Review

Twisting and extension: Application of magnetic tweezers to DNA studies

  • Received: 13 April 2023 Revised: 07 August 2023 Accepted: 22 August 2023 Published: 19 September 2023
  • Magnetic tweezers have emerged as a vital force spectroscopy tool for characterizing the mechanical properties of nucleic acids and their interactions with proteins. Harnessing the principles of magnetic theory, magnetic tweezers allow for the precise manipulation of biological compounds at the single-molecule level through the imposition of a magnetic field. This review focuses on the application of magnetic tweezers in the context of DNA studies, with a particular emphasis on the mechanical properties of DNA and its dynamic interactions with proteins and enzymes. These interactions are essential to genomic transactions such as DNA replication, repair, and transcription. Over the last few decades, magnetic tweezer technology has experienced significant advancements, leading to the development of different types of magnetic tweezers. These technological breakthroughs have opened up new avenues of scientific research, including studies related to DNA elasticity, supercoiling, replication, and repair.

    Citation: Arsha Moorthy, Alireza Sarvestani, Whitney Massock, Chamaree de Silva. Twisting and extension: Application of magnetic tweezers to DNA studies[J]. AIMS Biophysics, 2023, 10(3): 317-346. doi: 10.3934/biophy.2023020

    Related Papers:

  • Magnetic tweezers have emerged as a vital force spectroscopy tool for characterizing the mechanical properties of nucleic acids and their interactions with proteins. Harnessing the principles of magnetic theory, magnetic tweezers allow for the precise manipulation of biological compounds at the single-molecule level through the imposition of a magnetic field. This review focuses on the application of magnetic tweezers in the context of DNA studies, with a particular emphasis on the mechanical properties of DNA and its dynamic interactions with proteins and enzymes. These interactions are essential to genomic transactions such as DNA replication, repair, and transcription. Over the last few decades, magnetic tweezer technology has experienced significant advancements, leading to the development of different types of magnetic tweezers. These technological breakthroughs have opened up new avenues of scientific research, including studies related to DNA elasticity, supercoiling, replication, and repair.



    加载中

    Acknowledgments



    This work was supported by the seed grant provided by the Provost's office at Mercer University.

    Conflict of interest



    The authors declare that there are no conflict of interests.

    [1] Bustamante CJ, Chemla YR, Liu S, et al. (2021) Optical tweezers in single-molecule biophysics. Nat Rev Method Prime 1: 25. https://doi.org/10.1038/s43586-021-00021-6
    [2] Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental. Exp Cell Res 1: 37-80. https://doi.org/10.1016/0014-4827(50)90048-6
    [3] Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101: 130-140. https://DOI:10.1083/jcb.101.1.130
    [4] Shi Y, Sivarajan S, Crocker JC, et al. (2022) Measuring cytoskeletal mechanical fluctuations and rheology with active micropost arrays. Curr Protoc 2: e433. https://doi.org/10.1002/cpz1.433
    [5] Lipfert J, Lee M, Ordu O, et al. (2014) Magnetic tweezers for the measurement of twist and torque. J Vis Exp 87: e51503. https://doi.org/10.3791/51503
    [6] Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258: 1122-1126. https://doi.org/10.1126/science.1439819
    [7] Bouchiat C, Wang MD, Allemand J, et al. (1999) Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys J 76: 409-413. https://doi.org/10.1016/s0006-3495(99)77207-3
    [8] Strick TR, Dessinges MN, Charvin G, et al. (2003) Stretching of macromolecules and proteins. Rep Prog Phys 66: 1-45. https://DOI 10.1088/0034-4885/66/1/201
    [9] Gollnick B Optical and magnetic tweezers for applications in single-molecule biophysics and nanotechnology (2015). Doctoral Thesis, Universidad Autónoma de Madrid. https://produccioncientifica.ucm.es/documentos/5d39994f299952068444143c
    [10] Strick TR, Allemand JF, Bensimon D, et al. (1996) The elasticity of a single supercoiled DNA molecule. Science 271: 1835-1837. https://doi.org/10.1126/science.271.5257.1835
    [11] Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421: 423-427. https://doi.org/10.1038/nature01405
    [12] Vilfan ID, Lipfert J, Koster DA, et al. (2009) Magnetic tweezers for single-molecule experiments. Handbook of Single-Molecule Biophysics : 371-395. https://doi.org/10.1007/978-0-387-76497-9
    [13] Seol Y, Neuman KC (2011) Magnetic tweezers for single-molecule manipulation. Single Molecule Analysis: Methods and Protocols : 265-293. https://doi.org/10.1007/978-1-4939-7271-5
    [14] Kilinc D, Lee GU (2014) Advances in magnetic tweezers for single molecule and cell biophysics. Integr Biol 6: 27-34. https://doi.org/10.1039/c3ib40185e
    [15] Dulin D, Berghuis BA, Depken M (2015) Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments. Curr Opin Struc Biol 34: 116-122. https://doi.org/10.1016/j.sbi.2015.08.007
    [16] Sarkar R, Rybenkov VV (2016) A guide to magnetic tweezers and their applications. Front Phys 4: 48. urlhttps://doi.org/ARTN4810.3389/fphy.2016.00048
    [17] Berghuis BA, Köber M, van Laar T, et al. (2016) High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers. Methods 105: 90-98. https://doi.org/10.1016/j.ymeth.2016.03.025
    [18] Mandal SS (2020) Force spectroscopy on single molecules of life. ACS Omega 5: 11271-11278. https://doi.org/10.1021/acsomega.0c00814
    [19] Zacchia NA, Valentine MT (2015) Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications. Rev Sci Instrum 86: 053704. https://doi.org/Artn 05370410.1063/1.4921553
    [20] Jiang C, Lionberger TA, Wiener DM, et al. (2015) Electromagnetic tweezers with independent force and torque control. Rev Sci Ins 87: 084304. https://doi.org/DOI 10.1016/j.bpj.2014.11.1946
    [21] Humphries DE, Hong S, Pollard MJ, et al. (2009) Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications, Patent. Berkeley, CA: Lawrence Berkeley National Lab.
    [22] Fu CM, Han CM, Cheng CW, et al. (2012) Bio-mechanical properties of human renal cancer cells probed by magneto-optical tweezers. Sensors, 2012 IEEE : 111-114. https://doi.org/10.1109/ICSENS.2012.6411557
    [23] Strick TR, Allemand JF, Croquette V, et al. (1998) Physical approaches to the study of DNA. J Stat Phys 93: 647-672. https://doi.org/DOI 10.1023/B:JOSS.0000033247.51868.be
    [24] Kriegel F, Ermann N, Forbes R, et al. (2017) Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers. Nucleic Acids Res 45: 5920-5929. https://doi.org/10.1093/nar/gkx280
    [25] Mosconi F, Allemand JF, Croquette V (2011) Soft magnetic tweezers: A proof of principle. Rev Sci Instrum 82: 3. https://doi.org/Artn 03430210.1063/1.3531959
    [26] Lipfert J, van Oene MM, Lee M, et al. (2015) Torque spectroscopy for the study of rotary motion in biological systems. Chem Rev 115: 1449-1474. https://doi.org/10.1021/cr500119k
    [27] Lipfert J, Wiggin M, Kerssemakers JWJ, et al. (2011) Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat Commun 2: 439. https://doi.org/ARTN 43910.1038/ncomms1450
    [28] Bryant Z, Oberstrass FC, Basu A (2012) Recent developments in single-molecule DNA mechanics. Curr Opin Struct Biol 22: 304-312. https://doi.org/10.1016/j.sbi.2012.04.007
    [29] Cox MM (2000) Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acid Res Mol Biol 63: 311-366. https://doi.org/Doi 10.1016/S0079-6603(08)60726-6
    [30] Lipfert J, Kerssemakers JWJ, Jager T, et al. (2010) Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat Methods 7: 977-980. https://doi.org/10.1038/Nmeth.1520
    [31] De Vlaminck I, Henighan T, van Loenhout MTJ, et al. (2011) Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett 11: 5489-5493. https://doi.org/10.1021/nl203299e
    [32] Lipfert J, Koster DA, Vilfan ID, et al. (2009) Single-molecule magnetic tweezers studies of type IB topoisomerases. DNA Topoisomerases: Methods and Protocols : 71-89. https://doi.org/10.1007/978-1-60761-340-4
    [33] Yu ZB, Dulin D, Cnossen J, et al. (2014) A force calibration standard for magnetic tweezers. Rev Sci Instrum 85: 12. https://doi.org/Artn 12311410.1063/1.4904148
    [34] Neuman KC, Lionnet T, Allemand JF (2007) Single-molecule micromanipulation techniques. Annu Rev Mater Res 37: 33-67. https://doi.org/10.1146/annurev.matsci.37.052506.084336
    [35] Lipfert J, Hao XM, Dekker NH (2009) Quantitative modeling and optimization of magnetic tweezers. Biophys J 96: 5040-5049. https://doi.org/10.1016/j.bpj.2009.03.055
    [36] Wong WP, Halvorsen K (2006) The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. Opt Express 14: 12517-12531. https://doi.org/Doi 10.1364/Oe.14.012517
    [37] Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88: 623-638. https://doi.org/10.1529/biophysj.104.042457
    [38] Velthuis AJWT, Kerssemakers JWJ, Lipfert J, et al. (2010) Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys J 99: 1292-1302. https://doi.org/10.1016/j.bpj.2010.06.008
    [39] Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71: 333-374. https://doi.org/10.1146/annurev.biochem.71.110601.135425
    [40] Friedberg EC, Walker GC, Siede W, et al. (2005) DNA Repair and Mutagenesis.American Society for Microbiology Press.
    [41] Friedberg EC, Aguilera A, Gellert M, et al. (2006) DNA repair: from molecular mechanism to human disease. DNA Repair 5: 986-996. https://doi.org/10.1016/j.dnarep.2006.05.005
    [42] Matson SW, Bean DW, George JW (1994) DNA helicases–Enzymes with essential roles in all aspects of DNA metabolism. Bioessays 16: 13-22. https://doi.org/DOI 10.1002/bies.950160103
    [43] Pray L (2008) Major molecular events of DNA replication. Nat Educ 1: 99.
    [44] Friedberg EC (2003) DNA damage and repair. Nature 421: 436-440. https://doi.org/10.1038/nature01408
    [45] Mota MBS, Carvalho MA, Monteiro ANA, et al. (2019) DNA damage response and repair in perspective: Aedes aegypti, drosophila melanogaster and homo sapiens. Parasite Vector 12: 1-20. https://doi.org/ARTN 53310.1186/s13071-019-3792-1
    [46] Krokan HE, Bjørås M (2013) Base excision repair. CSH Perspect Biol 5: a012583. https://doi.org/10.1101/cshperspect.a012583
    [47] Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18: 99-113. https://doi.org/10.1038/cr.2008.1
    [48] de Laat WL, Jaspers NGJ, Hoeijmakers JHJ (1999) Molecular mechanism of nucleotide excision repair. Gene Dev 13: 768-785. https://doi.org/DOI 10.1101/gad.13.7.768
    [49] Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Genet 74: 681-710. https://doi.org/10.1146/annurev-genet-112414-054722
    [50] Weterings E, Chen DJ (2008) The endless tale of non-homologous end-joining. Cell Res 18: 114-124. https://doi.org/10.1038/cr.2008.3
    [51] Koster DA, Crut A, Shuman S, et al. (2010) Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142: 519-530. https://doi.org/10.1016/j.cell.2010.08.001
    [52] Ma J, Wang MD (2016) DNA supercoiling during transcription. Biophys Rev 8: 75-87. https://doi.org/10.1007/s12551-016-0215-9
    [53] Zlatanova J, Leuba SH (2003) Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level. Biochem Cell Biol 81: 151-159. https://doi.org/10.1139/o03-048
    [54] Dekker NH, Rybenkov VV, Duguet M, et al. (2002) The mechanism of type IA topoisomerases. Proceedings of the National Academy of Sciences of the United States of America 99: 12126-12131. https://doi.org/10.1073/pnas.132378799
    [55] Strick TR, Allemand JF, Bensimon D, et al. (1998) Behavior of supercoiled DNA. Biophys J 74: 2016-2028. https://doi.org/Doi 10.1016/S0006-3495(98)77908-1
    [56] Allemand JF, Bensimon D, Lavery R, et al. (1998) Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proceedings of the National Academy of Sciences of the United States of America 95: 14152-14157. https://doi.org/DOI 10.1073/pnas.95.24.14152
    [57] Dessinges MN, Maier B, Zhang Y, et al. (2002) Stretching single stranded DNA, a model polyelectrolyte. Phys Rev Lett 89: 248102. https://doi.org/ARTN 24810210.1103/PhysRevLett.89.248102
    [58] Seol Y, Gentry AC, Osheroff N, et al. (2013) Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIalpha. J Biol Chem 288: 13695-13703. https://doi.org/10.1074/jbc.M112.444745
    [59] Wang JC (1998) Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q Rev Biophys 31: 107-144. https://doi.org/10.1017/s0033583598003424
    [60] Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3: 430-440. https://doi.org/10.1038/nrm831
    [61] Travers A, Muskhelishvili G (2005) DNA supercoiling–a global transcriptional regulator for enterobacterial growth?. Nat Rev Microbiol 3: 157-169. https://doi.org/10.1038/nrmicro1088
    [62] Stewart L, Redinbo MR, Qiu XY, et al. (1998) A model for the mechanism of human topoisomerase I. Science 279: 1534-1541. https://doi.org/DOI 10.1126/science.279.5356.1534
    [63] Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37: 679-692. https://doi.org/10.1093/nar/gkp032
    [64] Corbett KD, Berger JM (2004) Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct 33: 95-118. https://doi.org/DOI 10.1146/annurev.biophys.33.110502.140357
    [65] Charvin G, Strick TR, Bensimon D, et al. (2005) Tracking topoisomerase activity at the single-molecule level. Annu Rev Biophys Biomol Struct 34: 201-219. https://doi.org/DOI 10.1146/annurev.biophys.34.040204.144433
    [66] Neuman KC (2010) Single-molecule measurements of DNA topology and topoisomerases. J Biol Chem 285: 18967-18971. https://doi.org/10.1074/jbc.R109.092437
    [67] Seol Y, Neuman KC (2011) Single-molecule measurements of topoisomerase activity with magnetic tweezers. Single Mol Enzymol: Method Protoc : 229-241. https://doi.org/10.1007/978-1-61779-261-8
    [68] Gunn KH, Marko JF, Mondragón A (2018) Single-molecule magnetic tweezer analysis of topoisomerases. DNA Topoisomerases : 139-152. https://doi.org/10.1007/978-1-4939-7459-7
    [69] Spakman D, Bakx JAM, Biebricher AS, et al. (2021) Unraveling the mechanisms of type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 49: 5470-5492. https://doi.org/10.1093/nar/gkab239
    [70] Koster DA, Croquette V, Dekker C, et al. (2005) Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 434: 671-674. https://doi.org/10.1038/nature03395
    [71] Strick TR, Croquette V, Bensimon D (2000) Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404: 901-904. https://doi.org/Doi 10.1038/35009144
    [72] Neuman KC, Charvin G, Bensimon D (2009) Mechanisms of chiral discrimination by topoisomerase IV. Proceedings of the National Academy of Sciences of the United States of America 106: 6986-6991. https://doi.org/10.1073/pnas.0900574106
    [73] Crisona NJ, Strick TR, Bensimon D, et al. (2000) Preferential relaxation of positively supercoiled DNA by E-coli topoisomerase IV in single-molecule and ensemble measurements. Gene Dev 14: 2881-2892. https://doi.org/DOI 10.1101/gad.838900
    [74] Taneja B, Schnurr B, Slesarev A, et al. (2007) Topoisomerase V relaxes supercoiled DNA by a constrained swiveling mechanism. Proceedings of the National Academy of Sciences of the United States of America 104: 14670-14675. https://doi.org/10.1073/pnas.0701989104
    [75] Seol Y, Zhang HL, Pommier Y, et al. (2012) A kinetic clutch governs religation by type IB topoisomerases and determines camptothecin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 109: 16125-16130. https://doi.org/10.1073/pnas.1206480109
    [76] McKie SJ, Desai PR, Seol Y, et al. (2022) Topoisomerase VI is a chirally-selective, preferential DNA decatenase. Elife 11: e67021. https://doi.org/ARTN e6702110.7554/eLife.67021
    [77] Levine C, Hiasa H, Marians KJ (1998) DNA gyrase and topoisomerase IV: Biochemical activities, physiological roles during chromosome replication, and drug sensitivities. BBA-Gene Struct Expr 1400: 29-43. https://doi.org/Doi 10.1016/S0167-4781(98)00126-2
    [78] Charvin G, Bensimon D, Croquette V (2003) Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proceedings of the National Academy of Sciences of the United States of America 100: 9820-9825. https://doi.org/10.1073/pnas.1631550100
    [79] Tanaka F, Takahashi H (1985) Elastic theory of supercoiled DNA. J Chem Phys 83: 6017-6026. https://doi.org/Doi 10.1063/1.449637
    [80] Thompson JMT, van der Heijden GHM, Neukirch S (2002) Supercoiling of DNA plasmids: mechanics of the generalized ply. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences 458: 959-985. https://doi.org/10.1098/rspa.2001.0901
    [81] Marko JF (1997) Supercoiled and braided DNA under tension. Phys Rev E 55: 1758-1772. https://doi.org/DOI 10.1103/PhysRevE.55.1758
    [82] Rybenkov VV, Cozzarelli NR, Vologodskii AV (1993) Probability of DNA knotting and the effective diameter of the DNA double helix. Proceedings of the National Academy of Sciences of the United States of America 90: 5307-5311. https://doi.org/DOI 10.1073/pnas.90.11.5307
    [83] Timsit Y, Várnai P (2010) Helical chirality: a Link between local interactions and global topology in DNA. PLoS One 5: e9326. https://doi.org/ARTN e932610.1371/journal.pone.0009326
    [84] Vologodskii A (2009) Theoretical models of DNA topology simplification by type IIA DNA topoisomerases. Nucleic Acids Res 37: 3125-3133. https://doi.org/10.1093/nar/gkp250
    [85] Liu ZR, Deibler RW, Chan HS, et al. (2009) The why and how of DNA unlinking. Nucleic Acids Res 37: 661-671. https://doi.org/10.1093/nar/gkp041
    [86] Dong KC, Berger JM (2007) Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450: 1201-1204. https://doi.org/10.1038/nature06396
    [87] Yan J, Magnasco MO, Marko JF (1999) A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401: 932-935. https://doi.org/Doi 10.1038/44872
    [88] Trigueros S, Salceda J, Bermúdez I, et al. (2004) Asymmetric removal of supercoils suggests how topoisomerase II simplifies DNA topology. J Mol Biol 335: 723-731. https://doi.org/10.1016/j.jmb.2003.11.011
    [89] Liu Z, Mann JK, Zechiedrich EL, et al. (2006) Topological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases. J Mol Biol 361: 268--285. https://doi.org/10.1016/j.jmb.2006.06.005
    [90] Zechiedrich EL, Osheroff N (1990) Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J 9: 4555-4562. https://doi.org/10.1002/j.1460-2075.1990.tb07908.x
    [91] Cherstvy AG (2009) Probing DNA-DNA electrostatic friction in tight superhelical DNA plies. J Phys Chem B 113: 5350-5355. https://doi.org/10.1021/jp810473m
    [92] Randall GL, Pettitt BM, Buck GR, et al. (2006) Electrostatics of DNA-DNA juxtapositions: consequences for type II topoisomerase function. J Phys Condens Matter 18: S173-S185. https://doi.org/10.1088/0953-8984/18/14/S03
    [93] Kornyshev AA, Leikin S, Malinin SV (2002) Chiral electrostatic interaction and cholesteric liquid crystals of DNA. Eur Phys J E 7: 83-93. https://doi.org/10.1140/epje/i200101159
    [94] Knoll A, Puchta H (2011) The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. J Exp Bot 62: 1565-1579. https://doi.org/21081662
    [95] Yodh JG, Schlierf M, Ha T (2010) Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys 43: 185-217. https://doi.org/10.1017/S0033583510000107
    [96] Hodeib S, Raj S, Manosas M, et al. (2016) Single molecule studies of helicases with magnetic tweezers. Methods 105: 3-15. https://doi.org/10.1016/j.ymeth.2016.06.019
    [97] Nandakumar D, Patel SS (2016) Methods to study the coupling between replicative helicase and leading-strand DNA polymerase at the replication fork. Methods 108: 65-78. https://doi.org/10.1016/j.ymeth.2016.05.003
    [98] Spies M (2012) DNA helicases and DNA motor proteins.Springer Science and Business Media. https://doi.org/10.1007/978-1-4614-5037-5
    [99] Dessinges MN, Lionnet T, Xi XG, et al. (2004) Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proceedings of the National Academy of Sciences of the United States of America 101: 6439-6444. https://doi.org/10.1073/pnas.0306713101
    [100] Lionnet T, Spiering MM, Benkovic SJ, et al. (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proceedings of the National Academy of Sciences of the United States of America 104: 19790-19795. https://doi.org/10.1073/pnas.0709793104
    [101] Ramanathan SP, van Aelst K, Sears A, et al. (2009) Type III restriction enzymes communicate in 1D without looping between their target sites. Proceedings of the National Academy of Sciences of the United States of America 106: 1748-1753. https://doi.org/10.1073/pnas.0807193106
    [102] Sun B, Wei KJ, Zhang B, et al. (2008) Impediment of E. coli UvrD by DNA-destabilizing force reveals a strained-inchworm mechanism of DNA unwinding. EMBO J 27: 3279-3287. https://doi.org/10.1038/emboj.2008.240
    [103] Nishino T, Morikawa K (2002) Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene 21: 9022-9032. https://doi.org/10.1038/sj.onc.1206135
    [104] Carrasco C, Gilhooly NS, Dillingham MS, et al. (2013) On the mechanism of recombination hotspot scanning during double-stranded DNA break resection. Proceedings of the National Academy of Sciences of the United States of America 110: E2562-E2571. https://doi.org/10.1073/pnas.1303035110
    [105] Levikova M, Klaue D, Seidel R, et al. (2013) Nuclease activity of Saccharomyces cerevisiae DNA2 inhibits its potent DNA helicase activity. Proceedings of the National Academy of Sciences of the United States of America 110: E1992-E2001. https://doi.org/10.1073/pnas.1300390110
    [106] Castillo F, Benmohamed A, Szatmari G (2017) Xer site specific recombination: Double and single recombinase systems. Front MicrobioL 8: 453. https://doi.org/10.3389/fmicb.2017.00453
    [107] Manosas M, Meglio A, Spiering MM, et al. (2010) Magnetic tweezers for the study of DNA tracking motors. Method Enzymol 475: 297-320. https://doi.org/10.1016/S0076-6879(10)75013-8
    [108] Cameranesi MM, Morán-Barrio J, Limansky AS, et al. (2018) Site-specific recombination at XerC/D sites mediates the formation and resolution of plasmid co-integrates carrying a blaOXA-58- and tnaphA6-resistance module in acinetobacter baumannii. Front Microbiol 9: 66. https://doi.org/10.3389/fmicb.2018.00066
    [109] Aussel L, Barre FX, Aroyo M, et al. (2002) FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108: 195-205. https://doi.org/10.1016/s0092-8674(02)00624-4
    [110] Allemand JF, Bensimon D, Charvin G, et al. (2007) Studies of DNA-protein interactions at the single molecule level with magnetic tweezers. Controlled Nanoscale Motion: Nobel Symposium 131: 123-140. https://doi.org/10.1007/3-540-49522-3
    [111] Saleh OA, Pérals C, Barre FX, et al. (2004) Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment. EMBO J 23: 2430-2439. https://doi.org/10.1038/sj.emboj.7600242
    [112] Crozat E, Grainge I (2010) FtsK DNA translocase: the fast motor that knows where it is going. Chembiochem: Eur J Chem Biol 11: 2232-2243. https://doi.org/10.1002/cbic.201000347
    [113] Ip SC, Bregu M, Barre FX, et al. (2003) Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22: 6399-6407. https://doi.org/10.1093/emboj/cdg589
    [114] Pease PJ, Levy O, Cost GJ, et al. (2005) Sequence-directed DNA translocation by purified FtsK. Science 307: 586-590. https://doi.org/10.1126/science.1104885
    [115] Annunziato A (2008) DNA packaging: Nucleosomes and chromatin. Nat Educ 1: 26.
    [116] van der Vliet PC, Verrijzer CP (1993) Bending of DNA by transcription factors. BioEssays 15: 25-32. https://doi.org/10.1002/bies.950150105
    [117] Grimwade JE, Leonard AC (2021) Blocking, bending, and binding: Regulation of initiation of chromosome replication during the escherichia coli cell cycle by transcriptional modulators that interact with origin DNA. Front Microbiol 12: 732270. https://doi.org/10.3389/fmicb.2021.732270
    [118] Garcia HG, Grayson P, Han L, et al. (2007) Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 85: 115-130. https://doi.org/10.1002/bip.20627
    [119] Shon MJ, Rah SH, Yoon TY (2019) Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Sci Adv 5: eaav1697. https://doi.org/10.1126/sciadv.aav1697
    [120] Zheng G, Czapla L, Srinivasan AR, et al. (2010) How stiff is DNA?. Phys Chem Chem Phys 12: 1399-1406. https://doi.org/10.1039/b916183j
    [121] Peters JP, Maher LJ (2010) DNA curvature and flexibility in vitro and in vivo. Q Rev Biophys 43: 23-63. https://doi.org/10.1017/S0033583510000077
    [122] Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 59: 1-152. https://doi.org/10.1016/j.surfrep.2005.08.003
    [123] Cloutier TE, Widom J (2004) Spontaneous sharp bending of double-stranded DNA. Mol Cell 14: 355-362. https://doi.org/10.1016/s1097-2765(04)00210-2
    [124] van Oene MM, Dickinson LE, Pedaci F, et al. (2015) Biological magnetometry: torque on superparamagnetic beads in magnetic fields. Phys Rev Lett 114: 218301. https://doi.org/10.1103/PhysRevLett.114.218301
    [125] Normanno D, Capitanio M, Pavone FS (2004) Spin absorption, windmill, and magneto-optic effects in optical angular momentum transfer. Phys Rev A 70: 053829. https://doi.org/10.1103/PhysRevA.70.053829
    [126] Bikard D, Loot C, Baharoglu Z, et al. (2010) Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 74: 570-588. https://doi.org/10.1128/MMBR.00026-10
    [127] Adhikari AS, Chai J, Dunn AR (2012) Multiplexed single-molecule force proteolysis measurements using magnetic tweezers. J Vis Exp 65: e3520. https://doi.org/10.3791/3520
    [128] Johnson KC, Clemmens E, Mahmoud H, et al. (2017) A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control. J Biol Eng 11: 1-13. https://doi.org/10.1186/s13036-017-0091-2
    [129] Kuijpers L, van Laar T, Janissen R, et al. (2022) Characterizing single-molecule dynamics of viral RNA-dependent RNA polymerases with multiplexed magnetic tweezers. STAR Protoc 3: 101606. https://doi.org/10.1016/j.xpro.2022.101606
    [130] De Vlaminck I, Henighan T, van Loenhout MT, et al. (2012) Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PloS One 7: e41432. https://doi.org/10.1371/journal.pone.0041432
    [131] Ostrofet E, Papini FS, Dulin D (2018) Author correction: Correction-free force calibration for magnetic tweezers experiments. Sci Rep 8: 15920. https://doi.org/10.1038/s41598-018-36219-0
    [132] Dulin D, Cui TJ, Cnossen J, et al. (2015) High spatiotemporal-resolution magnetic tweezers: Calibration and applications for DNA Dynamics. Biophys J 109: 2113-2125. https://doi.org/10.1016/j.bpj.2015.10.018
    [133] Huhle A, Klaue D, Brutzer H, et al. (2015) Camera-based three-dimensional real-time particle tracking at kHz rates and ångström accuracy. Nat Commun 6: 5885. https://doi.org/10.1038/ncomms6885
    [134] Celedon A, Nodelman IM, Wildt B, et al. (2009) Magnetic tweezers measurement of single molecule torque. Nano Lett 9: 1720-1725. https://doi.org/10.1021/nl900631w
    [135] Janssen XJ, Lipfert J, Jager T, et al. (2012) Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque. Nano Lett 12: 3634-3639. https://doi.org/10.1021/nl301330h
    [136] Bessalova V, Perov N, Rodionova V (2016) New approaches in the design of magnetic tweezers–current magnetic tweezers. J Magn Magn Mater 415: 66-71. https://doi.org/10.1016/j.jmmm.2016.03.038
    [137] de Vries AH, Krenn BE, van Driel R, et al. (2005) Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J 88: 2137-2144. https://doi.org/10.1529/biophysj.104.052035
    [138] Wang J, Wang X, Sun Y (2023) Cellular mechanical measurement by magnetic micro/nanorobots. Robotics for Cell Manipulation and Characterization.Academic Press 71-288. https://doi.org/10.1016/B978-0-323-95213-2.00012-0
    [139] Zhang Z, Huang K, Menq CH (2010) Design, implementation, and force modeling of ouadrupole magnetic tweezers. IEEE/ASME T Mechatron 15: 704-713. https://doi.org/10.1109/TMECH.2009.2032179
    [140] Wang X, Ho C, Tsatskis Y, et al. (2019) Intracellular manipulation and measurement with multipole magnetic tweezers. Sci Robot 4: eaav6180. https://doi.org/10.1126/scirobotics.aav6180
    [141] Gaire S, Fabian RL, Adhikari R, et al. (2023) Micromechanical study of hyperacetylated nucleosomes using single molecule transverse magnetic tweezers. Int J Mol Sci 24: 6188. https://doi.org/10.3390/ijms24076188
    [142] Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14: R546-R551. https://doi.org/10.1016/j.cub.2004.07.007
    [143] McAndrew CP, Tyson C, Zischkau J, et al. (2016) Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA-protein complexes. BioTechniques 60: 21-27. https://doi.org/10.2144/000114369
    [144] Arya G, Zhang Q, Schlick T (2006) Flexible histone tails in a new mesoscopic oligonucleosome model. Biophys J 91: 133-150. https://doi.org/10.1529/biophysj.106.083006
    [145] Arya G, Schlick T (2006) Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proceedings of the National Academy of Sciences of the United States of America 103: 16236-16241. https://doi.org/10.1073/pnas.0604817103
    [146] Cherstvy AG, Everaers R (2006) Layering, bundling, and azimuthal orientations in dense phases of nucleosome core particles. J Phys: Condens Matter 18: 11429. https://doi.org/10.1088/0953-8984/18/50/003
    [147] Cherstvy AG, Teif VB (2014) Electrostatic effect of H1-histone protein binding on nucleosome repeat length. Phys Biol 11: 044001. https://doi.org/10.1088/1478-3975/11/4/044001
    [148] Long X, Parks JW, Stone MD (2016) Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid. Methods 105: 16-25. https://doi.org/10.1016/j.ymeth.2016.06.009
    [149] De Vlaminck I, Dekker C (2012) Recent advances in magnetic tweezers. Annu Rev Biophys 41: 453-472. https://doi.org/10.1146/annurev-biophys-122311-100544
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(867) PDF downloads(99) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog