Citation: Apurba Kumar Saha, Nighat Afroz Chowdhury, Qian Zhang, Denis Prodius, Priyesh Wagh, Hongyue Jin. Critical materials for low carbon society[J]. Clean Technologies and Recycling, 2022, 2(4): 279-281. doi: 10.3934/ctr.2022014
[1] |
Alipanah M, Saha AK, Vahidi E, et al. (2021) Value recovery from spent lithium-ion batteries: A review on technologies, environmental impacts, economics, and supply chain. Clean Technol Recycl 1: 152–184. https://doi.org/10.3934/ctr.2021008 doi: 10.3934/ctr.2021008
![]() |
[2] |
Ji Y, Kpodzro EE, Jafvert CT, et al. (2021) Direct recycling technologies of cathode in spent lithium-ion batteries. Clean Technol Recycl 1: 124–151. https://doi.org/10.3934/ctr.2021007 doi: 10.3934/ctr.2021007
![]() |
[3] |
Inman G, Prodius D, Nlebedim IC (2021) Recent advances in acid-free dissolution and separation of rare earth elements from the magnet waste. Clean Technol Recycl 1: 112–123. https://doi.org/10.3934/ctr.2021006 doi: 10.3934/ctr.2021006
![]() |
[4] |
Di Maria A, Levasseur A, Van Acker K (2021) Assessing the long term effects on climate change of metallurgical slags valorization as construction material: a comparison between static and dynamic global warming impacts. Clean Technol Recycl 1: 88–111. https://doi.org/10.3934/ctr.2021005 doi: 10.3934/ctr.2021005
![]() |
[5] |
Nguyen RT, Toba AL, Severson MH, et al. (2021) A market-oriented database design for critical material research. Clean Technol Recycl 1: 34–49. https://doi.org/10.3934/ctr.2021002 doi: 10.3934/ctr.2021002
![]() |