Review

Mitigation strategies for communication networks induced impairments in autonomous microgrids control: A review

  • Received: 27 September 2021 Accepted: 13 December 2021 Published: 16 December 2021
  • The advancement in communication technology and the availability of intelligent electronic devices (IEDs) have impacted positively on the penetration of renewable energy sources (RES) into the main electricity grid. High penetration of RES also come along with greater demand for more effective control approaches, congestion management techniques, and microgrids optimal dispatch. Most of the secondary control methods of microgrid systems in the autonomous mode require communication links between the distributed generators (DGs) for sharing power information and data for control purposes. This article gives ample review on the communication induced impairments in islanded microgrids. In the review, attention is given to communication induced delay, data packet loss, and cyber-attack that degrades optimal operations of islanded microgrids. The review also considered impairments modelling, the impact of impairments on microgrids operation and management, and the control methods employed in mitigating some of their negative impacts. The paper revealed that innovative control solutions for impairment mitigation rather than the development of new high-speed communication infrastructure should be implemented for microgrid control. It was also pointed out that a sparse communication graph is the basis for communication topology design for distributed secondary control in the microgrid.

    Citation: Olayanju Sunday Akinwale, Dahunsi Folasade Mojisola, Ponnle Akinlolu Adediran. Mitigation strategies for communication networks induced impairments in autonomous microgrids control: A review[J]. AIMS Electronics and Electrical Engineering, 2021, 5(4): 342-375. doi: 10.3934/electreng.2021018

    Related Papers:

  • The advancement in communication technology and the availability of intelligent electronic devices (IEDs) have impacted positively on the penetration of renewable energy sources (RES) into the main electricity grid. High penetration of RES also come along with greater demand for more effective control approaches, congestion management techniques, and microgrids optimal dispatch. Most of the secondary control methods of microgrid systems in the autonomous mode require communication links between the distributed generators (DGs) for sharing power information and data for control purposes. This article gives ample review on the communication induced impairments in islanded microgrids. In the review, attention is given to communication induced delay, data packet loss, and cyber-attack that degrades optimal operations of islanded microgrids. The review also considered impairments modelling, the impact of impairments on microgrids operation and management, and the control methods employed in mitigating some of their negative impacts. The paper revealed that innovative control solutions for impairment mitigation rather than the development of new high-speed communication infrastructure should be implemented for microgrid control. It was also pointed out that a sparse communication graph is the basis for communication topology design for distributed secondary control in the microgrid.



    加载中


    [1] Kahrobaeian A, Mohamed YARI (2015) Networked-based hybrid distributed power sharing and control for islanded microgrid systems. IEEE T Power Electr 30: 603-617. doi: 10.1109/TPEL.2014.2312425. doi: 10.1109/TPEL.2014.2312425
    [2] Bidram A, Nasirian V, Davoudi A, et al. (2017) Cooperative Synchronization in Distributed Microgrid Control. Advances in Industrial Control, vol. 1.
    [3] Alzahrani A, Ferdowsi M, Shamsi P, et al. (2017) Modeling and Simulation of Microgrid. Procedia Comput Sci 114: 392-400. doi: 10.1016/j.procs.2017.09.053. doi: 10.1016/j.procs.2017.09.053
    [4] Hossain MA, Pota HR, Issa W, et al. (2017) Overview of AC microgrid controls with inverter-interfaced generations. Energies 10: 1-27. doi: 10.3390/en10091300. doi: 10.3390/en10091300
    [5] Hossain E, Kabalci E, Bayindir R, et al. (2014) A comprehensive study on microgrid technology. Int J Renew Energy Res 4: 1094-1104. doi: 10.20508/ijrer.20561. doi: 10.20508/ijrer.20561
    [6] Porsinger T, Janik P, Leonowicz Z, et al. (2017) Modelling and optimization in microgrids. Energies 10: 1-22. doi: 10.3390/en10040523. doi: 10.3390/en10040523
    [7] Siddique AB, Munsi S, Sarkar SK, et al. (2019) Model reference modified adaptive PID controller design for voltage and current control of islanded microgrid. 4th Int Conf Electr Eng Inf Commun Technol iCEEiCT 2018, 130-135. doi: 10.1109/CEEICT.2018.8628074. doi: 10.1109/CEEICT.2018.8628074
    [8] Shayeghi H, Sobhany B, Moradzadeh M (2017) Management of Autonomous Microgrids Using Multi-Agent Based Online Optimized NF-PID Controller. J Energy Manag Technol 1: 79-87.
    [9] Rana MM, Li L, Su SW (2017) Distributed State Estimation of Smart Grids with Packet Losses. Asian J Control 19: 1306-1315. doi: 10.1002/asjc.1578. doi: 10.1002/asjc.1578
    [10] Parisio A, Wiezorek C, Kyntäjä T, et al. (2017) Cooperative MPC-Based Energy Management for Networked Microgrids. IEEE T Smart Grid 8: 3066-3074. doi: 10.1109/TSG.2017.2726941. doi: 10.1109/TSG.2017.2726941
    [11] Sun Y, Hu J, Zhang Y, et al. (2018) Distributed Secondary Voltage Control of Microgrids with Nonuniform Time-Varying Delays. in Chinese Control Conference, CCC, 2018, 8809-8814. doi: 10.23919/ChiCC.2018.8483983.
    [12] Sarkar SK, Roni MHK, Datta D, et al. (2019) Improved Design of High-Performance Controller for Voltage Control of Islanded Microgrid. IEEE Syst J 13: 1786-1795. doi: 10.1109/JSYST.2018.2830504. doi: 10.1109/JSYST.2018.2830504
    [13] Aghaee F, Dehkordi NM, Bayati N, et al. (2019) Distributed control methods and impact of communication failure in AC microgrids: A comparative review. Electronics 8: 1265. doi: 10.3390/electronics8111265. doi: 10.3390/electronics8111265
    [14] Lou G, Gu W, Lu X, et al. (2020) Distributed Secondary Voltage Control in Islanded Microgrids with Consideration of Communication Network and Time Delays. IEEE T Smart Grid 11: 3702-3715. doi: 10.1109/TSG.2020.2979503. doi: 10.1109/TSG.2020.2979503
    [15] Ci S, Qian J, Wu D, et al. (2012) Impact of wireless communication delay on load sharing among distributed generation systems through smart microgrids. IEEE Wirel Commun 19: 24-29. doi: 10.1109/MWC.2012.6231156. doi: 10.1109/MWC.2012.6231156
    [16] Xu Y, Wang W (2013) Wireless mesh network in smart grid: Modeling and analysis for time critical communications. IEEE T Wirel Commun 12: 3360-3371. doi: 10.1109/TWC.2013.061713.121545. doi: 10.1109/TWC.2013.061713.121545
    [17] Lai J, Zhou H, Hu W, et al. (2015) Synchronization of Hybrid Microgrids with Communication Latency. Math Probl Eng 2015: 1-10. doi: 10.1155/2015/586260. doi: 10.1155/2015/586260
    [18] Alfergani A, Khalil A (2017) Modeling and control of master-slave microgrid with communication delay. 2017 8th Int Renew Energy Congr IREC, 1-6. doi: 10.1109/IREC.2017.7926049. doi: 10.1109/IREC.2017.7926049
    [19] Chen G, Guo Z (2019) Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays. IEEE T Smart Grid 10: 2002-2014. doi: 10.1109/TSG.2017.2785811. doi: 10.1109/TSG.2017.2785811
    [20] Nasirian V, Davoudi A, Lewis FL, et al. (2014) Distributed adaptive droop control for DC distribution systems. IEEE T Energy Conver 29: 944-956. doi: 10.1109/TEC.2014.2350458. doi: 10.1109/TEC.2014.2350458
    [21] Nasirian V, Moayedi S, Davoudi A, et al. (2015) Distributed cooperative control of dc microgrids. IEEE T Power Electr 30: 2288-2303. doi: 10.1109/TPEL.2014.2324579. doi: 10.1109/TPEL.2014.2324579
    [22] Nasirian V, Shafiee Q, Guerrero JM, et al. (2016) Droop-Free Distributed Control for AC Microgrids. IEEE T Power Electr 31: 1600-1617. doi: 10.1109/TPEL.2015.2414457. doi: 10.1109/TPEL.2015.2414457
    [23] Shafiee Q, Stefanovic C, Dragicevic T, et al. (2014) Robust networked control scheme for distributed secondary control of islanded microgrids. IEEE T Ind Electron 61: 5363-5374. doi: 10.1109/TIE.2013.2293711. doi: 10.1109/TIE.2013.2293711
    [24] Sun Y, Zhong C, Hou X, et al. (2017) Distributed cooperative synchronization strategy for multi-bus microgrids. Int J Electr Power 86: 18-28. doi: 10.1016/j.ijepes.2016.09.002. doi: 10.1016/j.ijepes.2016.09.002
    [25] Serban I, Cespedes S, Marinescu C, et al. (2020) Communication requirements in microgrids: A practical survey. IEEE Access 8: 47694-47712. doi: 10.1109/ACCESS.2020.2977928. doi: 10.1109/ACCESS.2020.2977928
    [26] Han, Y, Li, H, Shen P, et al. (2017) Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids. IEEE T Power Electr 32: 2427-2451. doi: 10.1109/TPEL.2016.2569597 doi: 10.1109/TPEL.2016.2569597
    [27] Dragicevic T, Lu X, Vasquez JC, et al. (2016) DC Microgrids - Part Ⅰ: A Review of Control Strategies and Stabilization Techniques. IEEE T Power Electron 31: 4876-4891. doi: 10.1109/TPEL.2015.2478859. doi: 10.1109/TPEL.2015.2478859
    [28] Vandoorn TL, De Kooning JDM, Meersman B, et al. (2013) Review of primary control strategies for islanded microgrids with power-electronic interfaces. Renewable and Sustainable Energy Reviews 19: 613-628. doi: 10.1016/j.rser.2012.11.062. doi: 10.1016/j.rser.2012.11.062
    [29] Ekanayake UN, Navaratne US (2020) A Survey on Microgrid Control Techniques in Islanded Mode. Electr Comput Eng 2020: 1-8. doi: 10.1155/2020/6275460. doi: 10.1155/2020/6275460
    [30] Rajesh KS, Dash SS, Rajagopal R, et al. (2016) A review on control of ac microgrid. Renew Sustain Energy Rev 71: 814-819. doi: 10.1016/j.rser.2016.12.106. doi: 10.1016/j.rser.2016.12.106
    [31] Han Y, Ning X, Yang P, et al. (2019) Review of Power Sharing, Voltage Restoration and Stabilization Techniques in Hierarchical Controlled DC Microgrids. IEEE Access 7: 149202-149223. doi: 10.1109/ACCESS.2019.2946706. doi: 10.1109/ACCESS.2019.2946706
    [32] Meng L, Shafiee Q, Trecate GF, et al. (2017) Review on Control of DC Microgrids and Multiple Microgrid Clusters. IEEE J Emerg Sel Top Power Electron 5: 928-948. doi: 10.1109/JESTPE.2017.2690219. doi: 10.1109/JESTPE.2017.2690219
    [33] Arbab-Zavar B, Palacios-Garcia EJ, Vasquez JC, et al. (2019) Smart inverters for microgrid applications: A review. Energies 12: 840. doi: 10.3390/en12050840. doi: 10.3390/en12050840
    [34] Nejabatkhah F, Li YW, Liang H, et al. (2021) Cyber-security of smart microgrids: A survey. Energies 14: 27. doi: 10.3390/en14010027. doi: 10.3390/en14010027
    [35] Habib HF, Lashway CR, Mohammed OA (2017) On the adaptive protection of microgrids: A review on how to mitigate cyber attacks and communication failures. 2017 IEEE Ind Appl Soc Annu Meet IAS, 1-8. doi: 10.1109/IAS.2017.8101886. doi: 10.1109/IAS.2017.8101886
    [36] Dahunsi F, Olayanju S, Ponle A, et al. (2021) Communication Network Simulation for Smart Metering Applications: A Review. J Innov Sci Eng 5: 101-128. doi: 10.38088/jise.835725. doi: 10.38088/jise.835725
    [37] O'Raw J, Laverty DM, Morrow DJ (2016) Software defined networking as a mitigation strategy for data communications in power systems critical infrastructure. IEEE Power and Energy Society General Meeting, 1-5. doi: 10.1109/PESGM.2016.7741417. doi: 10.1109/PESGM.2016.7741417
    [38] Sivaneasan B, So PL, Gooi HB, et al. (2013) Performance measurement and analysis of WiMAX-LAN communication operating at 5.8 GHz. IEEE T Ind Inform 9: 1497-1506. doi: 10.1109/TⅡ.2013.2258163. doi: 10.1109/TⅡ.2013.2258163
    [39] Sevilla AP, Ortega EI, Hincapie R (2015) FiWi network planning for smart metering based on multistage stochastic programming. IEEE Lat Am Trans 13: 3838-3843. doi: 10.1109/TLA.2015.7404917. doi: 10.1109/TLA.2015.7404917
    [40] Llaria A, Terrasson G, Curea O, et al. (2016) Application of wireless sensor and actuator networks to achieve intelligent microgrids: A promising approach towards a global smart grid deployment. Appl Sci 6: 61. doi: 10.3390/app6030061. doi: 10.3390/app6030061
    [41] Siow LK, So PL, Gooi HB, et al. (2009) Wi-Fi based server in microgrid energy management system. IEEE Reg 10 Annu Int Conf Proceedings/TENCON, 1-5. doi: 10.1109/TENCON.2009.5395995. doi: 10.1109/TENCON.2009.5395995
    [42] Setiawan MA, Shahnia F, Rajakaruna S, et al. (2015) ZigBee-Based Communication System for Data Transfer Within Future Microgrids. IEEE T Smart Grid 6: 2343-2355. doi: 10.1109/TSG.2015.2402678. doi: 10.1109/TSG.2015.2402678
    [43] Sharma D, Dubey A, Mishra S, et al. (2019) A Frequency Control Strategy Using Power Line Communication in a Smart Microgrid. IEEE Access 7: 21712-21721. doi: 10.1109/ACCESS.2019.2897051. doi: 10.1109/ACCESS.2019.2897051
    [44] Jeong DK, Kim HS, Baek JW, et al. (2018) Autonomous control strategy of DC microgrid for islanding mode using power line communication. Energies 11: 1-22. doi: 10.3390/en11040924. doi: 10.3390/en11040924
    [45] Ustun TS, Khan RH (2015) Multiterminal Hybrid Protection of Microgrids over Wireless Communications Network. IEEE T Smart Grid 6: 2493-2500. doi: 10.1109/TSG.2015.2406886. doi: 10.1109/TSG.2015.2406886
    [46] Ndukwe C, Iqbal MT, Liang X, et al. (2020) LoRa-based communication system for data transfer in microgrids. AIMS Electron Electr Eng 4: 303-325. doi: 10.3934/ElectrEng.2020.3.303. doi: 10.3934/ElectrEng.2020.3.303
    [47] Khatua PK, Ramachandaramurthy VK, Kasinathan P, et al. (2020) Application and assessment of internet of things toward the sustainability of energy systems: Challenges and issues. Sustain Cities Soc 53: 101957. doi: 10.1016/j.scs.2019.101957. doi: 10.1016/j.scs.2019.101957
    [48] Nojavanzadeh D, Lotfifard S, Liu Z, et al. (2021) Scale-free Distributed Cooperative Voltage Control of Inverter-based Microgrids with General Time-varying Communication Graphs. IEEE T Power Syst, 1-8.
    [49] Cardwell N, Savage S, Anderson T (2000) Modeling TCP latency. Proc IEEE INFOCOM 3: 1742-1751. doi: 10.1109/infcom.2000.832574. doi: 10.1109/infcom.2000.832574
    [50] Jacobsson K, Hjalmarsson H, Möller N, et al. (2004) Round trip time estimation in communication networks using adpative Kalman filtering. Regl Conf.
    [51] Jiang L, Yao W, Wu QH, et al. (2012) Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE T Power Syst 27: 932-941. doi: 10.1109/TPWRS.2011.2172821. doi: 10.1109/TPWRS.2011.2172821
    [52] Cheng L, Hou ZG, Tan M (2014) A mean square consensus protocol for linear multi-agent systems with communication noises and fixed topologies. IEEE T Automat Contr 59: 261-267. doi: 10.1109/TAC.2013.2270873. doi: 10.1109/TAC.2013.2270873
    [53] Wang Y, Cheng L, Hou ZG, et al. (2015) Consensus seeking in a network of discrete-time linear agents with communication noises. Int J Syst Sci 46: 1874-1888. doi: 10.3182/20140824-6-za-1003.00344. doi: 10.3182/20140824-6-za-1003.00344
    [54] Morita R, Wada T, Masubuchi I, et al. (2016) Multiagent consensus with noisy communication: Stopping rules based on network graphs. IEEE T Control Netw 3: 358-365. doi: 10.1109/TCNS.2015.2481119. doi: 10.1109/TCNS.2015.2481119
    [55] Liu J, Ming P, Li S (2016) Consensus gain conditions of stochastic multi-agent system with communication noise. Int J Control Autom 14: 1223-1230. doi: 10.1007/s12555-014-0360-5. doi: 10.1007/s12555-014-0360-5
    [56] Chaudhuri B, Majumder R, Pal BC (2004) Wide-area measurement-based stabilizing control of power system considering signal transmission delay. IEEE T Power Syst 19: 1971-1979. doi: 10.1109/TPWRS.2004.835669. doi: 10.1109/TPWRS.2004.835669
    [57] Rana MM (2017) Least mean square fourth based microgrid state estimation algorithm using the internet of things technology. PLoS One 12: 1-13. doi: 10.1371/journal.pone.0176099. doi: 10.1371/journal.pone.0176099
    [58] Setiawan MA, Abu-Siada A, Shahnia F (2018) A New Technique for Simultaneous Load Current Sharing and Voltage Regulation in DC Microgrids. IEEE T Ind Inform 14: 1403-1414. doi: 10.1109/TⅡ.2017.2761914. doi: 10.1109/TⅡ.2017.2761914
    [59] Ullah S, Khan L, Sami I, et al. (2021) Consensus-Based Delay-Tolerant Distributed Secondary Control Strategy for Droop Controlled AC Microgrids. IEEE Access 9: 6033-6049. doi: 10.1109/ACCESS.2020.3048723. doi: 10.1109/ACCESS.2020.3048723
    [60] Shuai Z, Huang W, Shen X, et al. (2019) A Maximum Power Loading Factor (MPLF) Control Strategy for Distributed Secondary Frequency Regulation of Islanded Microgrid. IEEE T Power Electron 34: 2275-2291. doi: 10.1109/TPEL.2018.2837125. doi: 10.1109/TPEL.2018.2837125
    [61] Jin D, Li Z, Hannon C, et al. (2017) Toward a Cyber Resilient and Secure Microgrid Using Software-Defined Networking. IEEE T Smart Grid 8: 2494-2504. doi: 10.1109/TSG.2017.2703911. doi: 10.1109/TSG.2017.2703911
    [62] Liu X, Li Z (2017) False Data Attacks Against AC State Estimation with Incomplete Network Information. IEEE T Smart Grid 8: 2239-2248. doi: 10.1109/TSG.2016.2521178. doi: 10.1109/TSG.2016.2521178
    [63] Saha S, Roy TK, Mahmud MA, et al. (2018) Electrical Power and Energy Systems Sensor fault and cyber attack resilient operation of DC microgrids. Int J Elec Power 99: 540-554. doi: 10.1016/j.ijepes.2018.01.007. doi: 10.1016/j.ijepes.2018.01.007
    [64] Wu D, Member S, Ci S, et al. (2010) Application-Centric Routing for Video Streaming Over MultiHop Wireless Networks. IEEE T Circ Syst Vid 20: 1721-1734.
    [65] Rana MM, Li L, Su SW (2016) Distributed condition monitoring of renewable microgrids using adaptive-then-combine algorith. IEEE Power and Energy Society General Meeting, 1-6. doi: 10.1109/PESGM.2016.7741544. doi: 10.1109/PESGM.2016.7741544
    [66] Zheng L, Lu N, Cai L (2013) Reliable wireless communication networks for demand response control. IEEE T Smart Grid 4: 133-140. doi: 10.1109/TSG.2012.2224892. doi: 10.1109/TSG.2012.2224892
    [67] Zhang R, Hredzak B (2019) Distributed finite-time multiagent control for DC microgrids with time delays. IEEE T Smart Grid 10: 2692-2701. doi: 10.1109/TSG.2018.2808467. doi: 10.1109/TSG.2018.2808467
    [68] Zhou J, Tsai MJ, Cheng PT (2020) Consensus-Based Cooperative Droop Control for Accurate Reactive Power Sharing in Islanded AC Microgrid. IEEE J Em Sel Top P 8: 1108-1116. doi: 10.1109/JESTPE.2019.2946658. doi: 10.1109/JESTPE.2019.2946658
    [69] Jacobsson K, Hjalmarsson H, Möller N, et al. (2004) Round trip time estimation in communication networks using adpative Kalman filtering. Reglermöte Conference, 1-5.
    [70] Das A, Shukla A, Shyam AB, et al. (2021) A Distributed-Controlled Harmonic Virtual Impedance Loop for AC Microgrids. IEEE T Ind Electron 68: 3949-3961. doi: 10.1109/TIE.2020.2987290. doi: 10.1109/TIE.2020.2987290
    [71] Da Silva WWAG, Oliveira TR, Donoso-Garcia PF (2020) Hybrid Distributed and Decentralized Secondary Control Strategy to Attain Accurate Power Sharing and Improved Voltage Restoration in DC Microgrids. IEEE T Power Electron 35: 6458-6469. doi: 10.1109/TPEL.2019.2951012. doi: 10.1109/TPEL.2019.2951012
    [72] Sharma D, Mishra S (2020) Disturbance-Observer-Based Frequency Regulation Scheme for Low-Inertia Microgrid Systems. IEEE Syst J 14: 782-792. doi: 10.1109/JSYST.2019.2901749. doi: 10.1109/JSYST.2019.2901749
    [73] Prabhakaran P, Goyal Y, Agarwal V (2019) A novel communication-based average voltage regulation scheme for a droop controlled DC microgrid. IEEE T Smart Grid 10: 1250-1258. doi: 10.1109/TSG.2017.2761864. doi: 10.1109/TSG.2017.2761864
    [74] Liu J, Du Y, Yim S, et al. (2020) Steady-State Analysis of Microgrid Distributed Control under Denial of Service Attacks. IEEE J Em Sel Top P 9: 5311-5325. doi: 10.1109/JESTPE.2020.2990879. doi: 10.1109/JESTPE.2020.2990879
    [75] Fu R, Huang X, Sun J, et al. (2017) Stability analysis of the cyber physical microgrid system under the intermittent DoS attacks. Energies 10: 1-15. doi: 10.3390/en10050680. doi: 10.3390/en10050680
    [76] Danzi P, Angjelichinoski M, Stefanovic C, et al. (2018) Software-Defined Microgrid Control for Resilience Against Denial-of-Service Attacks. IEEE T Smart Grid 10: 5258-5268. doi: 10.1109/TSG.2018.2879727. doi: 10.1109/TSG.2018.2879727
    [77] Ding L, Han QL, Ning B, et al. (2020) Distributed Resilient Finite-Time Secondary Control for Heterogeneous Battery Energy Storage Systems under Denial-of-Service Attacks. IEEE T Ind Inform 16: 4909-4919. doi: 10.1109/TII.2019.2955739. doi: 10.1109/TII.2019.2955739
    [78] Mustafa A, Poudel B, Bidram A, et al. (2020) Detection and Mitigation of Data Manipulation Attacks in AC Microgrids. IEEE T Smart Grid 11: 2588-2603. doi: 10.1109/TSG.2019.2958014. doi: 10.1109/TSG.2019.2958014
    [79] Poudel BP, Mustafa A, Bidram A, et al. (2020) Detection and mitigation of cyber-threats in the DC microgrid distributed control system. Int J Elec Power 120: 105968. doi: 10.1016/j.ijepes.2020.105968. doi: 10.1016/j.ijepes.2020.105968
    [80] Ghiasi M, Dehghani M, Niknam T, et al. (2021) Cyber-Attack Detection and Cyber-Security Enhancement in Smart DC-Microgrid Based on Blockchain Technology and Hilbert Huang Transform. IEEE Access 9: 29429-29440. doi: 10.1109/ACCESS.2021.3059042. doi: 10.1109/ACCESS.2021.3059042
    [81] Islam SN, Mahmud MA, Oo AMT (2018) Impact of optimal false data injection attacks on local energy trading in a residential microgrid. ICT Express 4: 30-34. doi: 10.1016/j.icte.2018.01.015. doi: 10.1016/j.icte.2018.01.015
    [82] Beg OA, Nguyen LV, Johnson TT, et al. (2019) Signal Temporal Logic-Based Attack Detection in DC Microgrids. IEEE T Smart Grid 10: 3585-3595. doi: 10.1109/TSG.2018.2832544. doi: 10.1109/TSG.2018.2832544
    [83] Yassaie N, Hallajiyan M, Sharifi I, et al. (2021) Resilient control of multi-microgrids against false data injection attack. ISA T 110: 238-246. doi: 10.1016/j.isatra.2020.10.030. doi: 10.1016/j.isatra.2020.10.030
    [84] Mahmood H, Mahmood D, Shaheen Q, et al. (2021) S-DPs: An SDN-based DDoS protection system for smart grids. Secur Commun Netw. doi: 10.1155/2021/6629098. doi: 10.1155/2021/6629098
    [85] Rokrok E, Shafie-khah M, Catalão JPS (2018) Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renewable and Sustainable Energy Reviews 82: 3225-3235. doi: 10.1016/j.rser.2017.10.022. doi: 10.1016/j.rser.2017.10.022
    [86] Han H, Liu Y, Sun Y, et al. (2015) An Improved Droop Control Strategy for Reactive Power Sharing in Islanded Microgrid. IEEE T Power Electr 30: 3133-3141. doi: 10.1109/TPEL.2014.2332181. doi: 10.1109/TPEL.2014.2332181
    [87] Ahumada C, Cárdenas R, Sáez D, et al. (2016) Secondary Control Strategies for Frequency Restoration in Islanded Microgrids With Consideration of Communication Delays. IEEE T Smart Grid 7: 1430-1441. doi: 10.1109/TSG.2015.2461190. doi: 10.1109/TSG.2015.2461190
    [88] Sheng W, Hong Y, Wu M, et al. (2020) A cooperative control scheme for AC/DC hybrid autonomous microgrids. Processes 8: 1-15. doi: 10.3390/pr8030311. doi: 10.3390/pr8030311
    [89] Ma J, Wang X, Liu J, et al. (2019) An improved droop control method for voltage-source inverter parallel systems considering line impedance differences. Energies 12: 1158. doi: 10.3390/en12061158. doi: 10.3390/en12061158
    [90] Sreekumar P, Khadkikar V (2015) A New Virtual Harmonic Impedance Scheme for Harmonic Power Sharing in an Islanded Microgrid. IEEE T Power Deliver 31: 936-945. doi: 10.1109/TPWRD.2015.2402434. doi: 10.1109/TPWRD.2015.2402434
    [91] Mahmood H, Michaelson D, Jiang J (2015) Reactive Power Sharing in Islanded Microgrids Using Adaptive Voltage Droop Control. IEEE T Smart Grid 6: 3052-3060. doi: 10.1109/TSG.2015.2399232. doi: 10.1109/TSG.2015.2399232
    [92] Khan MRB, Jidin R, Pasupuleti J (2016) Multi-agent based distributed control architecture for microgrid energy management and optimization. Energy Convers Manag 112: 288-307. doi: 10.1016/j.enconman.2016.01.011. doi: 10.1016/j.enconman.2016.01.011
    [93] Li Q, Chen F, Chen M, et al. (2016) Agent-Based Decentralized Control Method for Islanded Microgrids. IEEE T Smart Grid 7: 637-649. doi: 10.1109/TSG.2015.2422732. doi: 10.1109/TSG.2015.2422732
    [94] Zhang H, Kim S, Sun Q, et al. (2017) Distributed Adaptive Virtual Impedance Control for Accurate Reactive Power Sharing Based on Consensus Control in Microgrids. IEEE T Smart Grid 8: 1749-1761. doi: 10.1109/TSG.2015.2506760. doi: 10.1109/TSG.2015.2506760
    [95] Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE T Automat Contr 49: 1520-1533.
    [96] Sugie T, Anderson BDO, Sun Z, et al. (2018) On a hierarchical control strategy for multi-agent formation without reflection. Proceedings of the IEEE Conference on Decision and Control, 2023-2028. doi: 10.1109/CDC.2018.8619404. doi: 10.1109/CDC.2018.8619404
    [97] Ajorlou A, Aghdam AG (2013) Connectivity preservation in nonholonomic multi-agent systems: A bounded distributed control strategy. IEEE T Automat Contr 58: 2366-2371. doi: 10.1109/TAC.2013.2251792. doi: 10.1109/TAC.2013.2251792
    [98] Dou CX, Liu B (2013) Multi-agent based hierarchical hybrid control for smart microgrid. IEEE T Smart Grid 4: 771-778. doi: 10.1109/TSG.2012.2230197. doi: 10.1109/TSG.2012.2230197
    [99] Liu W, Gu W, Sheng W, et al. (2014) Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints. IEEE T Sustain Energy 5: 446-456. doi: 10.1109/TSTE.2013.2293148. doi: 10.1109/TSTE.2013.2293148
    [100] Nguyen TL, Tran QT, Caire R, et al. (2017) Agent based distributed control of islanded microgrid-Real-time cyber-physical implementation. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017 - Proceedings, 1-6. doi: 10.1109/ISGTEurope.2017.8260275. doi: 10.1109/ISGTEurope.2017.8260275
    [101] Yao J, Yang S, Wang K, et al. (2014) Framework for Future Smart Grid Operation and Control with Source-Grid-Load Interaction. IFAC Proceedings Volumes 47: 2788-2793.
    [102] Han R, Meng L, Ferrari-Trecate G, et al. (2017) Containment and Consensus-Based Distributed Coordination Control to Achieve Bounded Voltage and Precise Reactive Power Sharing in Islanded AC Microgrids. IEEE T Ind Appl 53: 5187-5199. doi: 10.1109/TIA.2017.2733457. doi: 10.1109/TIA.2017.2733457
    [103] Dehkordi NM, Baghaee HR, Sadati N, et al. (2019) Distributed Noise-Resilient Secondary Voltage and Frequency Control for Islanded Microgrids. IEEE T Smart Grid 10: 3780-3790. doi: 10.1109/TSG.2018.2834951. doi: 10.1109/TSG.2018.2834951
    [104] Badal FR, Das P, Sarker SK, et al. (2019) A survey on control issues in renewable energy integration and microgrid. Prot Control Mod Power Syst 4: 1-27. doi: 10.1186/s41601-019-0122-8. doi: 10.1186/s41601-019-0122-8
    [105] Nair UR (2020) A Model Predictive Control-Based Energy Management Scheme for Hybrid Storage System in Islanded Microgrids. IEEE Access 8: 97809-97822. doi: 10.1109/ACCESS.2020.2996434. doi: 10.1109/ACCESS.2020.2996434
    [106] Parisio A, Rikos E, Tzamalis G, et al. (2014) Use of model predictive control for experimental microgrid optimization. Appl Energy 115: 37-46. doi: 10.1016/j.apenergy.2013.10.027. doi: 10.1016/j.apenergy.2013.10.027
    [107] Verma AK, Gooi HB, Ukil A, et al. (2017) Microgrid frequency stabilization using model predictive controller. 2016 IEEE PES Transm Distrib Conf Expo Am PES T D-LA, 1-6. doi: 10.1109/TDC-LA.2016.7805637. doi: 10.1109/TDC-LA.2016.7805637
    [108] Sarkar SK, Badal FR, Das SK, et al. (2017) Discrete time model predictive controller design for voltage control of an islanded microgrid. 3rd Int Conf Electr Inf Commun Technol EICT, 1-6. doi: 10.1109/EICT.2017.8275162. doi: 10.1109/EICT.2017.8275162
    [109] Lou G, Gu W, Sheng W, et al. (2018) Distributed model predictive secondary voltage control of islanded microgrids with feedback linearization. IEEE Access 6: 50169-50178. doi: 10.1109/ACCESS.2018.2869280. doi: 10.1109/ACCESS.2018.2869280
    [110] Sarker SK, Badal FR, Das P, et al. (2019) Multivariable integral linear quadratic Gaussian robust control of islanded microgrid to mitigate voltage oscillation for improving transient response. Asian J Control 21: 2114-2125. doi: 10.1002/asjc.2215. doi: 10.1002/asjc.2215
    [111] Vandoorn T, Renders B, Degroote L, et al. (2010) Voltage control in islanded microgrids by means of a linear-quadratic regulator. Proc IEEE Benelux Young Researchers Symposium in Electrical Power Engineering (YRS10).
    [112] Rahman M, Sarkar SK, Das SK, et al. (2018) A comparative study of LQR, LQG, and integral LQG controller for frequency control of interconnected smart grid. 3rd Int Conf Electr Inf Commun Technol EICT, 1-6. doi: 10.1109/EICT.2017.8275216. doi: 10.1109/EICT.2017.8275216
    [113] Sedhom BE, Hatata AY, El-Saadawi MM, et al. (2019) Robust adaptive H-infinity based controller for islanded microgrid supplying non-linear and unbalanced loads. IET Smart Grid 2: 420-435. doi: 10.1049/iet-stg.2019.0024. doi: 10.1049/iet-stg.2019.0024
    [114] Vandoorn TL, Ionescu CM, De Kooning JDM, et al. (2013) Theoretical analysis and experimental validation of single-phase direct versus cascade voltage control in islanded microgrids. IEEE T Ind Electron 60: 789-798. doi: 10.1109/TIE.2012.2205362. doi: 10.1109/TIE.2012.2205362
    [115] Singh A, Suhag S (2020) Frequency regulation in an AC microgrid interconnected with thermal system employing multiverse-optimised fractional order-PID controller. Int J Sustain Energy 39: 250-262. doi: 10.1080/14786451.2019.1684286. doi: 10.1080/14786451.2019.1684286
    [116] Singh A, Suhag S (2019) Frequency Regulation in AC Microgrid with and without Electric Vehicle Using Multiverse-Optimized Fractional Order- PID controller. Int J Comput Digit Syst 8: 375-385. doi: 10.12785/ijcds/080406. doi: 10.12785/ijcds/080406
    [117] Sarkar SK, Badal FR, Das SK (2018) A comparative study of high performance robust PID controller for grid voltage control of islanded microgrid. Int J Dyn Control 6: 1207-1217. doi: 10.1007/s40435-017-0364-0. doi: 10.1007/s40435-017-0364-0
    [118] Mongkoltanatas J, Riu D, Lepivert X (2013) H infinity controller design for primary frequency control of energy storage in islanding MicroGrid. 2013 15th Eur Conf Power Electron Appl (EPE), 1-11. doi: 10.1109/EPE.2013.6634714. doi: 10.1109/EPE.2013.6634714
    [119] Bevrani H, Feizi MR, Ataee S (2016) Robust Frequency Control in an Islanded Microgrid: H∞ and μ-Synthesis Approaches. IEEE T Smart Grid 7: 706-717. doi: 10.1109/TSG.2015.2446984. doi: 10.1109/TSG.2015.2446984
    [120] Kerdphol T, Rahman FS, Mitani Y, et al. (2018) Robust Virtual Inertia Control of an Islanded Microgrid Considering High Penetration of Renewable Energy. IEEE Access 6: 625-636. doi: 10.1109/ACCESS.2017.2773486. doi: 10.1109/ACCESS.2017.2773486
    [121] Krishna Metihalli B, Narayana Sabhahit J (2021) Disturbance Observer Based Distributed Consensus Control Strategy of Multi-Agent System with External Disturbance in a Standalone DC Microgrid. Asian J Control 23: 920-936. doi: 10.1002/asjc.2287. doi: 10.1002/asjc.2287
    [122] Keshta HE, Ali AA, Saied EM, et al. (2019) Real-time operation of multi-micro-grids using a multi-agent system. Energy 174: 576-590. doi: 10.1016/j.energy.2019.02.145. doi: 10.1016/j.energy.2019.02.145
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2563) PDF downloads(164) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog