
The advancement in communication technology and the availability of intelligent electronic devices (IEDs) have impacted positively on the penetration of renewable energy sources (RES) into the main electricity grid. High penetration of RES also come along with greater demand for more effective control approaches, congestion management techniques, and microgrids optimal dispatch. Most of the secondary control methods of microgrid systems in the autonomous mode require communication links between the distributed generators (DGs) for sharing power information and data for control purposes. This article gives ample review on the communication induced impairments in islanded microgrids. In the review, attention is given to communication induced delay, data packet loss, and cyber-attack that degrades optimal operations of islanded microgrids. The review also considered impairments modelling, the impact of impairments on microgrids operation and management, and the control methods employed in mitigating some of their negative impacts. The paper revealed that innovative control solutions for impairment mitigation rather than the development of new high-speed communication infrastructure should be implemented for microgrid control. It was also pointed out that a sparse communication graph is the basis for communication topology design for distributed secondary control in the microgrid.
Citation: Olayanju Sunday Akinwale, Dahunsi Folasade Mojisola, Ponnle Akinlolu Adediran. Mitigation strategies for communication networks induced impairments in autonomous microgrids control: A review[J]. AIMS Electronics and Electrical Engineering, 2021, 5(4): 342-375. doi: 10.3934/electreng.2021018
[1] | Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319 |
[2] | Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421 |
[3] | Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut . Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences and Engineering, 2013, 10(4): 997-1015. doi: 10.3934/mbe.2013.10.997 |
[4] | Shangbing Ai, Zhian Wang . Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences and Engineering, 2015, 12(4): 717-737. doi: 10.3934/mbe.2015.12.717 |
[5] | Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379 |
[6] | Maghnia Hamou Maamar, Matthias Ehrhardt, Louiza Tabharit . A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Mathematical Biosciences and Engineering, 2024, 21(1): 924-962. doi: 10.3934/mbe.2024039 |
[7] | Qigang Deng, Fugeng Zeng, Dongxiu Wang . Global existence and blow up of solutions for a class of coupled parabolic systems with logarithmic nonlinearity. Mathematical Biosciences and Engineering, 2022, 19(8): 8580-8600. doi: 10.3934/mbe.2022398 |
[8] | Z. Jackiewicz, B. Zubik-Kowal, B. Basse . Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences and Engineering, 2009, 6(3): 561-572. doi: 10.3934/mbe.2009.6.561 |
[9] | Benjamin Wacker, Jan Christian Schlüter . A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications. Mathematical Biosciences and Engineering, 2023, 20(7): 12923-12954. doi: 10.3934/mbe.2023577 |
[10] | Fadoua El Moustaid, Amina Eladdadi, Lafras Uys . Modeling bacterial attachment to surfaces as an early stage of biofilm development. Mathematical Biosciences and Engineering, 2013, 10(3): 821-842. doi: 10.3934/mbe.2013.10.821 |
The advancement in communication technology and the availability of intelligent electronic devices (IEDs) have impacted positively on the penetration of renewable energy sources (RES) into the main electricity grid. High penetration of RES also come along with greater demand for more effective control approaches, congestion management techniques, and microgrids optimal dispatch. Most of the secondary control methods of microgrid systems in the autonomous mode require communication links between the distributed generators (DGs) for sharing power information and data for control purposes. This article gives ample review on the communication induced impairments in islanded microgrids. In the review, attention is given to communication induced delay, data packet loss, and cyber-attack that degrades optimal operations of islanded microgrids. The review also considered impairments modelling, the impact of impairments on microgrids operation and management, and the control methods employed in mitigating some of their negative impacts. The paper revealed that innovative control solutions for impairment mitigation rather than the development of new high-speed communication infrastructure should be implemented for microgrid control. It was also pointed out that a sparse communication graph is the basis for communication topology design for distributed secondary control in the microgrid.
In this paper, the finite-difference method (FDM) is applied to solve the following two-dimensional (2D) Keller-Segel model [1,2]:
{ut+∇⋅(χu∇v)=dΔu,vt=Δv−v+u,(x,y,t)∈Ω×(0,T]. | (1.1) |
The model (1.1) describes the evolutionary process of cell density u(x,y,t) and a chemical stimulus (chemoattractant) concentration v(x,y,t) over a time t and location (x,y), where Ω={(x,y)|a⩽x,y⩽b}⊂R2 is a convex bounded domain and a and b are constants. ∇ and Δ are gradient and Laplacian operators, respectively. χ>0 represents the chemotactic sensitivity constant; d>0 denotes the diffusion rate of cells. In addition, the initial conditions related with (1.1) are given as
u(x,y,0)=u0(x,y),v(x,y,0)=v0(x,y),(x,y)∈Ω, | (1.2) |
and the boundary conditions are assumed to be homogeneous Neumann boundary conditions, that is,
∇u⋅n=∇v⋅n=0,(x,y,t)∈∂Ω×(0,T], | (1.3) |
where ∂Ω is the boundary of Ω and n is the outward normal of ∂Ω. With this condition (1.3), the total mass
Massu=∬Ωu(x,y,t)dxdy=∬Ωu(x,y,0)dxdy |
is conserved as temporal evolution. Besides the above, the model (1.1) has the following form of free energy:
E(u,v)(t)=∬Ω(uln(u)+χ2|∇v|2+χ2v2−χuv)dxdy,t>0. | (1.4) |
From mathematical analysis, the following equation can be verified by direct calculation of Eq. (1.4),
E(u,v)t=−∬Ω(u|∇(ln(u)−χv)|2+χ(vt)2)dxdy⩽0,t>0. |
Many early works show that the free energy (1.4) is decreasing over time and is mainly employed to demonstrate the existence of solutions for the chemotaxis system; see [3,4] and the references therein.
Chemotaxis refers to the directional movement, which includes toward or away from the higher concentrations of cells or microorganisms that are stimulated by chemical substances in the external environment along the gradient directions of the concentration for stimuli. Chemotaxis phenomena play a crucial role in numerous intricate biological evolutions, such as bacterial aggregation, angiogenesis, pattern formation, embryonic development and so on[5]. From as early the 1950 to 1980, the chemotaxis phenomena have been extensively studied by many applied mathematicians and biologists, and a class of models of partial differential systems closely associated with taxis have been proposed; see [1,2,6,7,8,9,10]. Among them the most classical is the above-named system (1.1) (first proposed by Keller and Segel [1,2] in 1970), which simulated the aggregation phenomenon for Amoebae and Dictyostelium, as well as the traveling wave migration phenomenon for Escherichia coli in a capillary filled with nutrients.
Since the model was proposed, many researchers have systematically analyzed the properties of its solution, including its global existence, asymptotic profile [11], global boundedness [12,13], finite-time blow-up [14,15,16], etc. Particularly, if the initial mass ∬Ωu(x,y)dxdy of the cells in the 2D case satisfies a critical threshold value, its solution will blow up in finite time [7,8,9,14,15,16]. This blow-up denotes a mathematical concept of the bacterial aggregation arising in real biotic environments [7,17,18]. However, it is arduous if we want to obtain the analytical solutions of the model due to the strong nonlinear characteristics of the model itself. Meanwhile, it is still difficult to better numerically capture the blow-up or spike solutions. Therefore, it is desperately needed to establish a high accuracy and more stable numerical method to investigate the properties of the solutions for the chemotaxis system given by (1.1)–(1.3). At the same time, the numerical investigation of the chemotaxis system also facilitates the theoretical exploration of its dynamic behavior.
In recent years, some numerical methods have been involved via the investigation of the chemotaxis systems [3,4,16,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]. For example, Saito and Suzuki [19] proposed a conservative numerical scheme by using the FDM to solve a parabolic-elliptic coupling chemotaxis system. Meanwhile, in order to obtain a positivity-preserving scheme under total mass that is conservative, Saito [20] proposed a conservative scheme by using the FDM for the system given by (1.1)–(1.3) with nonlinear diffusion. Xiao et al. [21] derived a semi-implicit scheme by using a characteristic finite element method (FEM) to simulate the blow-up solutions of the chemotaxis system on surfaces, as well as pattern formulation and aggregation phenomenon of bacteria. And, their method has second-order accuracy in L2-norm and H1-norm errors. Epshteyn and Kurganov [22] introduced chemotaxis concentration gradient variables to rewrite the original Keller-Segel model given by (1.1)–(1.3), and they designed an internal penalty discontinuous Galerkin (DG) method for the rewritten system to border on the solution of the original system. Li et al. [23] used a local DG (i.e., LDG) method to modify that in [22], and they obtained the optimal convergence rates based on a specific finite element space before blow-up for the chemotaxis system. They also deduced a positivity-preserving P1 LDG scheme and proved that it is L1-stable. The LDG method was also used to solve the system given by (1.1)–(1.3) in [3], and the energy dissipation with the LDG discretization was proved. Sulman and Nguyen [24] proposed an adaptive moving mesh method by applying an implicit-explicit FEM to solve the system given by (1.1)–(1.3). The method has second-order accuracy in the spatiotemporal directions, and it is noteworthy that the obtained solutions are positive at all time steps if the initial values of the system (1.1) are positive. Qiu et al. [25] proposed a new scheme by using a interface-corrected direct DG method to solve this model (1.1), and their method satisfies the positivity-preserving requiremet without losing third-order accuracy. Based on the gradient flow structure, Shen and Xu [4] proposed a class of numerical schemes for solving the Keller-Segel model given by (1.1)–(1.3). Among them, the first-order accuracy scheme satisfies the mass conservation, bounded positivity, unique solvability and energy dissipation of the original differential equation, while the second-order accuracy scheme satisfies the first three properties. Chen et al. [16] analyzed the error of the numerical scheme proposed in [4], and they deduced the finite-time blow-up of non-radial numerical solutions under certain assumptions. Based on the generalized smoothed particle hydrodynamics meshless method, Dehghan and Abbaszadeh [26] established a second-order-accuracy numerical scheme for some chemotaxis models with the blow-up phenomena during tumor growth, and they numerically simulated the blow-up problems of the original chemotaxis model. Filbet [27] employed the finite volume method (FVM) to approximate the solution of the system given by (1.1)–(1.3), and they simulated the blow-up problems. Chertock and Kurganov [28] developed a center-upward scheme with second-order accuracy by using the FVM based on their previous work in [29] and the blow-up problems of the system (1.1)–(1.3), the pattern formation of bacteria were also simulated. Epshteyn [30] proposed an upwind-difference potentials scheme to solve the problems in complex geometries for the system given by (1.1)–(1.3). In addition, some other numerical methods [31,32,33,34,35], such as the fractional step (or operator splitting) method [31,32], hybrid finite-volume-finite-difference methods [33], generalized FDM [35], etc., were also used to solve the chemotaxis system given by (1.1)–(1.3).
Although some numerical methods mentioned above for solving the system given by (1.1)–(1.3) can achieve high accuracy in the spatial direction, such as those in [25,30] (third-order accuracy) and [3,33] (fourth-order accuracy), most numerical methods have low accuracy, especially in the temporal direction; see [4,16,19,20,21,22,23,24,26,27,28,29,31,32,34,35]. Meanwhile, many high-accuracy numerical methods are non-compact in space, and the stability conditions are relatively harsh. In other words, if we want to employ these methods to solve real problems, we must take a small time step length to satisfy their stability conditions, which will expend expensive computational time. However, the high-order compact (HOC) difference scheme has attracted many researchers because of its strong advantages, such as fewer computational nodes, small computational errors, better numerical stability and non-complicated boundaries. Meanwhile, the backward differentiation formula with fourth-order accuracy (BDF-4), which is an A-stabilized method and appears first in [36], has been verified to be a feasible method to obtain high accuracy, and it has a relatively large stability condition range [37,38]. In addition, the major difficulty in solving the system comes from the nonlinearities, such as the chemotaxis term ∇⋅(χu∇v). One issue is that the coupling form will increase the discrete difficulty when we want to obtain the high accuracy and satisfy mass conservative schemes. Another difficulty is positivity preservation since u and v in the system (1.1)-(1.3) have real biological significance in complex chemotaxis phenomenon and cannot have negative values. To acquire the high-accuracy, positivity-preserving numerical solutions for the system given by (1.1)–(1.3), in this work, our purpose was to derive a compact difference scheme to approximate the solutions of the original chemotaxis system, and the scheme has space-time fourth-order accuracy and is stable, as well as positivity-preserving.
The remainder of this paper is organized as follows. Some preliminary preparations with basic symbols, definitions and theorems are provided in Section 2. In Section 3, we deduce an HOC scheme for the system given by (1.1)–(1.3), and give the computational strategies for the initial time steps and the nonlinear terms. In Section 4, a time advancement algorithm combined with a multigrid method and a positivity-preserving algorithm are proposed. In Section 5, some numerical examples are employed to verify the accuracy, stability, positivity-preserving property, mass conservation and energy dissipation. The finitetime blow-up problems for the chemotaxis system given by (1.1)–(1.3) are simulated by using the proposed method. Finally the conclusion is provided in the end.
First, the domain {(x,y,t)|a⩽x,y⩽b,0⩽t⩽T} is divided by uniform meshes N2×M, M,N∈Z+. Denote h=(b−a)/N to represent the spatial step size, and τ=T/M stands for the temporal step length. Let xi=a+ih,yj=a+jh and tn=nτ, 0⩽i,j⩽N, 0⩽n⩽M, and mark the mesh points (xi,yj,tn). Figure 1 shows the 2D spatial mesh point stencil.
Second, we define Ωh={(xi,yj)|0⩽i,j⩽N}; its discrete boundary ∂Ωh={(0,j),(N,j)|0⩽j⩽N}∪{(i,0),(i,N)|1⩽i⩽N−1}; let Ωτ={tn|0⩽n⩽M} and Ωhτ=Ωh×Ωτ. For any mesh function w∈Whτ={wni,j|0⩽i,j⩽N,0⩽n⩽M} defined on Ωhτ, we have
wn−12i,j=12(wni,j+wn−1i,j),δtwn−12i,j=1τ(wni,j−wn−1i,j),δxwni,j=12h(wni+1,j−wni−1,j),δywni,j=12h(wni,j+1−wni,j−1),δ2xwni,j=1h2(wni+1,j−2wni,j+wni−1,j),δ2ywni,j=1h2(wni,j+1−2wni,j+wni,j−1),Δtwni,j=112τ(25wni,j−48wn−1i,j+36wn−2i,j−16wn−3i,j+3wn−4i,j). |
Next, for simplicity, we let ∂pw∂ςp(x,y,t):≜wςp(x,y,t), p∈Z+, where ς represents x, y or t. And, denote A=[A1,A2,A3,A4,A5]=[−25,48,−36,16,−3], B=[B1,B2,B3]=[1,10,1], S=[S1,S2,S3,S4]=[−1,34,−13,116]. To obtain a higher accuracy on the boundary described by Eq.(1.3), we employ the Taylor expansion with the Peano remainder to cope with Eq. (1.3). Thus, the following theorem holds.
Theorem 2.1. Denote Wh={w(xi,yj)|0⩽i,j⩽N}; for mapping w:Ωh→Wh, we have the following:
(1) If w(x,y)∈C5,0([x0,x4]×[y0,yN]), then wx(x0,yj)=112h5∑k=1Akw(xk−1,yj)+O0,j(h4);
(2) If w(x,y)∈C5,0([xN−4,xN]×[y0,yN]), then wx(xN,yj)=−112hN−1∑k=N−5AN−kw(xk+1,yj)+ON,j(h4);
(3) If w(x,y)∈C0,5([x0,xN]×[y0,y4]), then wy(xi,y0)=112h5∑k=1Akw(xi,yk−1)+Oi,0(h4);
(4) If w(x,y)∈C0,5([x0,xN]×[yN−4,yN]), then wy(xi,yN)=−112hN−1∑k=N−5AN−kw(xi,yk+1)+Oi,N(h4), where the local truncation errors are
O0,j(h4)=h464∑k=1∫10k5Skwx5(x0+ksh,yj)(1−s)4ds,0⩽j⩽N,ON,j(h4)=h464∑k=1∫10k5Skwx5(xN−ksh,yj)(1−s)4ds,0⩽j⩽N,Oi,0(h4)=h464∑k=1∫10k5Skwy5(xi,y0+ksh)(1−s)4ds,0⩽i⩽N,Oi,N(h4)=h464∑k=1∫10k5Skwy5(xi,yN−ksh)(1−s)4ds,0⩽i⩽N. |
Proof. First, we prove (1). We assume that w(x,y)∈Ck+1,0([xi−1,xi+1]×[y0,yN]), and, according to the Taylor expansion with the Peano remainder, we have
w(xi±h,yj)=k∑l=0(−1)lhll!wxl(xi,yj)+hk+1k!∫10wxk+1(xi±sh,yj)(1−s)kds, | (2.1) |
where 1⩽i⩽N−1 and 0⩽j⩽N. We suppose that w(x,y)∈C5,0([x0,x4]×[y0,yN]) and expand w(x1,yj), w(x2,yj), w(x3,yj) and w(x4,yj) at (x0,yj) by using Eq. (2.1) above, that is, we respectively take k=1,2,3,4, and have
w(xk,yj)=4∑l=0(kh)ll!wxl(x0,yj)+(kh)524∫10wx5(x0+ksh,yj)(1−s)4ds. | (2.2) |
Then, we perform the following the operation: Eq. (2.2)k=1+α× Eq. (2.2)k=2+β× Eq. (2.2)k=3+γ× Eq. (2.2)k=4 for Eq. (2.2), and denote E=[E1,E2,E3,E4]=[1,α,β,γ], where α,β and γ, are constants; then, we can obtain
4∑k=1Ekw(xk,yj)=5∑m=14∑k=1(kh)m−1(m−1)!Ekwxm−1(x0,yj)+h5244∑k=1k5Ek∫10wx5(x0+ksh,yj)(1−s)4ds. | (2.3) |
Suppose that the coefficients of wx2(x0,yj), wx3(x0,yj) and wx4(x0,yj) in Eq. (2.3) equal to 0; we obtain
{4∑k=1k2Ek=0,4∑k=1k3Ek=0,4∑k=1k4Ek=0.⟹{α=−34,β=13,γ=−116. |
Substituting them into Eq. (2.3), denote A=[−25,48,−36,16,−3] and S=[−1,34,−13,116], and we have
wx(x0,yj)=112h5∑k=1Akw(xk−1,yj)+O0,j(h4),0⩽j⩽N, |
where O0,j(h4)=h464∑k=1∫10k5Skwx5(x0+ksh,yj)(1−s)4ds. Similarly, (2) and (3) are also easily obtained. The proof is complete.
According to Theorem 2.1, and by considering wx(x0,yj)=0, wx(xN,yj)=0, wy(xi,y0)=0 and wy(xi,yN)=0, we can easily derive the following fourth-order-accuracy boundary approximation formulas:
w(x0,yj)≈125[48w(x1,yj)−36w(x2,yj)+16w(x3,yj)−3w(x4,yj)],w(xN,yj)≈125[48w(xN−1,yj)−36w(xN−2,yj)+16w(xN−3,yj)−3w(xN−4,yj)],w(xi,y0)≈125[48w(xi,y1)−36w(xi,y2)+16w(xi,y3)−3w(xi,y4)],w(xi,yN)≈125[48w(xi,yN−1)−36w(xi,yN−2)+16w(xi,yN−3)−3w(xi,yN−4)]. |
In addition, we suppose that w(x,y,t)∈C6,6,5([xi−1,xi+1]×[yj−1,yj+1]×[tn,tn−1]) for 1⩽i,j⩽N−1, 1⩽n⩽M, and we denote I=[1,−24,81,−64] to derive the following truncation errors based on the Taylor expansion with the Peano remainder, that is,
(Oxx)ni,j(h4)=h424∫102∑k=1[13(1−s)3−15(1−s)5]wx6(xi+(−1)k−1sh,yj,tn)ds,(Ot)ni,j(τ4)=−τ46∫10(1−μ)44∑k=1Ikwt5(xi,yj,tn−kμτ)dμ,(Ox)ni,j(h4)=h412∫102∑k=1[13(1−s)3−14(1−s)4]wx5(xi+(−1)k−1sh,yj,tn)ds,(Ot)n−12i,j(τ2)=−τ216∫10(1−μ)22∑k=1wt3(xi,yj,tn−12+(−1)k−1μτ2)dμ,˜On−12i,j(τ2)=−τ24∫10(1−μ)2∑k=1wt2(xi,yj,tn−12+(−1)k−1μτ2)dμ. |
Similarly, we can easily derive the expressions of (Oyy)ni,j(h4), (Oy)ni,j(h4), (Ox)n−1i,j(h4), (Oy)n−1i,j(h4), (Oxx)n−12i,j(h4) and (Oyy)n−12i,j(h4). To facilitate mathematical analysis below, the following definitions are given.
Definition 2.2. For any mesh function {wi,j|0⩽i,j⩽N}, the average operators A and B are defined as
Awi,j={1254∑k=1Ak+1wk,j,i=0,0⩽j⩽N,1123∑k=1Bkwi+k−2,j,1⩽i,j⩽N−1,125N−1∑k=N−4AN−k+1wk,j,i=N,0⩽j⩽N,Bwi,j={1254∑k=1Ak+1wi,k,j=0,0⩽i⩽N,1123∑k=1Bkwi,j+k−2,1⩽i,j⩽N−1,125N−1∑k=N−4AN−k+1wi,k,j=N,0⩽i⩽N. |
Definition 2.3. The maximum norm and 2-norm errors are defined as
||⋅||∞=max0⩽i,j⩽N|wMi,j−w(xi,yj,tM)|,||⋅||2=√h2N∑i,j=0[wMi,j−w(xi,yj,tM)]2, |
where w(xi,yj,tM) and wMi,j stand for the exact and numerical solutions at the discrete mesh point (xi,yj,tM), respectively.
Definition 2.4. Denote wmax(t):≜max(x,y)w(x,y,t); the relatively maximum norm and 2-norm errors in the temporal dimension are defined as
Rel∞=‖ |
where w_{\max}^* (t) represents the reference solution.
Definition 2.5. The convergence rate is defined as
\begin{align} &\text{Rate} = \frac{\log[L_\nu (h_1)/L_\nu (h_2)]}{\log(h_1/h_2)}, \end{align} |
where \nu stands for \infty or 2 and L_\nu (h_1) and L_\nu (h_2) are corresponding ||\cdot||_\nu norm errors which are closely related to h_1 and h_2 , respectively.
In this part, an HOC scheme is derived to border on the solution of the Keller-Segel system given by (1.1)–(1.3). To facilitate the numerical analysis, we rewrite an equivalent form for the system given by (1.1)–(1.3), that is,
\left\{ \begin{array}{l} \textbf{U}_{t}+\textbf{F}_{x}+\textbf{G}_{y} = \textbf{D}\Delta\textbf{U}+\textbf{R}, & a < x, y < b, 0 < t\leqslant T, & (3.1)\\ \textbf{U}(x, y, 0) = \textbf{U}_0(x, y), & a\leqslant x, y\leqslant b, & (3.2)\\ \textbf{U}_x(a, y, t) = \textbf{U}_x(b, y, t) = 0, & 0 < t\leqslant T, & (3.3)\\ \textbf{U}_y(x, a, t) = \textbf{U}_y(x, b, t) = 0, & 0 < t\leqslant T, & (3.4) \end{array} \right. |
where
\textbf{U}:\triangleq\begin{bmatrix}u \\ v\end{bmatrix}, \quad \textbf{F}:\triangleq\begin{bmatrix}\chi uv_x \\ 0 \end{bmatrix}, \quad \textbf{G}:\triangleq\begin{bmatrix}\chi uv_y \\ 0 \end{bmatrix}, \quad \textbf{D}:\triangleq\begin{bmatrix}d\; \; \; \; \; \; \; \; \\\; \; \; \; \; \; \; 1 \end{bmatrix}, \quad \textbf{R}:\triangleq\begin{bmatrix}0\\-v+u \end{bmatrix}, \quad \textbf{U}_0:\triangleq\begin{bmatrix}u_0 \\ v_0\end{bmatrix}. |
Equation (3.1) is a nonlinear advection-diffusion-reaction equation. Then, we define
\begin{align} &\mathbb{U} = \{[u(x_i, y_j, t_n), v(x_i, y_j, t_n)]^\intercal:\triangleq\mathbb{U}_{i, j}^n|0\leqslant i, j\leqslant N, 0\leqslant n \leqslant M\}, \\ &\mathbb{F} = \{[\chi u(x_i, y_j, t_n)v_x(x_i, y_j, t_n), 0]^\intercal:\triangleq\mathbb{F}_{i, j}^n|0\leqslant i, j\leqslant N, 0\leqslant n \leqslant M\}, \\ &\mathbb{G} = \{[\chi u(x_i, y_j, t_n)v_y(x_i, y_j, t_n), 0]^\intercal:\triangleq\mathbb{G}_{i, j}^n|0\leqslant i, j\leqslant N, 0\leqslant n \leqslant M\}, \\ &\mathbb{R} = \{[0, u(x_i, y_j, t_n)-v(x_i, y_j, t_n)]^\intercal:\triangleq\mathbb{R}_{i, j}^n|0\leqslant i, j\leqslant N, 0\leqslant n \leqslant M\} \end{align} |
on \Omega_{h\tau} , respectively, and employ the FDM to discretize Eqs. (3.1)–(3.4) for the interior points.
Now, we focus on Eq. (3.1) at (x_i, y_j, t_n) for 1\leqslant i, j\leqslant N-1 and 0 < n \leqslant M ; we have
\begin{align} \textbf{U}_{t}(x_i, y_j, t_n) &+ \textbf{F}_{x}(x_i, y_j, t_n)+\textbf{G}_{y}(x_i, y_j, t_n) = \textbf{D}[\textbf{U}_{xx}(x_i, y_j, t_n)+\textbf{U}_{yy}(x_i, y_j, t_n)] + \textbf{R}(x_i, y_j, t_n). \end{align} | (3.5) |
First, the following formulas are applied to discretize the second derivative terms on the right-hand side of Eq. (3.5), i.e.,
\begin{align} &\textbf{U}_{xx}(x_i, y_j, t_n) = \mathcal{A}^{-1}\delta _x^2\mathbb{U}_{i, j}^n + \mathcal{A}^{-1}(O_{xx})_{i, j}^n({h^4}), \; \; \; \; \textbf{U}_{yy}(x_i, y_j, t_n) = \mathcal{B}^{-1}\delta _y^2\mathbb{U}_{i, j}^n + \mathcal{B}^{-1}(O_{yy})_{i, j}^n({h^4}), \end{align} | (3.6) |
where 1\leqslant i, j\leqslant N-1 , and \delta_x^2 , and \delta_y^2 are the central difference operators. Then, for the nonlinear advection terms \textbf{F}_{x}(x_i, y_j, t_n) and \textbf{G}_{y}(x_i, y_j, t_n) on the left-hand side of Eq. (3.5), the following Padé compact schemes [39] are applied to compute them, that is,
\begin{align} &(1+\frac{h^2}{6}\delta_x^2)\textbf{F}_{x}(x_i, y_j, t_n) = \delta_x\mathbb{F}_{i, j}^{n}+(O_x)_{i, j}^n(h^4), \; \; \; \; \; \; \; (1+\frac{h^2}{6}\delta_y^2)\textbf{G}_{y}(x_i, y_j, t_n) = \delta_y\mathbb{G}_{i, j}^{n}+(O_y)_{i, j}^n(h^4), \end{align} | (3.7) |
where 1\leqslant i, j\leqslant N-1 and 0\leqslant n\leqslant M . To be consistent with the accuracy of the interior points above, the following fourth-order boundary schemes [40] are employed, i.e.,
\begin{align} &\textbf{F}_x(x_0, y_j, t_n)+\frac{14}{15}\textbf{F}_x(x_0+h, y_j, t_n) = \frac{1}{h}(\vec{\textbf{A}}\vec{ \mathbb{F}}_0)+(O_x)_{0, j}^n(h^4), \; \; \; \; \; \; \; 0\leqslant j\leqslant N, 0 < n\leqslant M, \end{align} | (3.8) |
\begin{align} &\textbf{F}_x(x_N, y_j, t_n)-\frac{14}{15}\textbf{F}_x(x_N-h, y_j, t_n) = \frac{1}{h}(\vec{\textbf{B}}\vec{ \mathbb{F}}_N)+(O_x)_{N, j}^n(h^4), \; \; \; \; \; 0\leqslant j\leqslant N, 0 < n\leqslant M, \end{align} | (3.9) |
\begin{align} &\textbf{G}_y(x_i, y_0, t_n)+\frac{14}{15}\textbf{G}_y(x_i, y_0+h, t_n) = \frac{1}{h}(\vec{\textbf{A}}\vec{ \mathbb{G}}_0)+(O_y)_{i, 0}^n(h^4), \; \; \; \; \; \; \; 0\leqslant i\leqslant N, 0 < n\leqslant M, \end{align} | (3.10) |
\begin{align} &\textbf{G}_y(x_i, y_N, t_n)-\frac{14}{15}\textbf{G}_y(x_i, y_N-h, t_n) = \frac{1}{h}(\vec{\textbf{B}}\vec{ \mathbb{G}}_N)+(O_y)_{i, N}^n(h^4), \; \; \; \; \; 0\leqslant i\leqslant N, 0 < n\leqslant M, \end{align} | (3.11) |
where
\begin{align} &\vec{\textbf{A}} = \Big[-\frac{184}{75}, \frac{703}{180}, -\frac{89}{30}, \frac{67}{30}, -\frac{77}{90}, \frac{41}{300}\Big], \; \; \; \; \; \; \vec{\textbf{B}} = \Big[\frac{52}{25}, -\frac{1067}{180}, \frac{67}{10}, -\frac{41}{10}, \frac{133}{90}, -\frac{69}{300}\Big], \\ &\vec{ \mathbb{F}}_0 = [\mathbb{F}_{0, j}^n, \mathbb{F}_{1, j}^n, \mathbb{F}_{2, j}^n, \mathbb{F}_{3, j}^n, \mathbb{F}_{4, j}^n, \mathbb{F}_{5, j}^n]^\intercal, \; \; \; \; \; \; \; \; \vec{ \mathbb{F}}_N = [\mathbb{F}_{N, j}^n, \mathbb{F}_{N-1, j}^n, \mathbb{F}_{N-2, j}^n, \mathbb{F}_{N-3, j}^n, \mathbb{F}_{N-4, j}^n, \mathbb{F}_{N-5, j}^n]^\intercal, \\ &\vec{ \mathbb{G}}_0 = [\mathbb{G}_{i, 0}^n, \mathbb{G}_{i, 1}^n, \mathbb{G}_{i, 2}^n, \mathbb{G}_{i, 3}^n, \mathbb{G}_{i, 4}^n, \mathbb{G}_{i, 5}^n]^\intercal, \; \; \; \; \; \; \vec{ \mathbb{G}}_N = [\mathbb{G}_{i, N}^n, \mathbb{G}_{i, N-1}^n, \mathbb{G}_{i, N-2}^n, \mathbb{G}_{i, N-3}^n, \mathbb{G}_{i, N-4}^n, \mathbb{G}_{i, N-5}^n]^\intercal, \\ &(O_x)_{0, j}^n(h^4) = -\frac{1}{60}h^4\textbf{F}_{x^5}(x_0, y_j, t_n)+\frac{169}{1800}h^5\textbf{F}_{x^6}(x_0, y_j, t_n)+O(h^6), \\ &(O_x)_{N, j}^n(h^4) = -\frac{1}{60}h^4\textbf{F}_{x^5}(x_N, y_j, t_n)-\frac{281}{1800}h^5\textbf{F}_{x^6}(x_N, y_j, t_n)+O(h^6), \\ &(O_y)_{i, 0}^n(h^4) = -\frac{1}{60}h^4\textbf{F}_{y^5}(x_i, y_0, t_n)+\frac{169}{1800}h^5\textbf{F}_{y^6}(x_i, y_0, t_n)+O(h^6), \\ &(O_y)_{i, N}^n(h^4) = -\frac{1}{60}h^4\textbf{F}_{y^5}(x_i, y_N, t_n)-\frac{281}{1800}h^5\textbf{F}_{y^6}(x_i, y_N, t_n)+O(h^6). \end{align} |
Next, we employ the BDF-4 [36] to cope with the temporal derivative on the left-hand side of Eq. (3.5), i.e., for 1\leqslant i, j\leqslant N-1 and 4\leqslant n\leqslant M,
\begin{align} {\textbf{U}_{t}(x_i, y_j, t_n)}& = \frac{1}{12\tau}\Big(25\mathbb{U}_{{i, j}}^{n}-\sum\limits_{k = 1}^4A_{k+1}\mathbb{U}_{{i, j}}^{n-k}\Big)+(O_t)_{i, j}^n(\tau^4) {:\triangleq\Delta_t\mathbb{U}_{i, j}^n+(O_t)_{i, j}^n(\tau^4)}. \end{align} | (3.12) |
Substituting Eqs. (3.6)–(3.12) into Eq. (3.5), using the definitions above, combining Eqs. (3.2)–(3.4) and applying Theorem 2.1 for 4\leqslant n\leqslant M , we have
\left\{ \begin{array}{l} \mathcal{AB}[\Delta_t\mathbb{U}_{i, j}^n + (\mathbb{F}_{x})_{i, j}^{n} +(\mathbb{G}_{y})_{i, j}^{n}] = \textbf{D}(\mathcal{B}\delta_x^2 + \mathcal{A}\delta _y^2)\mathbb{U}_{i, j}^{n}+\mathcal{AB}\mathbb{R}_{i, j}^{n} +\textbf{Q}_{i, j}^n, 1\leqslant i, j\leqslant N-1, & (3.13) \\ \mathbb{U}_{i, j}^0 = \mathbb{U}_0(x_{i}, y_j), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\leqslant i, j\leqslant N, & (3.14) \\ \mathbb{U}_{0, j}^n = \mathcal{A}\mathbb{U}_{0, j}^n+\textbf{Q}_{0, j}^n, \ \ \ \ \ \ \ \ \ \ \mathbb{U}_{N, j}^n = \mathcal{A}\mathbb{U}_{N, j}^n+\textbf{Q}_{N, j}^n, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\leqslant j\leqslant N, & (3.15)\\ \mathbb{U}_{i, 0}^n = \mathcal{B}\mathbb{U}_{i, 0}^n+\textbf{Q}_{i, 0}^n, \ \ \ \ \ \ \ \ \ \ \mathbb{U}_{i, N}^n = \mathcal{B}\mathbb{U}_{i, N}^n+\textbf{Q}_{i, N}^n, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\leqslant i\leqslant N, & (3.16) \end{array} \right. |
where \textbf{Q}_{{i, j}}^{n} = \mathcal{AB}(O_t)_{i, j}^n(\tau^4) +\{[\mathcal{B}(O_{xx})_{i, j}^n+\mathcal{A}(O_{yy})_{i, j}^n] +\mathcal{AB}[(O_x)_{i, j}^n+(O_x)_{0, j}^n+(O_x)_{N, j}^n+(O_y)_{i, j}^n+(O_y)_{i, 0}^n+(O_y)_{i, N}^n]\}(h^4) , \textbf{Q}_{0, j}^{n} = O_{0, j}^n(h^4) , \textbf{Q}_{N, j}^{n} = O_{N, j}^n(h^4) , \textbf{Q}_{i, 0}^{n} = O_{i, 0}^n(h^4) and \textbf{Q}_{i, N}^{n} = O_{i, N}^n(h^4) . Then, there exist positive constants c_1 , c_2 , c_3 , c_4 and c_5 ; it holds that
{|\textbf{Q}_{i, j}^n|\leqslant} \left\{ \begin{array}{l}c_1h^4, & i = 0, 0\leqslant j\leqslant N, 4\leqslant n \leqslant M, \nonumber\\ c_2h^4, &j = 0, 0\leqslant i\leqslant N, 4\leqslant n \leqslant M, \nonumber\\ c_3(\tau^4+h^4), &1\leqslant i, j\leqslant N-1, 4\leqslant n \leqslant M, \nonumber\\ c_4h^4, & i = N, 0\leqslant j\leqslant N, 4\leqslant n \leqslant M, \nonumber\\ c_5h^4, &j = N, 0\leqslant i\leqslant N, 4\leqslant n \leqslant M.\nonumber\end{array} \right. |
Omitting \textbf{Q}_{i, j}^n in Eqs. (3.13)–(3.16) and replacing \mathbb{U} , \mathbb{F}_x , \mathbb{G}_y and \mathbb{R} with \textbf{U} , \textbf{F}_x , \textbf{G}_y and \textbf{R} , respectively, the following HOC scheme for solving the chemotaxis system given by (1.1)–(1.3) for 4\leqslant n\leqslant M can be obtained:
\left\{ \begin{array}{l} \mathcal{AB}[\Delta_t\textbf{U}_{i, j}^n + (\textbf{F}_{x})_{i, j}^{n} +(\textbf{G}_{y})_{i, j}^{n}] = \textbf{D}(\mathcal{B}\delta_x^2 + \mathcal{A}\delta _y^2)\textbf{U}_{i, j}^{n}+\mathcal{AB}\textbf{R}_{i, j}^{n}, \ \ \ 1\leqslant i, j\leqslant N-1, & (3.17) \\ \textbf{U}_{i, j}^0 = \textbf{U}_0(x_{i}, y_j), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\leqslant i, j\leqslant N, & (3.18)\\ \textbf{U}_{0, j}^n = \mathcal{A}\textbf{U}_{0, j}^n, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \textbf{U}_{N, j}^n = \mathcal{A}\textbf{U}_{N, j}^n, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\leqslant j\leqslant N, & (3.19)\\ \textbf{U}_{i, 0}^n = \mathcal{B}\textbf{U}_{i, 0}^n, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \textbf{U}_{i, N}^n = \mathcal{B}\textbf{U}_{i, N}^n, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\leqslant i\leqslant N. & (3.20) \end{array} \right. |
Remark 3.1. For the function values containing the unknown time steps \textbf{U}_{i, j}^{n} in Eqs. (3.17)–(3.20), the following method is used to compute them, where k = 1, 2, 3, \cdots , which stands for the nonlinear cyclic iterative parameter, \textbf{U}^{n, (*)} denotes the approximate convergent solution at the n th time step and \sigma represents a small amount. That is, for the n th time step, the following is performed:
● Approximate \textbf{U}^{n, (k)} using \textbf{U}^{n, (k-1)} and solve v_x^{n, (k)} and v_y^{n, (k)} using Eqs. (3.3), (3.4) and (3.7);
● Compute the chemotaxis terms \textbf{F}_x^{n, (k)} and \textbf{G}_y^{n, (k)} using Eqs. (3.7)–(3.11);
● Solve the linear system given by (3.17)–(3.20) for \textbf{U}^{n, (k)} ;
● Set \textbf{U}^{n, (*)}\leftarrow \textbf{U}^{n, (k)} ; if \|\textbf{U}^{n, (k)}-\textbf{U}^{n, (k-1)}\| < \sigma , then proceed to the (n+1) th time step.
Remark 3.2. Equations (3.17)–(3.20) demonstrate fully implicit compact scheme including five time steps, and its truncation error is O(\tau^4+h^4) , i.e., it has space-time fourth-order accuracy. It is noteworthy that the compactness here only refers to the spatial direction, since no more than nine mesh points are required for the 2D spatial mesh subdomain. However, it is non-compact in the temporal direction.
Remark 3.3. For the HOC scheme given by (3.17)–(3.20), besides the values of \textbf{U}^{0} being known, the values of \textbf{U}^{1} , \textbf{U}^{2} and \textbf{U}^{3} are also needed; then, we can use the scheme given by (3.17)–(3.20) to compute the values of \textbf{U}^{n}(n\geqslant 4) in turn. Thus, in the following part, we discuss the computational strategies for solving \textbf{U}^{1} , \textbf{U}^{2} and \textbf{U}^{3} .
Next, we consider Eq. (3.1) at (x_i, y_j, t_{n-\frac{1}{2}}) for 1\leqslant i, j\leqslant N-1 and 1\leqslant n \leqslant 3 ; we have
\begin{align} \textbf{U}_{t}(x_i, y_j, t_{n-\frac{1}{2}}) + \textbf{F}_{x}(x_i, y_j, t_{n-\frac{1}{2}})&+\textbf{G}_{y}(x_i, y_j, t_{n-\frac{1}{2}})\\ & = \textbf{D}[\textbf{U}_{xx}(x_i, y_j, t_{n-\frac{1}{2}})+\textbf{U}_{yy}(x_i, y_j, t_{n-\frac{1}{2}})] + \textbf{R}(x_i, y_j, t_{n-\frac{1}{2}}). \end{align} | (3.21) |
First, we employ the Crank-Nicolson (C-N) method to cope with the temporal derivative term in Eq. (3.21), that is,
\begin{align} \textbf{U}_{t}(x_i, y_j, t_{n-\frac{1}{2}})& = \delta_t\mathbb{U}_{i, j}^{n-\frac{1}{2}}+ (O_t)_{i, j}^{n-\frac{1}{2}}({\tau ^2}) , \; \; \; \; 1\leqslant i, j\leqslant N-1, 1\leqslant n\leqslant 3. \end{align} |
Then, we employ the following method for the remaining parts, i.e.,
\begin{align} \mathbf{\Theta}(x_i, y_j, t_{n-\frac{1}{2}}) = \frac{1}{2}[\mathbf{\Theta}(x_i, y_j, t_{n}) +\mathbf{\Theta}(x_i, y_j, t_{n-1})]+(\tilde{O}_\mathbf{\Theta})_{i, j}^{n-\frac{1}{2}}(\tau^2), 1\leqslant i, j\leqslant N-1, 1\leqslant n\leqslant 3, \end{align} |
where \mathbf{\Theta} could be \textbf{U}, \textbf{F}_x, \textbf{G}_y and \textbf{R} in Eq. (3.21). Then, Eq. (3.21) becomes
\begin{align} &\delta_t\mathbb{U}_{i, j}^{n-\frac{1}{2}} + \frac{1}{2}[\textbf{F}_{x}(x_i, y_j, t_n)+\textbf{F}_{x}(x_i, y_j, t_{n-1}) +\textbf{G}_{y}(x_i, y_j, t_{n})+\textbf{G}_{y}(x_i, y_j, t_{n-1})] = \frac{1}{2}\textbf{D}[\textbf{U}_{xx}(x_i, y_j, t_{n})\\ &+\textbf{U}_{xx}(x_i, y_j, t_{n-1}) +\textbf{U}_{yy}(x_i, y_j, t_{n})+\textbf{U}_{yy}(x_i, y_j, t_{n-1})] +\frac{1}{2}[\textbf{R}(x_i, y_j, t_{n})+\textbf{R}(x_i, y_j, t_{n-1})] +[(O_t)_{i, j}^{n-\frac{1}{2}}\\ &+(\tilde{O}_{xx})_{i, j}^{n-\frac{1}{2}}+(\tilde{O}_{yy})_{i, j}^{n-\frac{1}{2}} +(\tilde{O}_{\textbf{F}_x})_{i, j}^{n-\frac{1}{2}} +(\tilde{O}_{\textbf{G}_x})_{i, j}^{n-\frac{1}{2}} +(\tilde{O}_{\textbf{R}})_{i, j}^{n-\frac{1}{2}}](\tau^2), \; 1\leqslant i, j\leqslant N-1, 1\leqslant n \leqslant 3. \end{align} | (3.22) |
We use Eq. (3.6) to discretize \textbf{U}_{xx}(x_i, y_j, t_{n}) , \textbf{U}_{xx}(x_i, y_j, t_{n-1}) , \textbf{U}_{yy}(x_i, y_j, t_{n}) and \textbf{U}_{yy}(x_i, y_j, t_{n-1}) in the spatial direction of Eq. (3.22), and we use Eqs. (3.7)–(3.11) to compute \textbf{F}_{x}(x_i, y_j, t_n) , \textbf{F}_{x}(x_i, y_j, t_{n-1}) , \textbf{G}_{y}(x_i, y_j, t_{n}) and \textbf{G}_{y}(x_i, y_j, t_{n-1}) in the spatial direction. According to Eqs. (3.2)–(3.4) and Theorem 2.1, after rearrangement, the following form can be obtained:
\left\{ \begin{array}{l} [\frac{1}{\tau}\mathcal{AB}-\frac{1}{2}\textbf{D}(\mathcal{B}\delta _x^2+\mathcal{A}\delta _y^2)]\mathbb{U}_{i, j}^{n} + \frac{1}{2}\mathcal{AB}[(\mathbb{F}_{x})_{i, j}^{n}+(\mathbb{F}_{x})_{i, j}^{n-1} + (\mathbb{G}_{y})_{i, j}^{n}+(\mathbb{G}_{y})_{i, j}^{n-1}] = [\frac{1}{\tau}\mathcal{AB}\nonumber\\ + \frac{1}{2}\textbf{D}(\mathcal{B}\delta _x^2+\mathcal{A}\delta _y^2)]\mathbb{U}_{i, j}^{n-1} + \frac{1}{2}\mathcal{AB}(\mathbb{R}_{i, j}^{n}+\mathbb{R}_{i, j}^{n-1}) + \textbf{P}_{i, j}^{n}, 1\leqslant i, j\leqslant N-1, 1\leqslant n\leqslant 3, & (3.23)\\ \mathbb{U}_{i, j}^0 = \mathbb{U}_0(x_{i}, y_{j}), \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad 0\leqslant i, j\leqslant N, & (3.24)\\ \mathbb{U}_{0, j}^{n} = \mathcal{A}\mathbb{U}_{0, j}^{n}+\textbf{P}_{0, j}^{n}, \qquad \mathbb{U}_{N, j}^{n} = \mathcal{A}\mathbb{U}_{N, j}^{n}+\textbf{P}_{N, j}^{n}, \qquad 0\leqslant j\leqslant N, 1\leqslant n\leqslant 3, & (3.25)\\ \mathbb{U}_{i, 0}^{n} = \mathcal{B}\mathbb{U}_{i, 0}^{n}+\textbf{P}_{i, 0}^{n}, \qquad \mathbb{U}_{i, N}^{n} = \mathcal{B}\mathbb{U}_{i, N}^{n}+\textbf{P}_{i, N}^{n}, \qquad 0\leqslant i\leqslant N, 1\leqslant n\leqslant 3, & (3.26) \end{array} \right. |
where \textbf{P}_{{i, j}}^{n} = \mathcal{AB}[(O_t)_{i, j}^{n-\frac{1}{2}} +(\tilde{O}_{xx})_{i, j}^{n-\frac{1}{2}}+(\tilde{O}_{yy})_{i, j}^{n-\frac{1}{2}} +(\tilde{O}_{\textbf{F}_x})_{i, j}^{n-\frac{1}{2}} +(\tilde{O}_{\textbf{G}_x})_{i, j}^{n-\frac{1}{2}} +(\tilde{O}_{\textbf{R}})_{i, j}^{n-\frac{1}{2}}](\tau^2) +\frac{1}{2}\{[\mathcal{B}((O_{xx})_{i, j}^n+(O_{xx})_{i, j}^{n-1}) +\mathcal{A}(O_{yy})_{i, j}^n+\mathcal{A}(O_{yy})_{i, j}^{n-1}] +\mathcal{AB}[(O_x)_{i, j}^n+(O_x)_{0, j}^n+(O_x)_{N, j}^n+(O_y)_{i, j}^n+(O_y)_{i, 0}^n+(O_y)_{i, N}^n +(O_x)_{i, j}^{n-1}+(O_x)_{0, j}^{n-1}+(O_x)_{N, j}^{n-1}+(O_y)_{i, j}^{n-1}+(O_y)_{i, 0}^{n-1}+(O_y)_{i, N}^{n-1}]\}(h^4) . \textbf{P}_{0, j}^{n} = O_{0, j}^n(h^4) , \textbf{P}_{N, j}^{n} = O_{N, j}^n(h^4) , \textbf{P}_{i, 0}^{n} = O_{i, 0}^n(h^4) , and \textbf{P}_{i, N}^{n} = O_{i, N}^n(h^4) . Then, there exist positive constants c_6 , c_7 , c_8 , c_9 and c_{10} such that
{|\textbf{P}_{i, j}^{n}|\leqslant} \left\{ \begin{array}{l} c_6h^4, & i = 0, 0\leqslant j\leqslant N, 1\leqslant n \leqslant 3, \nonumber\\ c_7h^4), & j = 0, 0\leqslant i\leqslant N, 1\leqslant n \leqslant 3, \nonumber\\ c_8(\tau^2+h^4), & 1\leqslant i, j\leqslant N-1, 1\leqslant n \leqslant 3, \nonumber\\ c_9h^4, & i = N, 0\leqslant j\leqslant N, 1\leqslant n \leqslant 3, \nonumber\\ c_{10}h^4, & j = N, 0\leqslant i\leqslant N, 1\leqslant n \leqslant 3. \end{array} \right. |
Omitting \textbf{P}_{i, j}^n in Eqs. (3.23)–(3.26) and replacing \mathbb{U} , \mathbb{F}_x , \mathbb{G}_y and \mathbb{R} with \textbf{U} , \textbf{F}_x , \textbf{G}_y and \textbf{R} , respectively, we can get the following scheme for the initial time steps to solve the chemotaxis system given by (1.1)–(1.3) as follows:
\left\{ \begin{array}{l} [\frac{1}{\tau}\mathcal{AB}-\frac{1}{2}\textbf{D}(\mathcal{B}\delta _x^2+\mathcal{A}\delta _y^2)]\textbf{U}_{i, j}^{n} + \frac{1}{2}\mathcal{AB}[(\textbf{F}_{x})_{i, j}^{n}+(\textbf{F}_{x})_{i, j}^{n-1} + (\textbf{G}_{y})_{i, j}^{n}+(\textbf{G}_{y})_{i, j}^{n-1}]\nonumber\\ = [\frac{1}{\tau}\mathcal{AB}+ \frac{1}{2}\textbf{D}(\mathcal{B}\delta _x^2+\mathcal{A}\delta _y^2)]\textbf{U}_{i, j}^{n-1} + \frac{1}{2}\mathcal{AB}(\textbf{R}_{i, j}^{n}+\textbf{R}_{i, j}^{n-1}), 1\leqslant i, j\leqslant N-1, 1\leqslant n\leqslant 3, & (3.27) \\ \textbf{U}_{i, j}^0 = \textbf{U}_0(x_{i}, y_{j}), \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad 0\leqslant i, j\leqslant N, & (3.28)\\ \textbf{U}_{0, j}^{n} = \mathcal{A}\textbf{U}_{0, j}^{n}, \qquad \textbf{U}_{N, j}^{n} = \mathcal{A}\textbf{U}_{N, j}^{n}, \qquad\qquad\qquad\qquad 0\leqslant j\leqslant N, 1\leqslant n\leqslant 3, & (3.29)\\ \textbf{U}_{i, 0}^{n} = \mathcal{B}\textbf{U}_{i, 0}^{n}, \qquad \textbf{U}_{i, N}^{n} = \mathcal{B}\textbf{U}_{i, N}^{n}, \qquad\qquad\qquad\qquad 0\leqslant i\leqslant N, 1\leqslant n\leqslant 3. & (3.30) \end{array} \right. |
Remark 3.4. The same method in the previous section can be used to compute (\textbf{F}_{x})_{i, j}^{n} , (\textbf{F}_{x})_{i, j}^{n-1} , (\textbf{G}_{y})_{i, j}^{n} , (\textbf{G}_{y})_{i, j}^{n-1} , \textbf{R}_{i, j}^{n} and \textbf{R}_{i, j}^{n-1} in Eq. (3.27), as described in Remark 3.1.
Remark 3.5. Equations (3.27)–(3.30) constitute a two-level implicit scheme, and its truncation error is O(\tau^2+h^4) .
Remark 3.6. Since the C-N method is used to discretize the time derivative term, the scheme given by (3.27)–(3.30) for the initial time steps is unconditionally stable. On the other hand, the formula (3.12) is a k -step method for time integration. In this work, only the fourth-order BDF scheme ( k = 4 ) is used, which is widely employed to solve stiff differential equations [37]. Therefore, according to [36,37,38], the HOC scheme given by (3.17)–(3.20) is A -stable.
As described in Subsections 3.1 and 3.2 above, we use the two-level implicit scheme given by (3.27)–(3.30) to compute \textbf{U}_{i, j}^{1} , \textbf{U}_{i, j}^{2} and \textbf{U}_{i, j}^{3} based on a known \textbf{U}_{i, j}^{0} . The Richardson extrapolation technique is applied to enhance the accuracy of the scheme given by (3.27)–(3.30) in time and ensure that it is consistent with that of the scheme given by (3.17)–(3.20); the following extrapolation formula is used, that is,
\begin{align} &\widehat{\textbf{U}}_{i, j}^n(h, \tau) = \frac{1}{3}[4\textbf{U}_{i, j}^{2n}(h, \tau/2)-\textbf{U}_{i, j}^n(h, \tau)], \; \; \; \; \; \; {0\leqslant i, j \leqslant N, 1\leqslant n \leqslant 3.} \end{align} | (3.31) |
Here, \widehat{\textbf{U}}_{i, j}^n(h, \tau) stands for the extrapolated solution at the n th time step. \textbf{U}_{i, j}^n(h, \tau) represents the computed solution obtained by using the scheme given by (3.27)–(3.30) with the temporal step length \tau , whereas \textbf{U}_{i, j}^{2n}(h, \tau/2) denotes the computed solution obtained by using the scheme given by (3.27)–(3.30) with \tau/2 .
Remark 3.7. Equation (3.31) can extrapolate the accuracy in the temporal direction from second to fourth order.
In this part, based on the compact difference schemes proposed above, we will establish the corresponding numerical algorithm. On one hand, because the slow convergence speed of the classical iterative method (for instance, Gauss–Seidel, Jacobi or successive over-relaxation iterations) used to solve the algebraic systems arise out of the fully implicit scheme at each time step, we aim to employ a multigrid method to accelerate the convergence speed. On the other hand, we want to establish a positivity-preserving algorithm to obtain the non-negative solutions of u and v without losing the fourth-order accuracy. Finally, we structure a time advancement algorithm based on these algorithms above to solve the system given by (1.1)–(1.3).
Since the idea of the multigrid method was proposed in the 1930s, until Professor Brandt published his pioneering work [41] in 1977, this method was increasingly applied to solve engineering and technical problems. Up to now, the multigrid method has been widely applied in numerous disciplines and engineering fields, such as computational fluid dynamics and computational biology. The multigrid method has been theoretically proved to be a first-rank numerical computational method for linear elliptic problems [41,42]. Its convergence rate is independent of the mesh scale, and the computational speed of the existing computational program using the classical iterative method can be increased by employing the multigrid method with 1 to 2 orders of magnitude, which is especially suitable for application in large-scale engineering numerical computational problems. Nowadays, the multigrid method is also used more and more to solve non-elliptic problems to speed up the convergence of each time step and satisfy the needs of practical problems [43,44].
The multigrid method is implemented by using a cycling algorithm. A multigrid cycle V includes three elements: relaxation, restriction and interpolation operators. We use alternating direction line Gauss–Seidel (ALGS) [45] iteration for the relaxation operator, as well as half-weighted and fully weighted restriction operators and a bilinear interpolation operator [42]. As the schemes given by (3.27)–(3.30) and (3.17)–(3.20) are both nonlinear, we employ a multigrid full approximation scheme (FAS) [42,44] to accommodate nonlinearities. For simplicity, we formally denote the algebraic equations arising from Eqs. (3.27)–(3.30) and (3.17)–(3.20) at each time step as
\begin{align} \mathcal{L}^{h}\textbf{U}^{h} = \mathcal{F}^{h}. \end{align} | (4.1) |
The multigrid FAS algorithm is implemented recursively. Here, we only give the following two-level FAS V(\nu_1, \nu_2) cycle algorithm based on Eq. (4.1):
Algorithm 4.1: Two-level FAS V(\nu_1, \nu_2) cycle algorithm |
\textbf{ Step 1: } \ Using \ ALGS \ iteration \ \nu_{1} \ times \ {at} \ the \ fine \ mesh \ level \ to \ solve \ \mathcal{L}^{h}\textbf{U}^{h} \ = \ \mathcal{F}^{h} \ and \ computing |
\quad\quad\quad its \ residual, \ i.e., \ Res^{h} \ = \ \mathcal{F}^{h}-\mathcal{L}^{h}\textbf{U}^{h} ; |
\textbf{ Step 2: } \ Restricting \ \textbf{U}^{h} \ and \ Res^{h} \ to \ the \ next \ coarse \ mesh: \ \overline{\textbf{U}}^{2h}\leftarrow \ I_{h}^{2h}\textbf{U}^{h}, \ \overline{Res}^{2h}\leftarrow \ \overline{\mathcal{I}}_{h}^{2h}Res^{h}; |
\textbf{ Step 3: } Using \ ALGS \ iteration \ \nu_{1} \ times \ {at} \ the \ coarse \ mesh \ level \ to \ solve \ \mathcal{L}^{2h}\textbf{U}^{2h} \ = \ \mathcal{L}^{2h}\overline{\textbf{U}}^{2h}+\overline{Res}^{2h}; |
\textbf{ Step 4: } \ Interpolating \ the \ correction \ errors \ from \ the \ coarse \ to \ the \ fine \ mesh \ levels: \ \Delta \ \textbf{U}^{h}\leftarrow \ \mathcal{I}_{2h}^{h}(\textbf{U}^{2h}-\overline{\textbf{U}}^{2h}); |
\textbf{ Step 5: } \ Updating \ \textbf{U}^{h} \ {at} \ the \ fine \ mesh \ level: \ \textbf{U}^{h}\leftarrow \ \textbf{U}^{h}+\Delta \ \textbf{U}^{h}; |
\textbf{ Step 6: } \ Using \ ALGS \ iteration \ \nu_{2} \ times \ {at} \ the \ fine \ mesh \ level \ to \ solve \ \mathcal{L}^{h}\textbf{U}^{h} \ = \ \mathcal{F}^{h}. |
Remark 4.1. Here, \mathcal{L}^{h} and \mathcal{L}^{2h} are the difference operators; \mathcal{I}_h^{2h} (half-weighted) and \overline{\mathcal{I}}_h^{2h} (fully weighted) are the restriction operators, which are used to restrict the approximate value and residual from the fine mesh level h to coarse mesh level 2h ; and, \mathcal{I}_{2h}^{h} is the interpolation operator, which is used to transfer the error correction from the coarse to fine mesh levels. Res^h is the residual at the fine mesh level, and Res^{2h} is the residual at the adjacent coarse mesh level; \nu_1 and \nu_2 represent the pre-smooth and post-smooth numbers, respectively.
Remark 4.2. In this work, we employ fully multi-level algorithms for all calculations. For instance, if the finest grid is 256\times256 , an eight-level algorithm is used. Under such conditions, the coarsest grid level only has 2\times2 grids.
When the schemes given by (3.27)–(3.30) and (3.17)–(3.20) are employed to approximate the solution of the chemotaxis system, it may generate negative values where blow-up occurs. To obtain the non-negative values of u and v for all time levels, we define the following average solution for each time step:
\begin{align} &\overline{\textbf{U}}_{i, j}^n = \frac{1}{\Delta x_i\Delta y_j}\iint\limits_{\Omega_{i, j}}\textbf{U}(x, y, t_n)dxdy, \end{align} | (4.2) |
where \Delta x_i = x_{i+1}-x_{i-1} , \Delta y_j = y_{j+1}-y_{j-1} , 1\leqslant i, j\leqslant N-1 and \Omega_{i, j} = \{[x_{i-1}, x_{i+1}]\times[y_{j-1}, y_{j+1}]|1\leqslant i, j\leqslant N-1\} . Similar to the numerical integration formula of the one-variable function (i.e., Simpson formula), we structure the numerical integration of the two-variable function \textbf{U}(x, y) on \Omega_{i, j} for each time step, i.e., for 1\leqslant i, j\leqslant N-1 ,
\begin{align} &\iint\limits_{\Omega_{i, j}}\textbf{U}(x, y, t_n)dxdy\thickapprox \frac{1}{6}\Delta x_i\Delta y_j\sum\limits_{k = 1}^3[\textbf{U}(x_{i+k-2}, y_{j}, t_n)+\textbf{U}(x_{i}, y_{j+k-2}, t_n)]. \end{align} | (4.3) |
Substituting Eq. (4.3) into Eq. (4.2) at each time step, we obtain the following average solutions \overline{\textbf{U}} , that is, for 1\leqslant i, j\leqslant N-1 and 0 < n\leqslant M , we have
\begin{align} \overline{\textbf{U}}_{i, j}^n\thickapprox& \frac{1}{6}\sum\limits_{k = 1}^3[\textbf{U}_{i+k-2, j}^n+\textbf{U}_{i, j+k-2}^n]. \end{align} | (4.4) |
Next, a positivity-preserving limiter (PPL) [25,46] is employed to eliminate the negative values of \textbf{U}_{i, j}^n , 0\leqslant i, j\leqslant N-1 , 0 < n\leqslant M , that is,
\begin{align} &\widetilde{\textbf{U}}_{i, j}^n = \min\left\{\Big|\frac{\overline{\textbf{U}}_{i, j}^n}{\overline{\textbf{U}}_{i, j}^n-\varpi_{i, j}^n}\Big|, 1\right\} (\textbf{U}_{i, j}^n-\overline{\textbf{U}}_{i, j}^n)+\overline{\textbf{U}}_{i, j}^n, \; \; \; \; \; 0\leqslant i, j\leqslant N, 0 < n\leqslant M, \end{align} | (4.5) |
where \varpi_{i, j}^n = \min\{\textbf{U}_{i, j}^n, \textbf{U}_{i-1, j}^n, \textbf{U}_{i+1, j}^n, \textbf{U}_{i, j+1}^n, \textbf{U}_{i, j-1}^n\}, \; \; 1\leqslant i, j\leqslant N-1, \; 0 < n\leqslant M. For 1\leqslant i, j\leqslant N-1 and 0 < n\leqslant M , we can get the positivity-preserving solution \widetilde{\textbf{U}}_{i, j}^n\geqslant 0 without losing the fourth-order accuracy obtained by the proposed scheme. Finally, we establish the following algorithm for the n th time step:
Algorithm 4.2: Positivity-preserving algorithm |
\textbf{ 1. } \ Compute \ \textbf{U}_{i, \ j}^n \ using \ the \ {schemes \ given \ by} \ (3.27) \ - \ (3.30) \ and \ (3.17) \ - \ (3.20); |
\textbf{ 2. } \ Compute \ the \ averaged \ solution \ \overline{\textbf{U}}_{i, \ j}^n \ using \ Eq{.} \ (4.4); |
\textbf{ 3. } Compute \ the \ positive \ solution \ \widetilde{\textbf{U}}_{i, \ j}^n \ using \ the \ PPL \ (4.5). |
On the basis of the derivation process described in Section 3 and the proposed algorithms in Subsections 4.1 and 4.2, we employ the difference schemes given by (3.27)–(3.30) and (3.17)–(3.20) to approximate the solution of the original system given by (1.1)–(1.3), which mainly includes the following three steps: first, provide the initial value of \textbf{U}_{i, j}^{0} ; second, we employ Eqs. (3.7)–(3.11) and (3.27)–(3.31) to compute the values of \textbf{U}_{i, j}^{1} , \textbf{U}_{i, j}^{2} and \textbf{U}_{i, j}^{3} ; finally, we employ Eqs. (3.7)–(3.11) and (3.17)–(3.20) to compute the value of \textbf{U}_{i, j}^{n} (n\geqslant 4) . As (3.27)–(3.30) and (3.17)–(3.20) involve nonlinear parts, we establish the following algorithm with a nonlinear iteration tactic to solve them.
Algorithm 4.3: Time advancement algorithm |
\ {Establish} \ the \ initial \ values: \ \textbf{U}_{i, j}^0 = \textbf{U}_0(x_i, y_j) ; |
\textbf{ for } n = 1, 2, \cdots, M \textbf{ do } |
\textbf{ if } 1\leqslant n \leqslant 3 \textbf{ then } |
\textbf{R}_{i, j}^{2(n-1)} = { \textbf{R}}_{i, j}^{2(n-1), (*)}(h, \tau/2), \textbf{R}_{i, j}^{(n-1)} = { \textbf{R}}_{i, j}^{(n-1), (*)}(h, \tau) ; |
Computing \ the \ following \ {chemotaxis \ parts \ at \ {the} \ (n-1)th \ time \ step} \ using \ {Eqs.} \ (3.7)-(3.11) ; |
(\textbf{F}_x)_{i, j}^{2(n-1)} = { (\textbf{F}_x)}_{i, j}^{2(n-1), (*)}(h, \tau/2), (\textbf{F}_x)_{i, j}^{(n-1)} = { (\textbf{F}_x)}_{i, j}^{(n-1), (*)}(h, \tau) ; |
(\textbf{G}_y)_{i, j}^{2(n-1)} = { (\textbf{G}_y)}_{i, j}^{2(n-1), (*)}(h, \tau/2), (\textbf{G}_y)_{i, j}^{(n-1)} = { (\textbf{G}_y)}_{i, j}^{(n-1), (*)}(h, \tau) ; |
\textbf{ for } k = 1, 2, 3, \cdots \textbf{ do } |
{Computing} \ \ \textbf{U}_{0, j}^n, \ \textbf{U}_{N, j}^n, \ \textbf{U}_{i, 0}^n \ {and} \ \textbf{U}_{i, N}^n \ using \ Eqs. \ (3.29)-(3.30), \ i.e., |
{ \textbf{U}_{0, j}^{2n, k} = \mathcal{A}\textbf{U}_{0, j}^{2n, k-1}(h, \tau/2), \textbf{U}_{N, j}^{2n, k} = \mathcal{A}\textbf{U}_{N, j}^{2n, k-1}(h, \tau/2);} {\textbf{U}_{0, j}^{n, k} = \mathcal{A}\textbf{U}_{0, j}^{n, k-1}(h, \tau), \textbf{U}_{N, j}^{n, k} = \mathcal{A}\textbf{U}_{N, j}^{n, k-1}(h, \tau); } |
{ \textbf{U}_{i, 0}^{2n, k} = \mathcal{A}\textbf{U}_{i, 0}^{2n, k-1}(h, \tau/2), \textbf{U}_{i, N}^{2n, k} = \mathcal{A}\textbf{U}_{i, N}^{2n, k-1}(h, \tau/2);} {\textbf{U}_{i, 0}^{n, k} = \mathcal{A}\textbf{U}_{i, 0}^{n, k-1}(h, \tau), \textbf{U}_{i, N}^{n, k} = \mathcal{A}\textbf{U}_{i, N}^{n, k-1}(h, \tau); } |
\textbf{R}_{i, j}^{2n, (k)} = { \textbf{R}}_{i, j}^{2n, (k-1)}(h, \tau/2), \textbf{R}_{i, j}^{n, (k)} = { \textbf{R}}_{i, j}^{n, (k-1)}(h, \tau) ; |
Computing \ the \ following \ {chemotaxis \ parts \ at \ {the} \ (n)th \ time \ step} \ using \ {Eqs.} \ (3.7)-(3.11) ; |
(\textbf{F}_x)_{i, j}^{2n, (k)} = { (\textbf{F}_x)}_{i, j}^{2n, (k-1)}(h, \tau/2), (\textbf{F}_x)_{i, j}^{n, (k)} = { (\textbf{F}_x)}_{i, j}^{n, (k-1)}(h, \tau) ; |
(\textbf{G}_y)_{i, j}^{2n, (k)} = { (\textbf{G}_y)}_{i, j}^{2n, (k-1)}(h, \tau/2), (\textbf{G}_y)_{i, j}^{n, (k)} = { (\textbf{G}_y)}_{i, j}^{n, (k-1)}(h, \tau) ; |
{Computing} \ \ \textbf{U}_{i, j}^{2n, (k)}(h, \tau/2) \ and \ \textbf{U}_{i, j}^{n, (k)}(h, \tau) \ \ using \ {Eqs.} \ \ (3.27)-(3.30) \ {and} \ \ Algorithm \ 4.1; \ |
\textbf{ if } ||\textbf{U}_{{i, j}}^{2n, (k)}(h, \tau/2)-\textbf{U}_{{i, j}}^{2n, (k-1)}(h, \tau/2)|| < \sigma and ||\textbf{U}_{{i, j}}^{n, (k)}(h, \tau)-\textbf{U}_{{i, j}}^{n, (k-1)}(h, \tau)|| < \sigma \textbf{ then } |
\textbf{U}_{{i, j}}^{2n, (*)}(h, \tau/2) = \textbf{U}_{{i, j}}^{2n, (k)}(h, \tau/2), \textbf{U}_{{i, j}}^{n, (*)}(h, \tau) = \textbf{U}_{{i, j}}^{n, (k)}(h, \tau) ; |
\textbf{ end if } |
\textbf{ end for } |
Computing \ the \ extrapolated \ solutions \ \widehat{\textbf{U}}_{{i, \ j}}^{n, \ (*)} \ using \ {Eq.} (3.31); |
\textbf{ else } |
\textbf{ for } \ k = 1, 2, 3, \cdots, \textbf{ do } |
{Computing} \ \ \textbf{U}_{0, j}^n, \ \textbf{U}_{N, j}^n, \ \textbf{U}_{i, 0}^n \ {and} \ \textbf{U}_{i, N}^n \ using \ Eqs. \ (3.15)-(3.16) \, \ i.e., \ |
{ \textbf{U}_{0, j}^{n, k} = \mathcal{A}\textbf{U}_{0, j}^{n, k-1}(h, \tau), \textbf{U}_{N, j}^{n, k} = \mathcal{A}\textbf{U}_{N, j}^{n, k-1}(h, \tau); } { \textbf{U}_{i, 0}^{n, k} = \mathcal{A}\textbf{U}_{i, 0}^{n, k-1}(h, \tau), \textbf{U}_{i, N}^{n, k} = \mathcal{A}\textbf{U}_{i, N}^{n, k-1}(h, \tau); } |
\textbf{R}_{i, j}^{n, (k)} = { \textbf{R}}_{i, j}^{n, (k-1)}(h, \tau) ; |
Computing \ the \ following \ {chemotaxis \ parts \ at \ {the} \ \ (n)th \ time \ step} \ using \ {Eqs.} \ (3.7)-(3.11) ; |
(\textbf{F}_x)_{i, j}^{n, (k)} = { (\textbf{F}_x)}_{i, j}^{n, (k-1)}(h, \tau), (\textbf{G}_y)_{i, j}^{n, (k)} = { (\textbf{G}_y)}_{i, j}^{n, (k-1)}(h, \tau) ; |
{Computing} \ \ \ \textbf{U}_{i, j}^{n, (k)}(h, \tau) \ using \ Eqs. \ (3.17)-(3.20) \ and \ Algorithm \ 4.1; |
\textbf{ if } ||\textbf{U}_{{i, j}}^{n, (k)}(h, \tau)-\textbf{U}_{{i, j}}^{n, (k-1)}(h, \tau)|| < \sigma \textbf{ then } \textbf{U}_{{i, j}}^{n, (*)}(h, \tau) = \textbf{U}_{{i, j}}^{n, (k)}(h, \tau) ; |
\textbf{ end if } |
\textbf{ end for } |
\textbf{ end if } |
Computing \ the \ positive \ solutions \ \widetilde{\textbf{U}}_{i, j}^n \ {using} \ Algorithm \ 4.2. |
\textbf{ end for } |
In this part, we give several numerical experiments to test the various properties of the proposed scheme and algorithm when solving the system given by (1.1)–(1.3). First, in Subsection 5.1 below, the accuracy and stability of the proposed scheme and algorithm in the absence of PPL and in the presence of a PPL when solving the chemotaxis system are tested. Second, in Subsection 5.2 below, we simulate the blow-up phenomena for the system given by (1.1)–(1.3), compare the obtained results from the proposed scheme and algorithm before and after using the positivity-preserving algorithm and verify the mass conservation and energy dissipation of the proposed method.
We consider the following general type of Eq. (1.1) with source terms to test the accuracy, that is,
\begin{align} \left\{ \begin{array}{ll} u_t = \triangle u-\nabla\cdot(u\nabla v)-\frac{4u}{2+\sin(x+y)}+\frac{2u^2[\cos(2x+2y)-2\sin(x+y)]}{[2+\sin(x+y)]^2}, &0\leqslant x, y\leqslant 2\pi, \; t > 0, \\ v_t = \triangle v-v+u-\frac{4v}{2+\sin(x+y)}, &0\leqslant x, y\leqslant 2\pi, \; t > 0. \end{array} \right. \end{align} |
We use the periodic boundary conditions, and its analytical solution is u(x, y, t) = v(x, y, t) = (2+\sin(x+y))e^{-2t}. By observing the expression of this analytical solution, we can see that the global solutions of this problem are positive values in the entire physical domain. Therefore, in this computation, we will use the difference scheme proposed in this work to approximate the solution for this problem in the absence of a PPL.
In Table 1, we take \tau = 0.1h and test the convergence of the HOC scheme at the final time T = 0.1 for Problem 5.1.1. From this table, the fourth-order accuracy is obtained by using the proposed scheme. The obtained results for the LDG method in [3] (the time step size \tau = 0.001h^2 is used to solve this problem) represent third-order accuracy, which shows the advantage of our method, that is, we can obtain higher accuracy with a larger time step. Table 2 displays the convergence of the HOC scheme at T = 1 and T = 5 for Problem 5.1.1, where \tau = 0.5h . Table 3 shows the ||\cdot||_2 errors of u(x, y, t) and v(x, y, t) for different step ratios \lambda = \tau/h for Problem 5.1.1, where T = 1 and \tau = \lambda h . From these tables, we obtain that the proposed method still converges at a fourth-order rate when computing long times and large step ratios, which indicates that our method has better stability.
N | LDG scheme [3] | HOC scheme | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
8 | 5.79E-03 | 2.53E-02 | 9.415E-03 | 3.974E-02 | |||||
16 | 8.79E-04 | 2.69 | 3.87E-03 | 2.71 | 3.359E-04 | 4.81 | 1.379E-03 | 4.85 | |
32 | 1.19E-04 | 2.91 | 5.18E-04 | 2.90 | 1.912E-05 | 4.13 | 7.711E-05 | 4.16 | |
64 | 1.49E-05 | 3.00 | 6.57E-05 | 2.98 | 1.112E-06 | 4.10 | 4.431E-06 | 4.12 |
N | T=1 | T=5 | |||||||
||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||
Cell density u(x, y, t) | |||||||||
20 | 1.472E-03 | 6.477E-03 | 5.428E-06 | 2.415E-05 | |||||
40 | 1.046E-04 | 3.81 | 4.621E-04 | 3.81 | 2.289E-07 | 4.57 | 1.018E-06 | 4.57 | |
80 | 6.404E-06 | 4.03 | 2.832E-05 | 4.03 | 1.840E-08 | 3.64 | 5.259E-08 | 4.27 | |
160 | 3.902E-07 | 4.04 | 1.726E-06 | 4.04 | 6.967E-10 | 4.72 | 3.043E-09 | 4.11 | |
Chemoattractant concentration v(x, y, t) | |||||||||
20 | 1.459E-03 | 6.488E-03 | 5.428E-06 | 2.415E-05 | |||||
40 | 1.041E-04 | 3.81 | 4.629E-04 | 3.81 | 2.289E-07 | 4.57 | 1.018E-06 | 4.57 | |
80 | 6.382E-06 | 4.03 | 2.837E-05 | 4.03 | 1.840E-08 | 3.64 | 5.259E-08 | 4.27 | |
160 | 3.889E-07 | 4.04 | 1.729E-06 | 4.04 | 6.967E-10 | 4.72 | 3.043E-09 | 4.11 |
N | \lambda | ||u||_{2} | ||v||_2 |
0.4 | 2.8366512125E-05 | 2.8485324431E-05 | |
64 | 0.8 | 4.2917900191E-04 | 4.2928242249E-04 |
1.6 | 5.7178346316E-03 | 5.7179298620E-03 | |
0.8 | 2.8033654005E-05 | 2.8041090035E-05 | |
128 | 1.6 | 4.1876675539E-04 | 4.1877318296E-04 |
3.2 | 5.5523910128E-03 | 5.5523969211E-03 | |
1.6 | 2.7710430090E-05 | 2.7710912582E-05 | |
256 | 3.2 | 4.1352388720E-04 | 4.1352430255E-04 |
6.4 | 5.4716502752E-03 | 5.4716506553E-03 |
Next, we consider the following general type of Eq. (1.1) with two additional fluxes[24]:
\begin{align} \left\{ \begin{array}{ll} u_t = \triangle u-\nabla\cdot(\chi u\nabla v)+r_1(x, y, t), &0\leqslant x, y\leqslant 2\pi, \; t > 0, \\ v_t = \triangle v-v+u+r_2(x, y, t), &0\leqslant x, y\leqslant 2\pi, \; t > 0, \end{array} \right. \end{align} |
where \chi = 1 , and the homogeneous Neumann boundary condition (1.3) is applied.
Case 1: The additional fluxes are r_1(x, y, t) = -2 \exp(-2t)(\cos^2(x)+\cos(x)\cos(y)+\cos^2(y)-1) , r_2(x, y, t) = 0 , with the initial condition u(x, y, 0) = v(x, y, 0) = \cos(x)+\cos(y), 0\leqslant x, y\leqslant 2\pi , and the analytical solution[23,24] {u(x, y, t) = v(x, y, t) = \exp(-t)(\cos(x)+\cos(y))}.
Case 2: The additional fluxes are r_1(x, y, t) = -2e^{-4t}\cos(2x+2y) , r_2(x, y, t) = 0 , with the initial condition u(x, y, 0) = v(x, y, 0) = \cos(x+y), 0\leqslant x, y\leqslant 2\pi , and the analytical solution u(x, y, t) = v(x, y, t) = e^{-2t}\cos(x+y) .
Table 4 shows the convergence of the HOC scheme when we take the time step size \tau = 0.001 at T = 0.1 when using the proposed method to solve Problem 5.1.2 Case 1: the obtained results are compared with those in [24]. According to Table 4, the results obtained via the proposed method in the absence of a PPL can converge at the fourth-order rate. After using the positivity-preserving algorithm, although the errors obtained via the proposed scheme in the presence of a PPL decreases slightly, it still converges at the fourth-order rate and is better than the results in [24], as it is only second-order accuracy in [24]. In Tables 5 and 6, the results computed by using the proposed method for Problem 5.1.2 are given respectively. And, the convergence of the HOC scheme in the presence and absence of a PPL are compared when \tau = 0.5h , T = 1 and T = 5 . By observing these tables, it can be found that the computed results for the proposed method can achieve the fourth-order accuracy in both cases, including with and without a PPL. Finally, we take the spatial meshes N = 64,128 and 256 , respectively, at the final time T = 1 . By using the proposed method to solve Problem 5.1.2 Case 1, we obtain the ||\cdot||_2 norm errors computed with and without a PPL for different step ratios \lambda . The computed results are listed in Table 7. On the basis of this table, with the increase of the step ratio \lambda , the proposed method can converge well regardless of PPL existence, which also reflects that the proposed HOC difference scheme has better stability.
Ref. [24] | HOC scheme | |||||||
Without PPL | With PPL | |||||||
N | ||u||_{2} | Rate | ||u||_{2} | Rate | ||u||_{2} | Rate | ||
10 | 1.02E-01 | 9.275E-03 | 2.170E-01 | |||||
20 | 2.74E-02 | 1.90 | 6.000E-04 | 3.95 | 2.870E-02 | 2.92 | ||
40 | 6.30E-03 | 2.12 | 2.624E-05 | 4.52 | 2.469E-03 | 3.54 | ||
80 | 1.45E-03 | 2.12 | 1.593E-06 | 4.04 | 1.476E-04 | 4.06 |
N | Without PPL | With PPL | |||||||
||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||
Cell density u(x, y, t) | |||||||||
16 | 4.670E-03 | 1.022E-02 | 4.846E-03 | 1.424E-02 | |||||
32 | 1.009E-04 | 5.53 | 2.447E-04 | 5.38 | 2.684E-04 | 4.17 | 7.271E-04 | 4.29 | |
64 | 1.686E-06 | 5.90 | 5.902E-06 | 5.37 | 2.048E-05 | 3.71 | 4.974E-05 | 3.87 | |
128 | 7.683E-08 | 4.46 | 2.329E-07 | 4.66 | 1.508E-06 | 3.76 | 3.539E-06 | 3.81 | |
Chemoattractant concentration v(x, y, t) | |||||||||
16 | 3.154E-03 | 8.025E-03 | 3.457E-03 | 1.217E-02 | |||||
32 | 9.167E-05 | 5.10 | 2.391E-04 | 5.07 | 2.769E-04 | 3.64 | 7.280E-04 | 4.06 | |
64 | 2.233E-06 | 5.36 | 6.687E-06 | 5.16 | 2.129E-05 | 3.70 | 5.074E-05 | 3.84 | |
128 | 4.873E-08 | 5.52 | 1.986E-07 | 5.07 | 1.558E-06 | 3.77 | 3.574E-06 | 3.83 |
N | Without PPL | With PPL | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
16 | 2.693E-03 | 1.418E-02 | 4.424E-03 | 2.430E-02 | |||||
32 | 6.517E-05 | 5.37 | 3.530E-04 | 5.33 | 2.106E-04 | 4.39 | 1.172E-03 | 4.37 | |
64 | 1.631E-06 | 5.32 | 9.106E-06 | 5.28 | 1.331E-05 | 3.98 | 7.517E-05 | 3.96 | |
128 | 4.703E-08 | 5.12 | 2.672E-07 | 5.09 | 8.955E-07 | 3.89 | 5.098E-06 | 3.88 |
N | \lambda | Without PPL | With PPL | |||
||u||_2 | ||v||_2 | ||u||_2 | ||v||_2 | |||
0.4 | 6.4023871303E-06 | 7.2616742789E-06 | 6.1464555035E-05 | 6.2581655559E-05 | ||
64 | 0.8 | 1.2105436765E-05 | 1.1596839477E-05 | 3.5050251455E-05 | 3.5272598246E-05 | |
1.6 | 1.4457697771E-04 | 1.4260648214E-04 | 1.4620731799E-04 | 1.4406453705E-04 | ||
0.8 | 9.4507876168E-07 | 8.4039918076E-07 | 2.4504429125E-06 | 2.4129793104E-06 | ||
128 | 1.6 | 1.4859666027E-05 | 1.4234907841E-05 | 1.4967935575E-05 | 1.4314292650E-05 | |
3.2 | 1.5091392012E-04 | 1.4863144808E-04 | 1.5093408941E-04 | 1.4864245029E-04 | ||
1.6 | 1.0545853150E-06 | 9.9391781457E-07 | 1.0618094946E-06 | 9.9866861508E-07 | ||
256 | 3.2 | 1.5143113254E-05 | 1.4499368302E-05 | 1.5145042129E-05 | 1.4500157168E-05 | |
6.4 | 1.5233575478E-04 | 1.4973374665E-04 | 1.5233626588E-04 | 1.4973395499E-04 |
Table 8 lists the numerical convergence of HOC scheme Problem 5.1.2 Case 2 in the absence and presence of a PPL, where T = 0.2 and \tau = 0.1h , and it compares the computed results with those obtained via the method in [25]. The results in [25] have third-order accuracy before and after using a PPL, while the results computed via the method in this work converge at the fourth-order rate for both cases, including without and with a PPL, and the ||\cdot||_{\infty} , ||\cdot||_{2} errors are better than those in [25]. This also reflects the superiority of the HOC difference scheme proposed in this work.
N | Ref. [25] | HOC scheme | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
Without PPL | |||||||||
20 | 3.65E-03 | 3.04E-03 | 6.189E-04 | 9.217E-04 | |||||
40 | 4.55E-04 | 3.00 | 3.67E-04 | 3.05 | 3.554E-05 | 4.12 | 7.089E-05 | 3.70 | |
80 | 5.68E-05 | 3.00 | 4.58E-05 | 3.00 | 2.535E-06 | 3.81 | 4.677E-06 | 3.92 | |
160 | 7.02E-06 | 3.01 | 5.77E-06 | 2.99 | 1.741E-07 | 3.86 | 3.077E-07 | 3.93 | |
With PPL | |||||||||
20 | 3.55E-02 | 3.62E-02 | 6.337E-04 | 1.019E-03 | |||||
40 | 4.37E-03 | 3.02 | 4.54E-03 | 3.00 | 3.788E-05 | 4.06 | 7.260E-05 | 3.81 | |
80 | 5.40E-04 | 3.02 | 5.61E-04 | 3.02 | 2.562E-06 | 3.89 | 4.706E-06 | 3.95 | |
160 | 6.74E-05 | 3.01 | 6.92E-05 | 3.02 | 1.745E-07 | 3.88 | 3.082E-07 | 3.93 |
In the 2D case of the system given by (1.1)–(1.3), when the initial mass satisfies certain critical values, the solutions will blow up in a finite time. To capture the blow-up time of the solutions, referring to [47], the following adaptive technology is used to obtain the optimal time step sizes, i.e.,
\begin{align} &\tau_n = h\parallel\mathbb{U}^n\parallel_{\infty}^{-1}, \; \; \; \; \; n\geqslant0. \end{align} | (5.1) |
The computation is terminated if ||\mathbb{U}||_{\infty}\geqslant 10^{\nu} , where \nu denotes the maximum order of magnitude of cell density when the actual problem experiences a blow up. And, t_n = \sum\limits_{m = 0}^{n-1}\tau_m is regarded as the approximation of the blow-up time T .
In a rectangular region [-0.5, 0.5]\times[-0.5, 0.5] , we first take \chi = d = 1 and test the initial-boundary value problem (IBVP) [23,24,25] for the chemotaxis system given by (1.1)–(1.3) with the homogeneous Neumann boundary conditions given by (1.3), where its initial conditions are as follow:
\begin{align} \left\{ \begin{array}{ll} u(x, y, 0) = 840e^{-84(x^2+y^2)}, &-0.5\leqslant x, y\leqslant 0.5, \; t > 0, \\ v(x, y, 0) = 420e^{-42(x^2+y^2)}, &-0.5\leqslant x, y\leqslant0.5, \; t > 0. \end{array} \right. \end{align} |
The solution of this problem will blow up in finite time at the center of this rectangular region.
(1) Finite-time blow up. Figure 2 plots the numerical solutions of cell density u(x, y, t) as obtained by using the proposed method in the presence of a PPL, to solve the IBVP 5.2.1 at t = 0 , t = 5\times10^{-5} , t = 10^{-4} and t = 1.2\times10^{-4} , where the initial time step size \tau_0 = 5\times10^{-6} and the fixed spatial mesh numbers are 100\times 100 . In [22], the blow-up time t is approximately equal to 1.21\times10^{-4} , which is verified by the authors. Based on observation, we can expect to see that Problem 5.2.1 displays blow-up phenomena around t\thickapprox 1.2\times10^{-4} at the center of the rectangular region [-0.5, 0.5]\times[-0.5, 0.5] . It shows that the maximum peak values of the cell density u(x, y, t) gradually increase over time and present a very sharp aiguille structure at the central zone. We find that u(x, y, t) is strictly positive during time evolution by using the proposed method in the presence of a PPL. Figure 3 displays the projections of u(x, y, t) on the xou plane for Problem 5.2.1 at two pre-blow-up times t = 10^{-4} and t = 1.2\times10^{-4} , with \tau_0 = 5\times10^{-6} and N = 100 . They intuitively show that the proposed method in this work can achieve positivity-preserving capability.
(2) Non-negativity. To highlight the performance of positivity-preserving capability for our method in the presence of a PPL, we employ the proposed scheme in the absence and presence of a PPL to solve the IBVP 5.2.1 in two different space grids N = 50 and N = 100 at pre-blow-up times t = 10^{-4} and t = 1.2\times10^{-4} , where \tau_0 = 5\times10^{-6} . In Figure 4, we can see that u(x, y, t) has negative values in the absence of a PPL, and that all negative values are eliminated after the PPL is used. At the same time, the negative values decrease with the increase of spatial grid numbers, and the solutions become smoother. However, for the same number of grids, the oscillation of the blow-up area increases with time.
(3) Influence of chemotaxis sensitivity coefficient \chi . We employ the proposed method to compute the blow-up solution in a finite time for this IBVP 5.2.1 under different chemotaxis sensitivity coefficients \chi = 2 and \chi = 3 at the same pre-blow-up time t = 5\times10^{-5} . The results are shown in Figure 5, where \tau_0 = 10^{-6} and N = 100 . We find that, for different values of \chi , the cell density u(x, y, t) achieves negative values in the absence of a PPL. After using the PPL, the algorithm effectively eliminates the negative values. At the same time, the maximum peak value when \chi = 3 is one order of magnitude higher than that when \chi = 2 . It can be seen that the peak value is gradually increased over \chi . Therefore, the sensitivity intensity \chi also affects the value of u(x, y, t) and the blow-up degree of Problem 5.2.1.
(4) Chemoattractant concentration. In Figure 6, we plot the numerical solutions of chemoattractant concentration v(x, y, t) for Problem 5.2.1 when t = 10^{-4} , \tau_0 = 5\times10^{-6} and N = 100 , and we have compared the computed results in the absence and presence of a PPL. Observing Figures 4b and 6, we find that, although we applied the same parameters in the absence of a PPL, u(x, y, t) achieves negative values, but v(x, y, t) does not have negative values, and that the numerical solutions in the presence of a PPL is highly consistent with those in the absence of a PPL. In summary, our method can effectively eliminate these negative values in this computation. It is consistent with the results obtained in the absence of a PPL if the obtained solutions do not have negative values. Meanwhile, Problem 5.2.1 always experiences a finite-time blow-up at the center of the rectangular region under this initial condition.
(5) Accuracy and mass conservation. Since the analytical solution for this IBVP 5.2.1 is very difficult to obtain, to verify the accuracy and mass conservation, we take the fine mesh 800\times800 as the reference solution. The convergence of the HOC scheme in the presence of a PPL are tested by using the relative errors between the maximum value \textbf{U}_{\max} (t) of u(x, y, t) and the reference solutions \textbf{U}_{\max}^*(t) ; the results are shown in Table 9. We find that u(x, y, t) can converge at a fourth-order relative error convergence rate. Meanwhile, we plot u_{max}(t) , which is the time evolution of the maximum value of u(x, y, t) , on the left of Figure 7, and the numerical energy with time on the right of Figure 7, using the proposed scheme in the presence of a PPL to solve this IBVP 5.2.1 with PPL at \tau_0 = 5\times 10^{-6} , N = 50, 80 , 100 . We find that the energy is strictly positive and monotonically decreasing with the evolution of time, which verifies the energy dissipation nature of the original problem. In addition, in Table 10, we give the discrete masses of u(x, y, t) and v(x, y, t) as obtained by using the proposed scheme in the absence and presence of a PPL to solve this IBVP 5.2.1 at different times T with \tau_0 = 5\times10^{-6}, N = 100 . According to this table, we can find that the proposed scheme in the absence of a PPL well verifies the mass conservation. After using the PPL, it is still conserved before blow up, and the mass conservation is slightly affected near the blow-up time.
N | Rel_{{\infty}} | Rate | Rel_{{2}} | Rate |
100 | 3.204E-02 | 2.104E-02 | ||
200 | 1.864E-03 | 4.10 | 1.197E-03 | 4.14 |
300 | 3.290E-04 | 4.28 | 2.134E-04 | 4.25 |
400 | 7.872E-05 | 4.97 | 5.902E-05 | 4.47 |
500 | 3.332E-05 | 3.85 | 2.154E-05 | 4.52 |
T | Without PPL | With PPL | |||
Mass_u | Mass_v | Mass_u | Mass_v | ||
0 | 31.4159265323 | 31.4156968041 | 31.4159265323 | 31.4156968041 | |
1.0\times10^{-5} | 31.4159265336 | 31.4157188735 | 31.4159265336 | 31.4157188735 | |
2.0\times10^{-5} | 31.4159265339 | 31.4157222761 | 31.4159265339 | 31.4157222761 | |
3.0\times10^{-5} | 31.4159265341 | 31.4157255274 | 31.4159265341 | 31.4157255274 | |
4.0\times10^{-5} | 31.4159265344 | 31.4157287900 | 31.4159265344 | 31.4157287900 | |
5.0\times10^{-5} | 31.4159265348 | 31.4157319661 | 31.4159265348 | 31.4157319661 | |
7.0\times10^{-5} | 31.4159265354 | 31.4157381680 | 31.4292462953 | 31.4157381680 | |
1.0\times10^{-4} | 31.4159265366 | 31.4157472806 | 37.7315206418 | 31.4157952866 | |
1.2\times10^{-4} | 31.4159265376 | 31.4157533114 | 48.2548641463 | 31.4159976499 |
In the section, we consider the following IBVP [24] for the chemotaxis system given by (1.1)–(1.3) with the boundary conditions given by (1.3) for the rectangular region [-0.5, 0.5]\times[-0.5, 0.5] . Its initial condition is given as follows:
\begin{align} &u(x, y, 0) = 1000e^{-100[(x-0.15)^2+(y-0.15)^2]}, \; \; \; \; v(x, y, 0) = 0. \end{align} |
In the computation, we take \chi = d = 1 and employ the proposed scheme in the presence of a PPL to simulate the temporal evolution of u(x, y, t) and v(x, y, t) . The solution for this Problem 5.2.2 will blow up in finite time [8,9,24] at the corner of the rectangular region [-0.5, 0.5]\times[-0.5, 0.5] . Next, we take the initial time step size \tau_0 = 10^{-3} and fix a mesh of 200\times 200 to compute them.
Figures 8 and 9 respectively display the evolutionary processes of u(x, y, t) and v(x, y, t) over time t . It can be seen in these figures that the maximum value of u(x, y, t) gradually moves toward the corner of the rectangular region [-0.5, 0.5]\times[-0.5, 0.5] in the form of a Gaussian profile. When it is close to the corner of the rectangular region, the value of u(x, y, t) increases rapidly, finally blowing up in a finite time. At the same time, v(x, y, t) also increases rapidly at the corner of the rectangular region.
In this work, first, a fourth-order compact difference scheme for solving a 2D Keller-Segel model was derived and the computing strategies for the initial time steps and the nonlinear chemotaxis terms has been presented. Then, a multigrid algorithm was established to improve the computational efficiency and the binary function integration method has been used to establish the positivity-preserving algorithm. Third, the accuracy and reliability of the proposed method in the absence and presence of a PPL have been respectively verified by several numerical examples with flux source terms. And, we simulated the blow-up phenomena for the chemotaxis system in the center and corner of the rectangular region, respectively. Finally, the energy dissipation and mass conservation were also verified by numerical experiments. In summary, compared with the classical high-order numerical methods for solving the chemotaxis system in the literature, this proposed method has the following advantages:
● The proposed HOC scheme is compact in the spatial directions and fully implicit, as no more than nine mesh points are required for the 2D spatial mesh subdomain.
● The truncation error of the proposed HOC scheme is O(\tau^4+h^4) , i.e., it has space-time fourth-order accuracy. Thus, we can take large time step sizes to approximate the solution of this chemotaxis system.
● The proposed numerical algorithm can effectively filter the negative values in the solution process to ensure that the values of cell density are not negative at all time steps, while maintaining the original fourth-order accuracy without loss.
● The computed results show that the proposed method is more accurate than most such schemes reported in the literature.
Nevertheless, our method also has some disadvantages. First, the new scheme has five layers in time. When it is used to compute the actual problem, three start-up time steps are required, which is slightly more troublesome for programming. Second, the proposed positivity-preserving algorithm would slightly affect its mass conservation when the actual problem blows up. The above deficiencies are also the driving force for our next work. At the same time, it is also possible to extend our approach to solve more complex chemotaxis and haptotaxis systems, which will be incorporated into our next work.
Support of the study was received from the National Natural Science Foundation of China (12161067, 12001015, 12261067), National Natural Science Foundation of Ningxia, China (2022AAC02023) and National Youth Top-Notch Talent Support Program of Ningxia, China.
All authors assert no conflict of interest.
The data that support the findings of this study are available from the authors upon reasonable request.
[1] |
Kahrobaeian A, Mohamed YARI (2015) Networked-based hybrid distributed power sharing and control for islanded microgrid systems. IEEE T Power Electr 30: 603-617. doi: 10.1109/TPEL.2014.2312425. doi: 10.1109/TPEL.2014.2312425
![]() |
[2] | Bidram A, Nasirian V, Davoudi A, et al. (2017) Cooperative Synchronization in Distributed Microgrid Control. Advances in Industrial Control, vol. 1. |
[3] |
Alzahrani A, Ferdowsi M, Shamsi P, et al. (2017) Modeling and Simulation of Microgrid. Procedia Comput Sci 114: 392-400. doi: 10.1016/j.procs.2017.09.053. doi: 10.1016/j.procs.2017.09.053
![]() |
[4] |
Hossain MA, Pota HR, Issa W, et al. (2017) Overview of AC microgrid controls with inverter-interfaced generations. Energies 10: 1-27. doi: 10.3390/en10091300. doi: 10.3390/en10091300
![]() |
[5] |
Hossain E, Kabalci E, Bayindir R, et al. (2014) A comprehensive study on microgrid technology. Int J Renew Energy Res 4: 1094-1104. doi: 10.20508/ijrer.20561. doi: 10.20508/ijrer.20561
![]() |
[6] |
Porsinger T, Janik P, Leonowicz Z, et al. (2017) Modelling and optimization in microgrids. Energies 10: 1-22. doi: 10.3390/en10040523. doi: 10.3390/en10040523
![]() |
[7] |
Siddique AB, Munsi S, Sarkar SK, et al. (2019) Model reference modified adaptive PID controller design for voltage and current control of islanded microgrid. 4th Int Conf Electr Eng Inf Commun Technol iCEEiCT 2018, 130-135. doi: 10.1109/CEEICT.2018.8628074. doi: 10.1109/CEEICT.2018.8628074
![]() |
[8] | Shayeghi H, Sobhany B, Moradzadeh M (2017) Management of Autonomous Microgrids Using Multi-Agent Based Online Optimized NF-PID Controller. J Energy Manag Technol 1: 79-87. |
[9] |
Rana MM, Li L, Su SW (2017) Distributed State Estimation of Smart Grids with Packet Losses. Asian J Control 19: 1306-1315. doi: 10.1002/asjc.1578. doi: 10.1002/asjc.1578
![]() |
[10] |
Parisio A, Wiezorek C, Kyntäjä T, et al. (2017) Cooperative MPC-Based Energy Management for Networked Microgrids. IEEE T Smart Grid 8: 3066-3074. doi: 10.1109/TSG.2017.2726941. doi: 10.1109/TSG.2017.2726941
![]() |
[11] | Sun Y, Hu J, Zhang Y, et al. (2018) Distributed Secondary Voltage Control of Microgrids with Nonuniform Time-Varying Delays. in Chinese Control Conference, CCC, 2018, 8809-8814. doi: 10.23919/ChiCC.2018.8483983. |
[12] |
Sarkar SK, Roni MHK, Datta D, et al. (2019) Improved Design of High-Performance Controller for Voltage Control of Islanded Microgrid. IEEE Syst J 13: 1786-1795. doi: 10.1109/JSYST.2018.2830504. doi: 10.1109/JSYST.2018.2830504
![]() |
[13] |
Aghaee F, Dehkordi NM, Bayati N, et al. (2019) Distributed control methods and impact of communication failure in AC microgrids: A comparative review. Electronics 8: 1265. doi: 10.3390/electronics8111265. doi: 10.3390/electronics8111265
![]() |
[14] |
Lou G, Gu W, Lu X, et al. (2020) Distributed Secondary Voltage Control in Islanded Microgrids with Consideration of Communication Network and Time Delays. IEEE T Smart Grid 11: 3702-3715. doi: 10.1109/TSG.2020.2979503. doi: 10.1109/TSG.2020.2979503
![]() |
[15] |
Ci S, Qian J, Wu D, et al. (2012) Impact of wireless communication delay on load sharing among distributed generation systems through smart microgrids. IEEE Wirel Commun 19: 24-29. doi: 10.1109/MWC.2012.6231156. doi: 10.1109/MWC.2012.6231156
![]() |
[16] |
Xu Y, Wang W (2013) Wireless mesh network in smart grid: Modeling and analysis for time critical communications. IEEE T Wirel Commun 12: 3360-3371. doi: 10.1109/TWC.2013.061713.121545. doi: 10.1109/TWC.2013.061713.121545
![]() |
[17] |
Lai J, Zhou H, Hu W, et al. (2015) Synchronization of Hybrid Microgrids with Communication Latency. Math Probl Eng 2015: 1-10. doi: 10.1155/2015/586260. doi: 10.1155/2015/586260
![]() |
[18] |
Alfergani A, Khalil A (2017) Modeling and control of master-slave microgrid with communication delay. 2017 8th Int Renew Energy Congr IREC, 1-6. doi: 10.1109/IREC.2017.7926049. doi: 10.1109/IREC.2017.7926049
![]() |
[19] |
Chen G, Guo Z (2019) Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays. IEEE T Smart Grid 10: 2002-2014. doi: 10.1109/TSG.2017.2785811. doi: 10.1109/TSG.2017.2785811
![]() |
[20] |
Nasirian V, Davoudi A, Lewis FL, et al. (2014) Distributed adaptive droop control for DC distribution systems. IEEE T Energy Conver 29: 944-956. doi: 10.1109/TEC.2014.2350458. doi: 10.1109/TEC.2014.2350458
![]() |
[21] |
Nasirian V, Moayedi S, Davoudi A, et al. (2015) Distributed cooperative control of dc microgrids. IEEE T Power Electr 30: 2288-2303. doi: 10.1109/TPEL.2014.2324579. doi: 10.1109/TPEL.2014.2324579
![]() |
[22] |
Nasirian V, Shafiee Q, Guerrero JM, et al. (2016) Droop-Free Distributed Control for AC Microgrids. IEEE T Power Electr 31: 1600-1617. doi: 10.1109/TPEL.2015.2414457. doi: 10.1109/TPEL.2015.2414457
![]() |
[23] |
Shafiee Q, Stefanovic C, Dragicevic T, et al. (2014) Robust networked control scheme for distributed secondary control of islanded microgrids. IEEE T Ind Electron 61: 5363-5374. doi: 10.1109/TIE.2013.2293711. doi: 10.1109/TIE.2013.2293711
![]() |
[24] |
Sun Y, Zhong C, Hou X, et al. (2017) Distributed cooperative synchronization strategy for multi-bus microgrids. Int J Electr Power 86: 18-28. doi: 10.1016/j.ijepes.2016.09.002. doi: 10.1016/j.ijepes.2016.09.002
![]() |
[25] |
Serban I, Cespedes S, Marinescu C, et al. (2020) Communication requirements in microgrids: A practical survey. IEEE Access 8: 47694-47712. doi: 10.1109/ACCESS.2020.2977928. doi: 10.1109/ACCESS.2020.2977928
![]() |
[26] |
Han, Y, Li, H, Shen P, et al. (2017) Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids. IEEE T Power Electr 32: 2427-2451. doi: 10.1109/TPEL.2016.2569597 doi: 10.1109/TPEL.2016.2569597
![]() |
[27] |
Dragicevic T, Lu X, Vasquez JC, et al. (2016) DC Microgrids - Part Ⅰ: A Review of Control Strategies and Stabilization Techniques. IEEE T Power Electron 31: 4876-4891. doi: 10.1109/TPEL.2015.2478859. doi: 10.1109/TPEL.2015.2478859
![]() |
[28] |
Vandoorn TL, De Kooning JDM, Meersman B, et al. (2013) Review of primary control strategies for islanded microgrids with power-electronic interfaces. Renewable and Sustainable Energy Reviews 19: 613-628. doi: 10.1016/j.rser.2012.11.062. doi: 10.1016/j.rser.2012.11.062
![]() |
[29] |
Ekanayake UN, Navaratne US (2020) A Survey on Microgrid Control Techniques in Islanded Mode. Electr Comput Eng 2020: 1-8. doi: 10.1155/2020/6275460. doi: 10.1155/2020/6275460
![]() |
[30] |
Rajesh KS, Dash SS, Rajagopal R, et al. (2016) A review on control of ac microgrid. Renew Sustain Energy Rev 71: 814-819. doi: 10.1016/j.rser.2016.12.106. doi: 10.1016/j.rser.2016.12.106
![]() |
[31] |
Han Y, Ning X, Yang P, et al. (2019) Review of Power Sharing, Voltage Restoration and Stabilization Techniques in Hierarchical Controlled DC Microgrids. IEEE Access 7: 149202-149223. doi: 10.1109/ACCESS.2019.2946706. doi: 10.1109/ACCESS.2019.2946706
![]() |
[32] |
Meng L, Shafiee Q, Trecate GF, et al. (2017) Review on Control of DC Microgrids and Multiple Microgrid Clusters. IEEE J Emerg Sel Top Power Electron 5: 928-948. doi: 10.1109/JESTPE.2017.2690219. doi: 10.1109/JESTPE.2017.2690219
![]() |
[33] |
Arbab-Zavar B, Palacios-Garcia EJ, Vasquez JC, et al. (2019) Smart inverters for microgrid applications: A review. Energies 12: 840. doi: 10.3390/en12050840. doi: 10.3390/en12050840
![]() |
[34] |
Nejabatkhah F, Li YW, Liang H, et al. (2021) Cyber-security of smart microgrids: A survey. Energies 14: 27. doi: 10.3390/en14010027. doi: 10.3390/en14010027
![]() |
[35] |
Habib HF, Lashway CR, Mohammed OA (2017) On the adaptive protection of microgrids: A review on how to mitigate cyber attacks and communication failures. 2017 IEEE Ind Appl Soc Annu Meet IAS, 1-8. doi: 10.1109/IAS.2017.8101886. doi: 10.1109/IAS.2017.8101886
![]() |
[36] |
Dahunsi F, Olayanju S, Ponle A, et al. (2021) Communication Network Simulation for Smart Metering Applications: A Review. J Innov Sci Eng 5: 101-128. doi: 10.38088/jise.835725. doi: 10.38088/jise.835725
![]() |
[37] |
O'Raw J, Laverty DM, Morrow DJ (2016) Software defined networking as a mitigation strategy for data communications in power systems critical infrastructure. IEEE Power and Energy Society General Meeting, 1-5. doi: 10.1109/PESGM.2016.7741417. doi: 10.1109/PESGM.2016.7741417
![]() |
[38] |
Sivaneasan B, So PL, Gooi HB, et al. (2013) Performance measurement and analysis of WiMAX-LAN communication operating at 5.8 GHz. IEEE T Ind Inform 9: 1497-1506. doi: 10.1109/TⅡ.2013.2258163. doi: 10.1109/TⅡ.2013.2258163
![]() |
[39] |
Sevilla AP, Ortega EI, Hincapie R (2015) FiWi network planning for smart metering based on multistage stochastic programming. IEEE Lat Am Trans 13: 3838-3843. doi: 10.1109/TLA.2015.7404917. doi: 10.1109/TLA.2015.7404917
![]() |
[40] |
Llaria A, Terrasson G, Curea O, et al. (2016) Application of wireless sensor and actuator networks to achieve intelligent microgrids: A promising approach towards a global smart grid deployment. Appl Sci 6: 61. doi: 10.3390/app6030061. doi: 10.3390/app6030061
![]() |
[41] |
Siow LK, So PL, Gooi HB, et al. (2009) Wi-Fi based server in microgrid energy management system. IEEE Reg 10 Annu Int Conf Proceedings/TENCON, 1-5. doi: 10.1109/TENCON.2009.5395995. doi: 10.1109/TENCON.2009.5395995
![]() |
[42] |
Setiawan MA, Shahnia F, Rajakaruna S, et al. (2015) ZigBee-Based Communication System for Data Transfer Within Future Microgrids. IEEE T Smart Grid 6: 2343-2355. doi: 10.1109/TSG.2015.2402678. doi: 10.1109/TSG.2015.2402678
![]() |
[43] |
Sharma D, Dubey A, Mishra S, et al. (2019) A Frequency Control Strategy Using Power Line Communication in a Smart Microgrid. IEEE Access 7: 21712-21721. doi: 10.1109/ACCESS.2019.2897051. doi: 10.1109/ACCESS.2019.2897051
![]() |
[44] |
Jeong DK, Kim HS, Baek JW, et al. (2018) Autonomous control strategy of DC microgrid for islanding mode using power line communication. Energies 11: 1-22. doi: 10.3390/en11040924. doi: 10.3390/en11040924
![]() |
[45] |
Ustun TS, Khan RH (2015) Multiterminal Hybrid Protection of Microgrids over Wireless Communications Network. IEEE T Smart Grid 6: 2493-2500. doi: 10.1109/TSG.2015.2406886. doi: 10.1109/TSG.2015.2406886
![]() |
[46] |
Ndukwe C, Iqbal MT, Liang X, et al. (2020) LoRa-based communication system for data transfer in microgrids. AIMS Electron Electr Eng 4: 303-325. doi: 10.3934/ElectrEng.2020.3.303. doi: 10.3934/ElectrEng.2020.3.303
![]() |
[47] |
Khatua PK, Ramachandaramurthy VK, Kasinathan P, et al. (2020) Application and assessment of internet of things toward the sustainability of energy systems: Challenges and issues. Sustain Cities Soc 53: 101957. doi: 10.1016/j.scs.2019.101957. doi: 10.1016/j.scs.2019.101957
![]() |
[48] | Nojavanzadeh D, Lotfifard S, Liu Z, et al. (2021) Scale-free Distributed Cooperative Voltage Control of Inverter-based Microgrids with General Time-varying Communication Graphs. IEEE T Power Syst, 1-8. |
[49] |
Cardwell N, Savage S, Anderson T (2000) Modeling TCP latency. Proc IEEE INFOCOM 3: 1742-1751. doi: 10.1109/infcom.2000.832574. doi: 10.1109/infcom.2000.832574
![]() |
[50] | Jacobsson K, Hjalmarsson H, Möller N, et al. (2004) Round trip time estimation in communication networks using adpative Kalman filtering. Regl Conf. |
[51] |
Jiang L, Yao W, Wu QH, et al. (2012) Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE T Power Syst 27: 932-941. doi: 10.1109/TPWRS.2011.2172821. doi: 10.1109/TPWRS.2011.2172821
![]() |
[52] |
Cheng L, Hou ZG, Tan M (2014) A mean square consensus protocol for linear multi-agent systems with communication noises and fixed topologies. IEEE T Automat Contr 59: 261-267. doi: 10.1109/TAC.2013.2270873. doi: 10.1109/TAC.2013.2270873
![]() |
[53] |
Wang Y, Cheng L, Hou ZG, et al. (2015) Consensus seeking in a network of discrete-time linear agents with communication noises. Int J Syst Sci 46: 1874-1888. doi: 10.3182/20140824-6-za-1003.00344. doi: 10.3182/20140824-6-za-1003.00344
![]() |
[54] |
Morita R, Wada T, Masubuchi I, et al. (2016) Multiagent consensus with noisy communication: Stopping rules based on network graphs. IEEE T Control Netw 3: 358-365. doi: 10.1109/TCNS.2015.2481119. doi: 10.1109/TCNS.2015.2481119
![]() |
[55] |
Liu J, Ming P, Li S (2016) Consensus gain conditions of stochastic multi-agent system with communication noise. Int J Control Autom 14: 1223-1230. doi: 10.1007/s12555-014-0360-5. doi: 10.1007/s12555-014-0360-5
![]() |
[56] |
Chaudhuri B, Majumder R, Pal BC (2004) Wide-area measurement-based stabilizing control of power system considering signal transmission delay. IEEE T Power Syst 19: 1971-1979. doi: 10.1109/TPWRS.2004.835669. doi: 10.1109/TPWRS.2004.835669
![]() |
[57] |
Rana MM (2017) Least mean square fourth based microgrid state estimation algorithm using the internet of things technology. PLoS One 12: 1-13. doi: 10.1371/journal.pone.0176099. doi: 10.1371/journal.pone.0176099
![]() |
[58] |
Setiawan MA, Abu-Siada A, Shahnia F (2018) A New Technique for Simultaneous Load Current Sharing and Voltage Regulation in DC Microgrids. IEEE T Ind Inform 14: 1403-1414. doi: 10.1109/TⅡ.2017.2761914. doi: 10.1109/TⅡ.2017.2761914
![]() |
[59] |
Ullah S, Khan L, Sami I, et al. (2021) Consensus-Based Delay-Tolerant Distributed Secondary Control Strategy for Droop Controlled AC Microgrids. IEEE Access 9: 6033-6049. doi: 10.1109/ACCESS.2020.3048723. doi: 10.1109/ACCESS.2020.3048723
![]() |
[60] |
Shuai Z, Huang W, Shen X, et al. (2019) A Maximum Power Loading Factor (MPLF) Control Strategy for Distributed Secondary Frequency Regulation of Islanded Microgrid. IEEE T Power Electron 34: 2275-2291. doi: 10.1109/TPEL.2018.2837125. doi: 10.1109/TPEL.2018.2837125
![]() |
[61] |
Jin D, Li Z, Hannon C, et al. (2017) Toward a Cyber Resilient and Secure Microgrid Using Software-Defined Networking. IEEE T Smart Grid 8: 2494-2504. doi: 10.1109/TSG.2017.2703911. doi: 10.1109/TSG.2017.2703911
![]() |
[62] |
Liu X, Li Z (2017) False Data Attacks Against AC State Estimation with Incomplete Network Information. IEEE T Smart Grid 8: 2239-2248. doi: 10.1109/TSG.2016.2521178. doi: 10.1109/TSG.2016.2521178
![]() |
[63] |
Saha S, Roy TK, Mahmud MA, et al. (2018) Electrical Power and Energy Systems Sensor fault and cyber attack resilient operation of DC microgrids. Int J Elec Power 99: 540-554. doi: 10.1016/j.ijepes.2018.01.007. doi: 10.1016/j.ijepes.2018.01.007
![]() |
[64] | Wu D, Member S, Ci S, et al. (2010) Application-Centric Routing for Video Streaming Over MultiHop Wireless Networks. IEEE T Circ Syst Vid 20: 1721-1734. |
[65] |
Rana MM, Li L, Su SW (2016) Distributed condition monitoring of renewable microgrids using adaptive-then-combine algorith. IEEE Power and Energy Society General Meeting, 1-6. doi: 10.1109/PESGM.2016.7741544. doi: 10.1109/PESGM.2016.7741544
![]() |
[66] |
Zheng L, Lu N, Cai L (2013) Reliable wireless communication networks for demand response control. IEEE T Smart Grid 4: 133-140. doi: 10.1109/TSG.2012.2224892. doi: 10.1109/TSG.2012.2224892
![]() |
[67] |
Zhang R, Hredzak B (2019) Distributed finite-time multiagent control for DC microgrids with time delays. IEEE T Smart Grid 10: 2692-2701. doi: 10.1109/TSG.2018.2808467. doi: 10.1109/TSG.2018.2808467
![]() |
[68] |
Zhou J, Tsai MJ, Cheng PT (2020) Consensus-Based Cooperative Droop Control for Accurate Reactive Power Sharing in Islanded AC Microgrid. IEEE J Em Sel Top P 8: 1108-1116. doi: 10.1109/JESTPE.2019.2946658. doi: 10.1109/JESTPE.2019.2946658
![]() |
[69] | Jacobsson K, Hjalmarsson H, Möller N, et al. (2004) Round trip time estimation in communication networks using adpative Kalman filtering. Reglermöte Conference, 1-5. |
[70] |
Das A, Shukla A, Shyam AB, et al. (2021) A Distributed-Controlled Harmonic Virtual Impedance Loop for AC Microgrids. IEEE T Ind Electron 68: 3949-3961. doi: 10.1109/TIE.2020.2987290. doi: 10.1109/TIE.2020.2987290
![]() |
[71] |
Da Silva WWAG, Oliveira TR, Donoso-Garcia PF (2020) Hybrid Distributed and Decentralized Secondary Control Strategy to Attain Accurate Power Sharing and Improved Voltage Restoration in DC Microgrids. IEEE T Power Electron 35: 6458-6469. doi: 10.1109/TPEL.2019.2951012. doi: 10.1109/TPEL.2019.2951012
![]() |
[72] |
Sharma D, Mishra S (2020) Disturbance-Observer-Based Frequency Regulation Scheme for Low-Inertia Microgrid Systems. IEEE Syst J 14: 782-792. doi: 10.1109/JSYST.2019.2901749. doi: 10.1109/JSYST.2019.2901749
![]() |
[73] |
Prabhakaran P, Goyal Y, Agarwal V (2019) A novel communication-based average voltage regulation scheme for a droop controlled DC microgrid. IEEE T Smart Grid 10: 1250-1258. doi: 10.1109/TSG.2017.2761864. doi: 10.1109/TSG.2017.2761864
![]() |
[74] |
Liu J, Du Y, Yim S, et al. (2020) Steady-State Analysis of Microgrid Distributed Control under Denial of Service Attacks. IEEE J Em Sel Top P 9: 5311-5325. doi: 10.1109/JESTPE.2020.2990879. doi: 10.1109/JESTPE.2020.2990879
![]() |
[75] |
Fu R, Huang X, Sun J, et al. (2017) Stability analysis of the cyber physical microgrid system under the intermittent DoS attacks. Energies 10: 1-15. doi: 10.3390/en10050680. doi: 10.3390/en10050680
![]() |
[76] |
Danzi P, Angjelichinoski M, Stefanovic C, et al. (2018) Software-Defined Microgrid Control for Resilience Against Denial-of-Service Attacks. IEEE T Smart Grid 10: 5258-5268. doi: 10.1109/TSG.2018.2879727. doi: 10.1109/TSG.2018.2879727
![]() |
[77] |
Ding L, Han QL, Ning B, et al. (2020) Distributed Resilient Finite-Time Secondary Control for Heterogeneous Battery Energy Storage Systems under Denial-of-Service Attacks. IEEE T Ind Inform 16: 4909-4919. doi: 10.1109/TII.2019.2955739. doi: 10.1109/TII.2019.2955739
![]() |
[78] |
Mustafa A, Poudel B, Bidram A, et al. (2020) Detection and Mitigation of Data Manipulation Attacks in AC Microgrids. IEEE T Smart Grid 11: 2588-2603. doi: 10.1109/TSG.2019.2958014. doi: 10.1109/TSG.2019.2958014
![]() |
[79] |
Poudel BP, Mustafa A, Bidram A, et al. (2020) Detection and mitigation of cyber-threats in the DC microgrid distributed control system. Int J Elec Power 120: 105968. doi: 10.1016/j.ijepes.2020.105968. doi: 10.1016/j.ijepes.2020.105968
![]() |
[80] |
Ghiasi M, Dehghani M, Niknam T, et al. (2021) Cyber-Attack Detection and Cyber-Security Enhancement in Smart DC-Microgrid Based on Blockchain Technology and Hilbert Huang Transform. IEEE Access 9: 29429-29440. doi: 10.1109/ACCESS.2021.3059042. doi: 10.1109/ACCESS.2021.3059042
![]() |
[81] |
Islam SN, Mahmud MA, Oo AMT (2018) Impact of optimal false data injection attacks on local energy trading in a residential microgrid. ICT Express 4: 30-34. doi: 10.1016/j.icte.2018.01.015. doi: 10.1016/j.icte.2018.01.015
![]() |
[82] |
Beg OA, Nguyen LV, Johnson TT, et al. (2019) Signal Temporal Logic-Based Attack Detection in DC Microgrids. IEEE T Smart Grid 10: 3585-3595. doi: 10.1109/TSG.2018.2832544. doi: 10.1109/TSG.2018.2832544
![]() |
[83] |
Yassaie N, Hallajiyan M, Sharifi I, et al. (2021) Resilient control of multi-microgrids against false data injection attack. ISA T 110: 238-246. doi: 10.1016/j.isatra.2020.10.030. doi: 10.1016/j.isatra.2020.10.030
![]() |
[84] |
Mahmood H, Mahmood D, Shaheen Q, et al. (2021) S-DPs: An SDN-based DDoS protection system for smart grids. Secur Commun Netw. doi: 10.1155/2021/6629098. doi: 10.1155/2021/6629098
![]() |
[85] |
Rokrok E, Shafie-khah M, Catalão JPS (2018) Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renewable and Sustainable Energy Reviews 82: 3225-3235. doi: 10.1016/j.rser.2017.10.022. doi: 10.1016/j.rser.2017.10.022
![]() |
[86] |
Han H, Liu Y, Sun Y, et al. (2015) An Improved Droop Control Strategy for Reactive Power Sharing in Islanded Microgrid. IEEE T Power Electr 30: 3133-3141. doi: 10.1109/TPEL.2014.2332181. doi: 10.1109/TPEL.2014.2332181
![]() |
[87] |
Ahumada C, Cárdenas R, Sáez D, et al. (2016) Secondary Control Strategies for Frequency Restoration in Islanded Microgrids With Consideration of Communication Delays. IEEE T Smart Grid 7: 1430-1441. doi: 10.1109/TSG.2015.2461190. doi: 10.1109/TSG.2015.2461190
![]() |
[88] |
Sheng W, Hong Y, Wu M, et al. (2020) A cooperative control scheme for AC/DC hybrid autonomous microgrids. Processes 8: 1-15. doi: 10.3390/pr8030311. doi: 10.3390/pr8030311
![]() |
[89] |
Ma J, Wang X, Liu J, et al. (2019) An improved droop control method for voltage-source inverter parallel systems considering line impedance differences. Energies 12: 1158. doi: 10.3390/en12061158. doi: 10.3390/en12061158
![]() |
[90] |
Sreekumar P, Khadkikar V (2015) A New Virtual Harmonic Impedance Scheme for Harmonic Power Sharing in an Islanded Microgrid. IEEE T Power Deliver 31: 936-945. doi: 10.1109/TPWRD.2015.2402434. doi: 10.1109/TPWRD.2015.2402434
![]() |
[91] |
Mahmood H, Michaelson D, Jiang J (2015) Reactive Power Sharing in Islanded Microgrids Using Adaptive Voltage Droop Control. IEEE T Smart Grid 6: 3052-3060. doi: 10.1109/TSG.2015.2399232. doi: 10.1109/TSG.2015.2399232
![]() |
[92] |
Khan MRB, Jidin R, Pasupuleti J (2016) Multi-agent based distributed control architecture for microgrid energy management and optimization. Energy Convers Manag 112: 288-307. doi: 10.1016/j.enconman.2016.01.011. doi: 10.1016/j.enconman.2016.01.011
![]() |
[93] |
Li Q, Chen F, Chen M, et al. (2016) Agent-Based Decentralized Control Method for Islanded Microgrids. IEEE T Smart Grid 7: 637-649. doi: 10.1109/TSG.2015.2422732. doi: 10.1109/TSG.2015.2422732
![]() |
[94] |
Zhang H, Kim S, Sun Q, et al. (2017) Distributed Adaptive Virtual Impedance Control for Accurate Reactive Power Sharing Based on Consensus Control in Microgrids. IEEE T Smart Grid 8: 1749-1761. doi: 10.1109/TSG.2015.2506760. doi: 10.1109/TSG.2015.2506760
![]() |
[95] | Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE T Automat Contr 49: 1520-1533. |
[96] |
Sugie T, Anderson BDO, Sun Z, et al. (2018) On a hierarchical control strategy for multi-agent formation without reflection. Proceedings of the IEEE Conference on Decision and Control, 2023-2028. doi: 10.1109/CDC.2018.8619404. doi: 10.1109/CDC.2018.8619404
![]() |
[97] |
Ajorlou A, Aghdam AG (2013) Connectivity preservation in nonholonomic multi-agent systems: A bounded distributed control strategy. IEEE T Automat Contr 58: 2366-2371. doi: 10.1109/TAC.2013.2251792. doi: 10.1109/TAC.2013.2251792
![]() |
[98] |
Dou CX, Liu B (2013) Multi-agent based hierarchical hybrid control for smart microgrid. IEEE T Smart Grid 4: 771-778. doi: 10.1109/TSG.2012.2230197. doi: 10.1109/TSG.2012.2230197
![]() |
[99] |
Liu W, Gu W, Sheng W, et al. (2014) Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints. IEEE T Sustain Energy 5: 446-456. doi: 10.1109/TSTE.2013.2293148. doi: 10.1109/TSTE.2013.2293148
![]() |
[100] |
Nguyen TL, Tran QT, Caire R, et al. (2017) Agent based distributed control of islanded microgrid-Real-time cyber-physical implementation. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017 - Proceedings, 1-6. doi: 10.1109/ISGTEurope.2017.8260275. doi: 10.1109/ISGTEurope.2017.8260275
![]() |
[101] | Yao J, Yang S, Wang K, et al. (2014) Framework for Future Smart Grid Operation and Control with Source-Grid-Load Interaction. IFAC Proceedings Volumes 47: 2788-2793. |
[102] |
Han R, Meng L, Ferrari-Trecate G, et al. (2017) Containment and Consensus-Based Distributed Coordination Control to Achieve Bounded Voltage and Precise Reactive Power Sharing in Islanded AC Microgrids. IEEE T Ind Appl 53: 5187-5199. doi: 10.1109/TIA.2017.2733457. doi: 10.1109/TIA.2017.2733457
![]() |
[103] |
Dehkordi NM, Baghaee HR, Sadati N, et al. (2019) Distributed Noise-Resilient Secondary Voltage and Frequency Control for Islanded Microgrids. IEEE T Smart Grid 10: 3780-3790. doi: 10.1109/TSG.2018.2834951. doi: 10.1109/TSG.2018.2834951
![]() |
[104] |
Badal FR, Das P, Sarker SK, et al. (2019) A survey on control issues in renewable energy integration and microgrid. Prot Control Mod Power Syst 4: 1-27. doi: 10.1186/s41601-019-0122-8. doi: 10.1186/s41601-019-0122-8
![]() |
[105] |
Nair UR (2020) A Model Predictive Control-Based Energy Management Scheme for Hybrid Storage System in Islanded Microgrids. IEEE Access 8: 97809-97822. doi: 10.1109/ACCESS.2020.2996434. doi: 10.1109/ACCESS.2020.2996434
![]() |
[106] |
Parisio A, Rikos E, Tzamalis G, et al. (2014) Use of model predictive control for experimental microgrid optimization. Appl Energy 115: 37-46. doi: 10.1016/j.apenergy.2013.10.027. doi: 10.1016/j.apenergy.2013.10.027
![]() |
[107] |
Verma AK, Gooi HB, Ukil A, et al. (2017) Microgrid frequency stabilization using model predictive controller. 2016 IEEE PES Transm Distrib Conf Expo Am PES T D-LA, 1-6. doi: 10.1109/TDC-LA.2016.7805637. doi: 10.1109/TDC-LA.2016.7805637
![]() |
[108] |
Sarkar SK, Badal FR, Das SK, et al. (2017) Discrete time model predictive controller design for voltage control of an islanded microgrid. 3rd Int Conf Electr Inf Commun Technol EICT, 1-6. doi: 10.1109/EICT.2017.8275162. doi: 10.1109/EICT.2017.8275162
![]() |
[109] |
Lou G, Gu W, Sheng W, et al. (2018) Distributed model predictive secondary voltage control of islanded microgrids with feedback linearization. IEEE Access 6: 50169-50178. doi: 10.1109/ACCESS.2018.2869280. doi: 10.1109/ACCESS.2018.2869280
![]() |
[110] |
Sarker SK, Badal FR, Das P, et al. (2019) Multivariable integral linear quadratic Gaussian robust control of islanded microgrid to mitigate voltage oscillation for improving transient response. Asian J Control 21: 2114-2125. doi: 10.1002/asjc.2215. doi: 10.1002/asjc.2215
![]() |
[111] | Vandoorn T, Renders B, Degroote L, et al. (2010) Voltage control in islanded microgrids by means of a linear-quadratic regulator. Proc IEEE Benelux Young Researchers Symposium in Electrical Power Engineering (YRS10). |
[112] |
Rahman M, Sarkar SK, Das SK, et al. (2018) A comparative study of LQR, LQG, and integral LQG controller for frequency control of interconnected smart grid. 3rd Int Conf Electr Inf Commun Technol EICT, 1-6. doi: 10.1109/EICT.2017.8275216. doi: 10.1109/EICT.2017.8275216
![]() |
[113] |
Sedhom BE, Hatata AY, El-Saadawi MM, et al. (2019) Robust adaptive H-infinity based controller for islanded microgrid supplying non-linear and unbalanced loads. IET Smart Grid 2: 420-435. doi: 10.1049/iet-stg.2019.0024. doi: 10.1049/iet-stg.2019.0024
![]() |
[114] |
Vandoorn TL, Ionescu CM, De Kooning JDM, et al. (2013) Theoretical analysis and experimental validation of single-phase direct versus cascade voltage control in islanded microgrids. IEEE T Ind Electron 60: 789-798. doi: 10.1109/TIE.2012.2205362. doi: 10.1109/TIE.2012.2205362
![]() |
[115] |
Singh A, Suhag S (2020) Frequency regulation in an AC microgrid interconnected with thermal system employing multiverse-optimised fractional order-PID controller. Int J Sustain Energy 39: 250-262. doi: 10.1080/14786451.2019.1684286. doi: 10.1080/14786451.2019.1684286
![]() |
[116] |
Singh A, Suhag S (2019) Frequency Regulation in AC Microgrid with and without Electric Vehicle Using Multiverse-Optimized Fractional Order- PID controller. Int J Comput Digit Syst 8: 375-385. doi: 10.12785/ijcds/080406. doi: 10.12785/ijcds/080406
![]() |
[117] |
Sarkar SK, Badal FR, Das SK (2018) A comparative study of high performance robust PID controller for grid voltage control of islanded microgrid. Int J Dyn Control 6: 1207-1217. doi: 10.1007/s40435-017-0364-0. doi: 10.1007/s40435-017-0364-0
![]() |
[118] |
Mongkoltanatas J, Riu D, Lepivert X (2013) H infinity controller design for primary frequency control of energy storage in islanding MicroGrid. 2013 15th Eur Conf Power Electron Appl (EPE), 1-11. doi: 10.1109/EPE.2013.6634714. doi: 10.1109/EPE.2013.6634714
![]() |
[119] |
Bevrani H, Feizi MR, Ataee S (2016) Robust Frequency Control in an Islanded Microgrid: H∞ and μ-Synthesis Approaches. IEEE T Smart Grid 7: 706-717. doi: 10.1109/TSG.2015.2446984. doi: 10.1109/TSG.2015.2446984
![]() |
[120] |
Kerdphol T, Rahman FS, Mitani Y, et al. (2018) Robust Virtual Inertia Control of an Islanded Microgrid Considering High Penetration of Renewable Energy. IEEE Access 6: 625-636. doi: 10.1109/ACCESS.2017.2773486. doi: 10.1109/ACCESS.2017.2773486
![]() |
[121] |
Krishna Metihalli B, Narayana Sabhahit J (2021) Disturbance Observer Based Distributed Consensus Control Strategy of Multi-Agent System with External Disturbance in a Standalone DC Microgrid. Asian J Control 23: 920-936. doi: 10.1002/asjc.2287. doi: 10.1002/asjc.2287
![]() |
[122] |
Keshta HE, Ali AA, Saied EM, et al. (2019) Real-time operation of multi-micro-grids using a multi-agent system. Energy 174: 576-590. doi: 10.1016/j.energy.2019.02.145. doi: 10.1016/j.energy.2019.02.145
![]() |
N | LDG scheme [3] | HOC scheme | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
8 | 5.79E-03 | 2.53E-02 | 9.415E-03 | 3.974E-02 | |||||
16 | 8.79E-04 | 2.69 | 3.87E-03 | 2.71 | 3.359E-04 | 4.81 | 1.379E-03 | 4.85 | |
32 | 1.19E-04 | 2.91 | 5.18E-04 | 2.90 | 1.912E-05 | 4.13 | 7.711E-05 | 4.16 | |
64 | 1.49E-05 | 3.00 | 6.57E-05 | 2.98 | 1.112E-06 | 4.10 | 4.431E-06 | 4.12 |
N | T=1 | T=5 | |||||||
||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||
Cell density u(x, y, t) | |||||||||
20 | 1.472E-03 | 6.477E-03 | 5.428E-06 | 2.415E-05 | |||||
40 | 1.046E-04 | 3.81 | 4.621E-04 | 3.81 | 2.289E-07 | 4.57 | 1.018E-06 | 4.57 | |
80 | 6.404E-06 | 4.03 | 2.832E-05 | 4.03 | 1.840E-08 | 3.64 | 5.259E-08 | 4.27 | |
160 | 3.902E-07 | 4.04 | 1.726E-06 | 4.04 | 6.967E-10 | 4.72 | 3.043E-09 | 4.11 | |
Chemoattractant concentration v(x, y, t) | |||||||||
20 | 1.459E-03 | 6.488E-03 | 5.428E-06 | 2.415E-05 | |||||
40 | 1.041E-04 | 3.81 | 4.629E-04 | 3.81 | 2.289E-07 | 4.57 | 1.018E-06 | 4.57 | |
80 | 6.382E-06 | 4.03 | 2.837E-05 | 4.03 | 1.840E-08 | 3.64 | 5.259E-08 | 4.27 | |
160 | 3.889E-07 | 4.04 | 1.729E-06 | 4.04 | 6.967E-10 | 4.72 | 3.043E-09 | 4.11 |
N | \lambda | ||u||_{2} | ||v||_2 |
0.4 | 2.8366512125E-05 | 2.8485324431E-05 | |
64 | 0.8 | 4.2917900191E-04 | 4.2928242249E-04 |
1.6 | 5.7178346316E-03 | 5.7179298620E-03 | |
0.8 | 2.8033654005E-05 | 2.8041090035E-05 | |
128 | 1.6 | 4.1876675539E-04 | 4.1877318296E-04 |
3.2 | 5.5523910128E-03 | 5.5523969211E-03 | |
1.6 | 2.7710430090E-05 | 2.7710912582E-05 | |
256 | 3.2 | 4.1352388720E-04 | 4.1352430255E-04 |
6.4 | 5.4716502752E-03 | 5.4716506553E-03 |
Ref. [24] | HOC scheme | |||||||
Without PPL | With PPL | |||||||
N | ||u||_{2} | Rate | ||u||_{2} | Rate | ||u||_{2} | Rate | ||
10 | 1.02E-01 | 9.275E-03 | 2.170E-01 | |||||
20 | 2.74E-02 | 1.90 | 6.000E-04 | 3.95 | 2.870E-02 | 2.92 | ||
40 | 6.30E-03 | 2.12 | 2.624E-05 | 4.52 | 2.469E-03 | 3.54 | ||
80 | 1.45E-03 | 2.12 | 1.593E-06 | 4.04 | 1.476E-04 | 4.06 |
N | Without PPL | With PPL | |||||||
||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||
Cell density u(x, y, t) | |||||||||
16 | 4.670E-03 | 1.022E-02 | 4.846E-03 | 1.424E-02 | |||||
32 | 1.009E-04 | 5.53 | 2.447E-04 | 5.38 | 2.684E-04 | 4.17 | 7.271E-04 | 4.29 | |
64 | 1.686E-06 | 5.90 | 5.902E-06 | 5.37 | 2.048E-05 | 3.71 | 4.974E-05 | 3.87 | |
128 | 7.683E-08 | 4.46 | 2.329E-07 | 4.66 | 1.508E-06 | 3.76 | 3.539E-06 | 3.81 | |
Chemoattractant concentration v(x, y, t) | |||||||||
16 | 3.154E-03 | 8.025E-03 | 3.457E-03 | 1.217E-02 | |||||
32 | 9.167E-05 | 5.10 | 2.391E-04 | 5.07 | 2.769E-04 | 3.64 | 7.280E-04 | 4.06 | |
64 | 2.233E-06 | 5.36 | 6.687E-06 | 5.16 | 2.129E-05 | 3.70 | 5.074E-05 | 3.84 | |
128 | 4.873E-08 | 5.52 | 1.986E-07 | 5.07 | 1.558E-06 | 3.77 | 3.574E-06 | 3.83 |
N | Without PPL | With PPL | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
16 | 2.693E-03 | 1.418E-02 | 4.424E-03 | 2.430E-02 | |||||
32 | 6.517E-05 | 5.37 | 3.530E-04 | 5.33 | 2.106E-04 | 4.39 | 1.172E-03 | 4.37 | |
64 | 1.631E-06 | 5.32 | 9.106E-06 | 5.28 | 1.331E-05 | 3.98 | 7.517E-05 | 3.96 | |
128 | 4.703E-08 | 5.12 | 2.672E-07 | 5.09 | 8.955E-07 | 3.89 | 5.098E-06 | 3.88 |
N | \lambda | Without PPL | With PPL | |||
||u||_2 | ||v||_2 | ||u||_2 | ||v||_2 | |||
0.4 | 6.4023871303E-06 | 7.2616742789E-06 | 6.1464555035E-05 | 6.2581655559E-05 | ||
64 | 0.8 | 1.2105436765E-05 | 1.1596839477E-05 | 3.5050251455E-05 | 3.5272598246E-05 | |
1.6 | 1.4457697771E-04 | 1.4260648214E-04 | 1.4620731799E-04 | 1.4406453705E-04 | ||
0.8 | 9.4507876168E-07 | 8.4039918076E-07 | 2.4504429125E-06 | 2.4129793104E-06 | ||
128 | 1.6 | 1.4859666027E-05 | 1.4234907841E-05 | 1.4967935575E-05 | 1.4314292650E-05 | |
3.2 | 1.5091392012E-04 | 1.4863144808E-04 | 1.5093408941E-04 | 1.4864245029E-04 | ||
1.6 | 1.0545853150E-06 | 9.9391781457E-07 | 1.0618094946E-06 | 9.9866861508E-07 | ||
256 | 3.2 | 1.5143113254E-05 | 1.4499368302E-05 | 1.5145042129E-05 | 1.4500157168E-05 | |
6.4 | 1.5233575478E-04 | 1.4973374665E-04 | 1.5233626588E-04 | 1.4973395499E-04 |
N | Ref. [25] | HOC scheme | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
Without PPL | |||||||||
20 | 3.65E-03 | 3.04E-03 | 6.189E-04 | 9.217E-04 | |||||
40 | 4.55E-04 | 3.00 | 3.67E-04 | 3.05 | 3.554E-05 | 4.12 | 7.089E-05 | 3.70 | |
80 | 5.68E-05 | 3.00 | 4.58E-05 | 3.00 | 2.535E-06 | 3.81 | 4.677E-06 | 3.92 | |
160 | 7.02E-06 | 3.01 | 5.77E-06 | 2.99 | 1.741E-07 | 3.86 | 3.077E-07 | 3.93 | |
With PPL | |||||||||
20 | 3.55E-02 | 3.62E-02 | 6.337E-04 | 1.019E-03 | |||||
40 | 4.37E-03 | 3.02 | 4.54E-03 | 3.00 | 3.788E-05 | 4.06 | 7.260E-05 | 3.81 | |
80 | 5.40E-04 | 3.02 | 5.61E-04 | 3.02 | 2.562E-06 | 3.89 | 4.706E-06 | 3.95 | |
160 | 6.74E-05 | 3.01 | 6.92E-05 | 3.02 | 1.745E-07 | 3.88 | 3.082E-07 | 3.93 |
N | Rel_{{\infty}} | Rate | Rel_{{2}} | Rate |
100 | 3.204E-02 | 2.104E-02 | ||
200 | 1.864E-03 | 4.10 | 1.197E-03 | 4.14 |
300 | 3.290E-04 | 4.28 | 2.134E-04 | 4.25 |
400 | 7.872E-05 | 4.97 | 5.902E-05 | 4.47 |
500 | 3.332E-05 | 3.85 | 2.154E-05 | 4.52 |
T | Without PPL | With PPL | |||
Mass_u | Mass_v | Mass_u | Mass_v | ||
0 | 31.4159265323 | 31.4156968041 | 31.4159265323 | 31.4156968041 | |
1.0\times10^{-5} | 31.4159265336 | 31.4157188735 | 31.4159265336 | 31.4157188735 | |
2.0\times10^{-5} | 31.4159265339 | 31.4157222761 | 31.4159265339 | 31.4157222761 | |
3.0\times10^{-5} | 31.4159265341 | 31.4157255274 | 31.4159265341 | 31.4157255274 | |
4.0\times10^{-5} | 31.4159265344 | 31.4157287900 | 31.4159265344 | 31.4157287900 | |
5.0\times10^{-5} | 31.4159265348 | 31.4157319661 | 31.4159265348 | 31.4157319661 | |
7.0\times10^{-5} | 31.4159265354 | 31.4157381680 | 31.4292462953 | 31.4157381680 | |
1.0\times10^{-4} | 31.4159265366 | 31.4157472806 | 37.7315206418 | 31.4157952866 | |
1.2\times10^{-4} | 31.4159265376 | 31.4157533114 | 48.2548641463 | 31.4159976499 |
N | LDG scheme [3] | HOC scheme | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
8 | 5.79E-03 | 2.53E-02 | 9.415E-03 | 3.974E-02 | |||||
16 | 8.79E-04 | 2.69 | 3.87E-03 | 2.71 | 3.359E-04 | 4.81 | 1.379E-03 | 4.85 | |
32 | 1.19E-04 | 2.91 | 5.18E-04 | 2.90 | 1.912E-05 | 4.13 | 7.711E-05 | 4.16 | |
64 | 1.49E-05 | 3.00 | 6.57E-05 | 2.98 | 1.112E-06 | 4.10 | 4.431E-06 | 4.12 |
N | T=1 | T=5 | |||||||
||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||
Cell density u(x, y, t) | |||||||||
20 | 1.472E-03 | 6.477E-03 | 5.428E-06 | 2.415E-05 | |||||
40 | 1.046E-04 | 3.81 | 4.621E-04 | 3.81 | 2.289E-07 | 4.57 | 1.018E-06 | 4.57 | |
80 | 6.404E-06 | 4.03 | 2.832E-05 | 4.03 | 1.840E-08 | 3.64 | 5.259E-08 | 4.27 | |
160 | 3.902E-07 | 4.04 | 1.726E-06 | 4.04 | 6.967E-10 | 4.72 | 3.043E-09 | 4.11 | |
Chemoattractant concentration v(x, y, t) | |||||||||
20 | 1.459E-03 | 6.488E-03 | 5.428E-06 | 2.415E-05 | |||||
40 | 1.041E-04 | 3.81 | 4.629E-04 | 3.81 | 2.289E-07 | 4.57 | 1.018E-06 | 4.57 | |
80 | 6.382E-06 | 4.03 | 2.837E-05 | 4.03 | 1.840E-08 | 3.64 | 5.259E-08 | 4.27 | |
160 | 3.889E-07 | 4.04 | 1.729E-06 | 4.04 | 6.967E-10 | 4.72 | 3.043E-09 | 4.11 |
N | \lambda | ||u||_{2} | ||v||_2 |
0.4 | 2.8366512125E-05 | 2.8485324431E-05 | |
64 | 0.8 | 4.2917900191E-04 | 4.2928242249E-04 |
1.6 | 5.7178346316E-03 | 5.7179298620E-03 | |
0.8 | 2.8033654005E-05 | 2.8041090035E-05 | |
128 | 1.6 | 4.1876675539E-04 | 4.1877318296E-04 |
3.2 | 5.5523910128E-03 | 5.5523969211E-03 | |
1.6 | 2.7710430090E-05 | 2.7710912582E-05 | |
256 | 3.2 | 4.1352388720E-04 | 4.1352430255E-04 |
6.4 | 5.4716502752E-03 | 5.4716506553E-03 |
Ref. [24] | HOC scheme | |||||||
Without PPL | With PPL | |||||||
N | ||u||_{2} | Rate | ||u||_{2} | Rate | ||u||_{2} | Rate | ||
10 | 1.02E-01 | 9.275E-03 | 2.170E-01 | |||||
20 | 2.74E-02 | 1.90 | 6.000E-04 | 3.95 | 2.870E-02 | 2.92 | ||
40 | 6.30E-03 | 2.12 | 2.624E-05 | 4.52 | 2.469E-03 | 3.54 | ||
80 | 1.45E-03 | 2.12 | 1.593E-06 | 4.04 | 1.476E-04 | 4.06 |
N | Without PPL | With PPL | |||||||
||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||\cdot||_\infty | Rate | ||\cdot||_2 | Rate | ||
Cell density u(x, y, t) | |||||||||
16 | 4.670E-03 | 1.022E-02 | 4.846E-03 | 1.424E-02 | |||||
32 | 1.009E-04 | 5.53 | 2.447E-04 | 5.38 | 2.684E-04 | 4.17 | 7.271E-04 | 4.29 | |
64 | 1.686E-06 | 5.90 | 5.902E-06 | 5.37 | 2.048E-05 | 3.71 | 4.974E-05 | 3.87 | |
128 | 7.683E-08 | 4.46 | 2.329E-07 | 4.66 | 1.508E-06 | 3.76 | 3.539E-06 | 3.81 | |
Chemoattractant concentration v(x, y, t) | |||||||||
16 | 3.154E-03 | 8.025E-03 | 3.457E-03 | 1.217E-02 | |||||
32 | 9.167E-05 | 5.10 | 2.391E-04 | 5.07 | 2.769E-04 | 3.64 | 7.280E-04 | 4.06 | |
64 | 2.233E-06 | 5.36 | 6.687E-06 | 5.16 | 2.129E-05 | 3.70 | 5.074E-05 | 3.84 | |
128 | 4.873E-08 | 5.52 | 1.986E-07 | 5.07 | 1.558E-06 | 3.77 | 3.574E-06 | 3.83 |
N | Without PPL | With PPL | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
16 | 2.693E-03 | 1.418E-02 | 4.424E-03 | 2.430E-02 | |||||
32 | 6.517E-05 | 5.37 | 3.530E-04 | 5.33 | 2.106E-04 | 4.39 | 1.172E-03 | 4.37 | |
64 | 1.631E-06 | 5.32 | 9.106E-06 | 5.28 | 1.331E-05 | 3.98 | 7.517E-05 | 3.96 | |
128 | 4.703E-08 | 5.12 | 2.672E-07 | 5.09 | 8.955E-07 | 3.89 | 5.098E-06 | 3.88 |
N | \lambda | Without PPL | With PPL | |||
||u||_2 | ||v||_2 | ||u||_2 | ||v||_2 | |||
0.4 | 6.4023871303E-06 | 7.2616742789E-06 | 6.1464555035E-05 | 6.2581655559E-05 | ||
64 | 0.8 | 1.2105436765E-05 | 1.1596839477E-05 | 3.5050251455E-05 | 3.5272598246E-05 | |
1.6 | 1.4457697771E-04 | 1.4260648214E-04 | 1.4620731799E-04 | 1.4406453705E-04 | ||
0.8 | 9.4507876168E-07 | 8.4039918076E-07 | 2.4504429125E-06 | 2.4129793104E-06 | ||
128 | 1.6 | 1.4859666027E-05 | 1.4234907841E-05 | 1.4967935575E-05 | 1.4314292650E-05 | |
3.2 | 1.5091392012E-04 | 1.4863144808E-04 | 1.5093408941E-04 | 1.4864245029E-04 | ||
1.6 | 1.0545853150E-06 | 9.9391781457E-07 | 1.0618094946E-06 | 9.9866861508E-07 | ||
256 | 3.2 | 1.5143113254E-05 | 1.4499368302E-05 | 1.5145042129E-05 | 1.4500157168E-05 | |
6.4 | 1.5233575478E-04 | 1.4973374665E-04 | 1.5233626588E-04 | 1.4973395499E-04 |
N | Ref. [25] | HOC scheme | |||||||
||u||_\infty | Rate | ||u||_2 | Rate | ||u||_\infty | Rate | ||u||_2 | Rate | ||
Without PPL | |||||||||
20 | 3.65E-03 | 3.04E-03 | 6.189E-04 | 9.217E-04 | |||||
40 | 4.55E-04 | 3.00 | 3.67E-04 | 3.05 | 3.554E-05 | 4.12 | 7.089E-05 | 3.70 | |
80 | 5.68E-05 | 3.00 | 4.58E-05 | 3.00 | 2.535E-06 | 3.81 | 4.677E-06 | 3.92 | |
160 | 7.02E-06 | 3.01 | 5.77E-06 | 2.99 | 1.741E-07 | 3.86 | 3.077E-07 | 3.93 | |
With PPL | |||||||||
20 | 3.55E-02 | 3.62E-02 | 6.337E-04 | 1.019E-03 | |||||
40 | 4.37E-03 | 3.02 | 4.54E-03 | 3.00 | 3.788E-05 | 4.06 | 7.260E-05 | 3.81 | |
80 | 5.40E-04 | 3.02 | 5.61E-04 | 3.02 | 2.562E-06 | 3.89 | 4.706E-06 | 3.95 | |
160 | 6.74E-05 | 3.01 | 6.92E-05 | 3.02 | 1.745E-07 | 3.88 | 3.082E-07 | 3.93 |
N | Rel_{{\infty}} | Rate | Rel_{{2}} | Rate |
100 | 3.204E-02 | 2.104E-02 | ||
200 | 1.864E-03 | 4.10 | 1.197E-03 | 4.14 |
300 | 3.290E-04 | 4.28 | 2.134E-04 | 4.25 |
400 | 7.872E-05 | 4.97 | 5.902E-05 | 4.47 |
500 | 3.332E-05 | 3.85 | 2.154E-05 | 4.52 |
T | Without PPL | With PPL | |||
Mass_u | Mass_v | Mass_u | Mass_v | ||
0 | 31.4159265323 | 31.4156968041 | 31.4159265323 | 31.4156968041 | |
1.0\times10^{-5} | 31.4159265336 | 31.4157188735 | 31.4159265336 | 31.4157188735 | |
2.0\times10^{-5} | 31.4159265339 | 31.4157222761 | 31.4159265339 | 31.4157222761 | |
3.0\times10^{-5} | 31.4159265341 | 31.4157255274 | 31.4159265341 | 31.4157255274 | |
4.0\times10^{-5} | 31.4159265344 | 31.4157287900 | 31.4159265344 | 31.4157287900 | |
5.0\times10^{-5} | 31.4159265348 | 31.4157319661 | 31.4159265348 | 31.4157319661 | |
7.0\times10^{-5} | 31.4159265354 | 31.4157381680 | 31.4292462953 | 31.4157381680 | |
1.0\times10^{-4} | 31.4159265366 | 31.4157472806 | 37.7315206418 | 31.4157952866 | |
1.2\times10^{-4} | 31.4159265376 | 31.4157533114 | 48.2548641463 | 31.4159976499 |