQA (2020) A comprehensive study of autonomous vehicle bugs. In Proceedings of the ACM/IEEE 42nd international conference on software engineering, 385-396. https://doi.org/10.1145/3377811.3380397
    [230] Tsukada M, Oi T, Kitazawa M, Esaki H (2020) Networked roadside perception units for autonomous driving. Sensors 20: 5320. https://doi.org/10.3390/s20185320 doi: 10.3390/s20185320
    [231] Chishiro H, Suito K, Ito T, Maeda S, Azumi T, Funaoka K, et al. (2019) Towards heterogeneous computing platforms for autonomous driving. In 2019 IEEE International Conference on Embedded Software and Systems (ICESS), 1-8. IEEE. https://doi.org/10.1109/ICESS.2019.8782446
    [232] Pang S, Kent D, Cai X, Al-Qassab H, Morris D, Radha H (2018) 3d scan registration based localization for autonomous vehicles-a comparison of ndt and icp under realistic conditions. In 2018 IEEE 88th vehicular technology conference (VTC-Fall), 1-5. IEEE. https://doi.org/10.1109/VTCFall.2018.8690819
    [233] Munir F, Azam S, Sheri AM, Ko Y, Jeon M (2019) Where Am I: Localization and 3D Maps for Autonomous Vehicles. In VEHITS, 452-457. https://doi.org/10.5220/0007718400002179
    [234] Wen W, Hsu LT, Zhang G (2018) Performance analysis of NDT-based graph SLAM for autonomous vehicle in diverse typical driving scenarios of Hong Kong. Sensors 18: 3928. https://doi.org/10.3390/s18113928 doi: 10.3390/s18113928
    [235] Lin X, Wang F, Yang B, Zhang W (2021). Autonomous vehicle localization with prior visual point cloud map constraints in GNSS-challenged environments. Remote Sensing 13: 506. https://doi.org/10.3390/rs13030506 doi: 10.3390/rs13030506
    [236] Akai N, Morales LY, Takeuchi E, Yoshihara Y, Ninomiya Y (2017) Robust localization using 3D NDT scan matching with experimentally determined uncertainty and road marker matching. In 2017 IEEE Intelligent Vehicles Symposium (IV), 1356-1363. IEEE. https://doi.org/10.1109/IVS.2017.7995900
    [237] Akai N, Morales LY, Yamaguchi T, Takeuchi E, Yoshihara Y, Okuda H, et al. (2017) Autonomous driving based on accurate localization using multilayer LiDAR and dead reckoning. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 1-6. IEEE. https://doi.org/10.1109/ITSC.2017.8317797
    [238] Li Q, Queralta JP, Gia TN, Zou Z, Westerlund T (2020) Multi-sensor fusion for navigation and mapping in autonomous vehicles: Accurate localization in urban environments. Unmanned Systems 8: 229-237. https://doi.org/10.1142/S2301385020500168 doi: 10.1142/S2301385020500168
    [239] Saarinen J, Andreasson H, Stoyanov T, Lilienthal, AJ (2013) Normal distributions transform Monte-Carlo localization (NDT-MCL). In 2013 IEEE/RSJ international conference on intelligent robots and systems, 382-389. IEEE. https://doi.org/10.1109/IROS.2013.6696380
    [240] Ahmed SZ, Saputra VB, Verma S, Zhang K, Adiwahono AH (2019) Sparse-3D lidar outdoor map-based autonomous vehicle localization. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1614-1619. IEEE. https://doi.org/10.1109/IROS40897.2019.8967596
    [241] Elhousni M, Huang X (2020) A survey on 3d lidar localization for autonomous vehicles. In 2020 IEEE Intelligent Vehicles Symposium (IV), 1879-1884. IEEE. https://doi.org/10.1109/IV47402.2020.9304812
    [242] Srinara S, Lee CM, Tsai S, Tsai GJ, Chiang KW (2021) Performance analysis of 3D NDT scan matching for autonomous vehicles using INS/GNSS/3D LiDAR-SLAM integration scheme. In 2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 1-4. IEEE. https://doi.org/10.1109/INERTIAL51137.2021.9430476
    [243] Poulose A, Baek M, Han DS (2022) Point Cloud Map Generation and Localization for Autonomous Vehicles Using 3D Lidar Scans. In 2022 27th Asia Pacific Conference on Communications (APCC), 336-341. IEEE. https://doi.org/10.1109/APCC55198.2022.9943630
    [244] Javanmardi E, Javanmardi M, Gu Y, Kamijo S (2020) Pre-estimating self-localization error of NDT-based map-matching from map only. IEEE T Intell Transp Syst 22: 7652-7666. https://doi.org/10.1109/TITS.2020.3006854 doi: 10.1109/TITS.2020.3006854
    [245] Javanmardi E, Javanmardi M, Gu Y, Kamijo S (2018) November. Adaptive resolution refinement of NDT map based on localization error modeled by map factors. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2237-2243. IEEE. https://doi.org/10.1109/ITSC.2018.8569236
    [246] Jang KW, Jeong WJ, Kang Y (2022) Development of a GPU-Accelerated NDT Localization Algorithm for GNSS-Denied Urban Areas. Sensors 22: 1913. https://doi.org/10.3390/s22051913 doi: 10.3390/s22051913
    [247] Javanmardi E, Javanmardi M, Gu Y, Kamijo S (2017) Autonomous vehicle self-localization based on multilayer 2D vector map and multi-channel LiDAR. 2017 IEEE Intelligent Vehicles Symposium (IV), 437-442. IEEE. https://doi.org/10.1109/IVS.2017.7995757
    [248] Wen W, Zhan W, Hsu LT (2019) Robust Localization Using 3D NDT Matching and Beam Model for Autonomous Vehicles in an Urban Scenario with Dynamic Obstacles. Proceedings of Mobile Mapping Technology, Shenzhen, China.
    [249] Javanmardi E, Gu Y, Javanmardi M, Kamijo S (2019) Autonomous vehicle self-localization based on abstract map and multi-channel LiDAR in urban area. IATSS research 43: 1-13. https://doi.org/10.1016/j.iatssr.2018.05.001 doi: 10.1016/j.iatssr.2018.05.001
    [250] Kan YC, Hsu LT, Chung E (2021) Performance evaluation on map-based NDT scan matching localization using simulated occlusion datasets. IEEE Sensors Letters 5: 1-4. https://doi.org/10.1109/LSENS.2021.3060097 doi: 10.1109/LSENS.2021.3060097
    [251] Fayyad J, Jaradat MA, Gruyer D, Najjaran H (2020) Deep learning sensor fusion for autonomous vehicle perception and localization: A review. Sensors 20: 4220. https://doi.org/10.3390/s20154220 doi: 10.3390/s20154220
    [252] Laconte J, Kasmi A, Aufrère R, Vaidis M, Chapuis R (2021) A survey of localization methods for autonomous vehicles in highway scenarios. Sensors 22: 247. https://doi.org/10.3390/s22010247 doi: 10.3390/s22010247
    [253] Spangenberg R, Goehring D, Rojas R (2016) Pole-based localization for autonomous vehicles in urban scenarios. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2161-2166. IEEE. https://doi.org/10.1109/IROS.2016.7759339
    [254] Reid TG, Houts SE, Cammarata R, Mills G, Agarwal S, Vora A, et al. (2019) Localization requirements for autonomous vehicles. SAE Intl J CAV 2: 173-190. https://doi.org/10.4271/12-02-03-0012 doi: 10.4271/12-02-03-0012
    [255] Elhousni M, Huang X (2020) October. A survey on 3d lidar localization for autonomous vehicles. 2020 IEEE Intelligent Vehicles Symposium (IV), 1879-1884. IEEE. https://doi.org/10.1109/IV47402.2020.9304812
    [256] de Miguel MÁ, García F, Armingol JM (2020) Improved LiDAR probabilistic localization for autonomous vehicles using GNSS. Sensors 20: 3145. https://doi.org/10.3390/s20113145 doi: 10.3390/s20113145
    [257] Wang L, Zhang Y, Wang J (2017) Map-based localization method for autonomous vehicles using 3D-LIDAR. IFAC-PapersOnLine 50: 276-281. https://doi.org/10.1016/j.ifacol.2017.08.046 doi: 10.1016/j.ifacol.2017.08.046
    [258] Meng X, Wang H, Liu B (2017) A robust vehicle localization approach based on gnss/imu/dmi/lidar sensor fusion for autonomous vehicles. Sensors 17: 2140. https://doi.org/10.3390/s17092140 doi: 10.3390/s17092140
    [259] Kamijo S, Gu Y, Hsu L (2015) Autonomous vehicle technologies: Localization and mapping. Fundam Rev 9: 131-141, 2015. https://doi.org/10.1587/essfr.9.2_131
    [260] Lin X, Wang F, Yang B, Zhang W (2021) Autonomous vehicle localization with prior visual point cloud map constraints in GNSS-challenged environments. Remote Sensing 13: 506. https://doi.org/10.3390/rs13030506 doi: 10.3390/rs13030506
    [261] Werries A, Dolan J (2016) Adaptive Kalman filtering methods for low-cost GPS/INS localization for autonomous vehicles (No. CMU-RI-TR-16-18). Carnegie-Mellon University.
    [262] Jalal F, Nasir F (2021) Underwater navigation, localization and path planning for autonomous vehicles: A review. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), 817-828. IEEE. https://doi.org/10.1109/IBCAST51254.2021.9393315
    [263] Luo Q, Cao Y, Liu J, Benslimane A (2019) Localization and navigation in autonomous driving: Threats and countermeasures. IEEE Wirel Commun 26: 38-45. https://doi.org/10.1109/MWC.2019.1800533 doi: 10.1109/MWC.2019.1800533
    [264] Wang H, Xue C, Zhou Y, Wen F, Zhang H (2021) Visual semantic localization based on hd map for autonomous vehicles in urban scenarios. 2021 IEEE International Conference on Robotics and Automation (ICRA), 11255-11261. IEEE. https://doi.org/10.1109/ICRA48506.2021.9561459
    [265] Park M, Kang Y (2021) Experimental verification of a drift controller for autonomous vehicle tracking: A circular trajectory using LQR method. Int J Control Autom Syst 19: 404-416. https://doi.org/10.1007/s12555-019-0757-2 doi: 10.1007/s12555-019-0757-2
    [266] Pang H, Liu N, Hu C, Xu Z (2022) A practical trajectory tracking control of autonomous vehicles using linear time-varying MPC method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 236: 709-723. https://doi.org/10.1177/09544070211022904 doi: 10.1177/09544070211022904
    [267] Borrelli F, Morari M (2007) Offset free model predictive control. 2007 46th IEEE conference on decision and control, 1245-1250. IEEE. https://doi.org/10.1109/CDC.2007.4434770
    [268] Cheng S, Li L, Chen X, Wu J (2020) Model-predictive-control-based path tracking controller of autonomous vehicle considering parametric uncertainties and velocity-varying. IEEE T Ind Electron 68: 8698-8707. https://doi.org/10.1109/TIE.2020.3009585 doi: 10.1109/TIE.2020.3009585
    [269] Williams G, Drews P, Goldfain B, Rehg JM, Theodorou EA (2018) Information-theoretic model predictive control: Theory and applications to autonomous driving. IEEE T Robot 34: 1603-1622. https://doi.org/10.1109/TRO.2018.2865891 doi: 10.1109/TRO.2018.2865891
    [270] Petrovskaya A, Thrun S (2008) Model based vehicle tracking for autonomous driving in urban environments. Proceedings of robotics: science and systems IV, Zurich, Switzerland, 34. https://doi.org/10.15607/RSS.2008.IV.023
    [271] Galceran E, Olson E, Eustice RM (2015) Augmented vehicle tracking under occlusions for decision-making in autonomous driving. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3559-3565. IEEE. https://doi.org/10.1109/IROS.2015.7353874
    [272] Wang H, Wang B, Liu B, Meng X, Yang G (2017) Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Robot Auton Syst 88: 71-78. https://doi.org/10.1016/j.robot.2016.11.014 doi: 10.1016/j.robot.2016.11.014
    [273] Kothare MV, Balakrishnan V, Morari M (1996) Robust constrained model predictive control using linear matrix inequalities. Automatica 32: 1361-1379. https://doi.org/10.1016/0005-1098(96)00063-5 doi: 10.1016/0005-1098(96)00063-5
    [274] Falcone P, Borrelli F, Tseng HE, Asgari J, Hrovat D (2008) Linear time‐varying model predictive control and its application to active steering systems: Stability analysis and experimental validation. International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal 18: 862-875. https://doi.org/10.1002/rnc.1245 doi: 10.1002/rnc.1245
    [275] Wang Y, Shao Q, Zhou J, Zheng H, Chen H (2020). Longitudinal and lateral control of autonomous vehicles in multi-vehicle driving environments. IET Intell Transp Syst 14: 924-935. https://doi.org/10.1049/iet-its.2019.0846 doi: 10.1049/iet-its.2019.0846
    [276] Cui J, Liew LS, Sabaliauskaite G, Zhou F (2019) A Review on Safety Failures, Security Attacks, and Available Countermeasures for Autonomous Vehicles. Ad Hoc Networks 90: 101823. https://doi.org/10.1016/j.adhoc.2018.12.006 doi: 10.1016/j.adhoc.2018.12.006
    [277] Ferdowsi A, Challita U, Saad W, Mandayam NB (2018) Robust Deep Reinforcement Learning for Security and Safety in Autonomous Vehicle Systems. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 307-312. https://doi.org/10.1109/ITSC.2018.8569635
    [278] Xu W, Yan C, Jia W, Ji X, Liu J (2018) Analyzing and Enhancing the Security of Ultrasonic Sensors for Autonomous Vehicles. IEEE Internet Things 5: 5015-5029. https://doi.org/10.1109/JIOT.2018.2867917 doi: 10.1109/JIOT.2018.2867917
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3553) PDF downloads(269) Cited by(1)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog