
Optical activity and its relation to molecular chirality are significant in the measurement of optical rotation or circular dichroism characteristics to determine the absolute configuration of a chiral molecule. A quarter-wave plate, which is usually made from quartz, can convert linearly polarized light into circularly polarized light. In this study, we suggest using
Citation: Po-Yeh Lin, Chien-Ming Chen, Jen-Ai Lee, Yu-Chia Cheng. Fabrication of biodegradable films using l-lactate as a chiral material to produce circularly polarized light[J]. AIMS Bioengineering, 2022, 9(4): 337-347. doi: 10.3934/bioeng.2022024
[1] | Sergio A. Salazar-Brann, Rosalba Patiño-Herrera, Jaime Navarrete-Damián, José F. Louvier-Hernández . Electrospinning of chitosan from different acid solutions. AIMS Bioengineering, 2021, 8(1): 112-129. doi: 10.3934/bioeng.2021011 |
[2] | Adam B Fisher, Stephen S Fong . Lignin biodegradation and industrial implications. AIMS Bioengineering, 2014, 1(2): 92-112. doi: 10.3934/bioeng.2014.2.92 |
[3] | Jianhao Jiang, Muhammet Ceylan, Yi Zheng, Li Yao, Ramazan Asmatulu, Shang-You Yang . Poly-ε-caprolactone electrospun nanofiber mesh as a gene delivery tool. AIMS Bioengineering, 2016, 3(4): 528-537. doi: 10.3934/bioeng.2016.4.528 |
[4] | Lindsay Arnold, Tian-Bo Yang, Rachel Chen . A thermal responsive affinity ligand for precipitation of sialylated proteins. AIMS Bioengineering, 2016, 3(1): 92-102. doi: 10.3934/bioeng.2016.1.92 |
[5] | Ana Y. Rioja, Maritza Muniz-Maisonet, Thomas J. Koob, Nathan D. Gallant . Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration. AIMS Bioengineering, 2017, 4(2): 300-317. doi: 10.3934/bioeng.2017.2.300 |
[6] | Mohammed Maikudi Usman, Arezoo Dadrasnia, Kang Tzin Lim, Ahmad Fahim Mahmud, Salmah Ismail . Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering, 2016, 3(3): 289-304. doi: 10.3934/bioeng.2016.3.289 |
[7] | Liwei Chen, Jaslyn Lee, Wei Ning Chen . The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review. AIMS Bioengineering, 2016, 3(4): 468-492. doi: 10.3934/bioeng.2016.4.468 |
[8] | Flávia Fernandes, Amanda Farias, Livia Carneiro, Ralyvan Santos, Daiana Torres, João Silva, João Souza, Érica Souza . Dilute acid hydrolysis of wastes of fruits from Amazon for ethanol production. AIMS Bioengineering, 2021, 8(3): 221-234. doi: 10.3934/bioeng.2021019 |
[9] | Martin Hessling, Tobias Meurle, Katharina Hoenes . Surface disinfection with white-violet illumination device. AIMS Bioengineering, 2022, 9(2): 93-101. doi: 10.3934/bioeng.2022008 |
[10] | Daniel Pelaez, John H. Michel, Herman S. Cheung . Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells. AIMS Bioengineering, 2016, 3(4): 515-527. doi: 10.3934/bioeng.2016.4.515 |
Optical activity and its relation to molecular chirality are significant in the measurement of optical rotation or circular dichroism characteristics to determine the absolute configuration of a chiral molecule. A quarter-wave plate, which is usually made from quartz, can convert linearly polarized light into circularly polarized light. In this study, we suggest using
A wave plate is an optical device that can alter the polarization state of a light wave. In general, two types of wave plates are used: a half-wave plate and a quarter-wave plate. The half-wave plate can shift the polarization direction of linearly polarized light, whereas the quarter-wave plate can convert linearly polarized light into circularly polarized light. Circularly polarized light is used in various applications, such as navigation satellite systems, 5G wireless communication, and underwater imaging [1]–[3]. Owing to the extensive development of polarization-based optics, circularly polarized light has been progressively applied in biomedical sciences. For example, circular dichroism (CD) spectroscopy is an analytical method used to study the secondary structures of proteins [4]. The Stokes vector of backscattered light depicted on a Poincaré sphere can be used to detect cancerous tissues [5]. Polarization-sensitive optical coherence tomography, which has been extended to full three-dimensional (3D) imaging at high speed and sensitivity, can be used in disease diagnosis [6]–[8].
The quarter-wave plate can be made of natural birefringent or form birefringent material, such as birefringent crystal, liquid crystal, polymer film, and subwavelength grating [9]–[12]. Usually, quartz is used because of its high damage threshold and retardation stability. Sometimes, polymer wave plates are employed owing to their high adjustability. Recently, chiral inorganic nanocomposites have also been developed as materials for circular polarized light emission, and this application is actively developed [13]. However, there is a need to develop wave plates based on biodegradable or biocompatible materials for more advanced applications in the field of biomedicine. Considering the application of chiral materials in circularly polarized photodetectors [14], chiral materials can be developed into wave plate materials owing to their optical activity. In this study,
The
The
The system used for the circular polarization experiment is shown in Figure 2. The light source was a 532 nm laser, and the diameter of laser spot was smaller than 0.3 cm. The laser sequentially penetrates the first polarizer (polarizer),
The modified microscope system is shown in Figure 3. In this system, the white light sequentially penetrated the circular polarizer film, sample (
In this study, the two conditions that were varied during this experiment to determine the optimum conditions for the
The appearance of
Angle of the |
||||||||||||||||||||
Angle of the second polarizer (°) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | |
0 | 212 | 233 | 319 | 319 | 300 | 313 | 270 | 265 | 276 | 294 | 294 | 305 | 279 | 212 | 217 | 193 | 22 | 233 | 236 | |
10 | 251 | 265 | 320 | 320 | 268 | 242 | 163 | 148 | 176 | 217 | 254 | 294 | 299 | 236 | 146 | 228 | 256 | 280 | 270 | |
20 | 283 | 291 | 321 | 321 | 244 | 176 | 101 | 69 | 94 | 151 | 226 | 286 | 310 | 253 | 266 | 249 | 289 | 312 | 300 | |
30 | 299 | 304 | 323 | 323 | 229 | 146 | 64 | 32 | 57 | 125 | 213 | 284 | 317 | 261 | 273 | 263 | 306 | 330 | 318 | |
40 | 299 | 305 | 324 | 324 | 228 | 145 | 64 | 38 | 61 | 130 | 218 | 286 | 316 | 259 | 271 | 263 | 310 | 335 | 318 | |
50 | 285 | 293 | 326 | 326 | 241 | 179 | 108 | 85 | 117 | 170 | 243 | 294 | 309 | 247 | 252 | 251 | 299 | 319 | 306 | |
60 | 265 | 269 | 328 | 328 | 266 | 238 | 194 | 181 | 209 | 246 | 281 | 305 | 295 | 225 | 230 | 224 | 268 | 293 | 277 | |
70 | 236 | 237 | 328 | 328 | 303 | 312 | 316 | 308 | 344 | 340 | 336 | 319 | 273 | 198 | 190 | 192 | 234 | 252 | 235 | |
80 | 192 | 199 | 329 | 329 | 341 | 403 | 435 | 429 | 460 | 447 | 393 | 330 | 253 | 168 | 153 | 153 | 188 | 204 | 200 | |
90 | 143 | 154 | 330 | 330 | 389 | 502 | 559 | 564 | 574 | 556 | 448 | 341 | 232 | 135 | 115 | 113 | 143 | 152 | 150 | |
100 | 109 | 122 | 329 | 329 | 429 | 589 | 659 | 692 | 710 | 646 | 493 | 350 | 212 | 110 | 82 | 81 | 101 | 102 | 110 | |
110 | 68 | 95 | 329 | 329 | 457 | 663 | 744 | 787 | 806 | 715 | 533 | 357 | 197 | 91 | 61 | 57 | 68 | 72 | 79 | |
120 | 55 | 82 | 328 | 328 | 471 | 689 | 787 | 831 | 851 | 745 | 557 | 360 | 190 | 81 | 50 | 46 | 50 | 49 | 63 | |
130 | 50 | 82 | 327 | 327 | 472 | 689 | 787 | 825 | 850 | 740 | 554 | 357 | 190 | 84 | 51 | 48 | 48 | 45 | 63 | |
140 | 61 | 97 | 326 | 326 | 458 | 660 | 744 | 770 | 808 | 694 | 531 | 350 | 199 | 98 | 64 | 64 | 60 | 59 | 76 | |
150 | 86 | 118 | 324 | 324 | 430 | 595 | 668 | 677 | 715 | 646 | 490 | 338 | 215 | 119 | 85 | 96 | 87 | 86 | 104 | |
160 | 114 | 153 | 323 | 323 | 395 | 503 | 556 | 552 | 597 | 521 | 447 | 324 | 235 | 151 | 119 | 127 | 121 | 124 | 139 | |
170 | 161 | 192 | 323 | 323 | 348 | 416 | 431 | 427 | 460 | 397 | 384 | 309 | 256 | 180 | 148 | 171 | 168 | 172 | 186 | |
180 | 233 | 155 | 323 | 323 | 303 | 336 | 320 | 260 | 285 | 299 | 322 | 294 | 280 | 215 | 180 | 211 | 204 | 222 | 228 |
To further validate the circular polarization function of the
From the materials, the
We used biodegradable and biocompatible materials,
[1] |
Wang XY, Yang GM (2014) Dual frequency and dual circular polarization slot antenna for BeiDou navigation satellite system applications. Microw Opt Techn Let 56: 2222-2225. https://doi.org/10.1002/mop.28560 ![]() |
[2] |
Al-Yasir YIA, Abdullah AS, Ojaroudi Parchin N, et al. (2018) A new polarization-reconfigurable antenna for 5G applications. Electronics 7: 293. https://doi.org/10.3390/electronics7110293 ![]() |
[3] | Snik F, Craven-Jones J, Escuti M, et al. (2014) An overview of polarimetric sensing techniques and technology with applications to different research fields. Polarization: measurement, analysis, and remote sensing XI 9099: 48-67. https://doi.org/10.1117/12.2053245 |
[4] |
Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89: 392-400. https://doi.org/10.1002/bip.20853 ![]() |
[5] |
Kunnen B, Macdonald C, Doronin A, et al. (2015) Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J Biophotonics 8: 317-323. https://doi.org/10.1002/jbio.201400104 ![]() |
[6] |
de Boer JF, Hitzenberger CK, Yasuno Y (2017) Polarization sensitive optical coherence tomography - a review. Biomed Opt Express 8: 1838-1873. https://doi.org/10.1364/BOE.8.001838 ![]() |
[7] |
Park JE, Xin Z, Kwon DY, et al. (2021) Application of polarization sensitive-optical coherence tomography to the assessment of phase retardation in subpleural cancer in rabbits. Tissue Eng Regen Med 18: 61-69. https://doi.org/10.1007/s13770-020-00318-9 ![]() |
[8] |
Deák GG, Schmidt WM, Bittner RE, et al. (2019) Imaging of vitelliform macular lesions using polarization-sensitive optical coherence tomography. Retina 39: 558-569. https://doi.org/10.1097/IAE.0000000000001987 ![]() |
[9] |
Saha A, Bhattacharya K, Chakraborty AK (2012) Achromatic quarter-wave plate using crystalline quartz. Appl Optics 51: 1976-1980. https://doi.org/10.1364/AO.51.001976 ![]() |
[10] |
Abuleil MJ, Abdulhalim I (2014) Tunable achromatic liquid crystal waveplates. Opt Lett 39: 5487-5490. https://doi.org/10.1364/OL.39.005487 ![]() |
[11] |
Savukov I, Budker D (2007) Wave-plate retarders based on overhead transparencies. Appl Optics 46: 5129-5136. https://doi.org/10.1364/AO.46.005129 ![]() |
[12] |
Deguzman PC, Nordin GP (2001) Stacked subwavelength gratings as circular polarization filters. Appl Optics 40: 5731-5737. https://doi.org/10.1364/AO.40.005731 ![]() |
[13] |
Jiang S, Kotov NA (2022) Circular polarized light emission in chiral inorganic nanomaterials. Adv Mater 2022: 2108431. https://doi.org/10.1002/adma.202108431 ![]() |
[14] |
Zhang C, Wang X, Qiu L (2021) Circularly polarized photodetectors based on chiral materials: a review. Front Chem 9: 711488. https://doi.org/10.3389/fchem.2021.711488 ![]() |
[15] |
Tian X, Chen H, Liu H, et al. (2021) Recent advances in lactic acid production by lactic acid bacteria. Appl Biochem Biotech 193: 4151-4171. https://doi.org/10.1007/s12010-021-03672-z ![]() |
[16] |
Shi W, Chen X, Li B, et al. (2020) Spontaneous creation of anisotropic polymer crystals with orientation-sensitive birefringence in liquid drops. ACS Appl Mater Inter 12: 3912-3918. https://doi.org/10.1021/acsami.9b17308 ![]() |
[17] |
DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41: 319-326. https://doi.org/10.1016/S0278-6915(02)00258-2 ![]() |
[18] | Tamura K, Ike O, Hitomi S, et al. (1986) A new hydrogel and its medical application. ASAIO J 32: 605-608. https://doi.org/10.1097/00002216-198609000-00049 |
[19] |
Kawai F, Hu X (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol 84: 227-237. https://doi.org/10.1007/s00253-009-2113-6 ![]() |
[20] |
Kita M, Ogura Y, Honda Y, et al. (1990) Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material. Graefe's Arch Clinl Exp Ophthalmol 228: 533-537. https://doi.org/10.1007/BF00918486 ![]() |
[21] |
Noguchi T, Yamamuro T, Oka M, et al. (1991) Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: Evaluation of biocompatibility. J Appl Biomater 2: 101-107. https://doi.org/10.1002/jab.770020205 ![]() |
[22] |
Adeva M, González-Lucán M, Seco M, et al. (2013) Enzymes involved in l-lactate metabolism in humans. Mitochondrion 13: 615-629. https://doi.org/10.1016/j.mito.2013.08.011 ![]() |
[23] | Yudkin J, Cohen RD (1975) The contribution of the kidney to the removal of a lactic acid load under normal and acidotic conditions in the conscious rat. Clin Sci Mol Med 48: 121-131. https://doi.org/10.1042/cs0480121 |
[24] |
Nawrotek K, Marqueste T, Modrzejewska Z, et al. (2017) Thermogelling chitosan lactate hydrogel improves functional recovery after a C2 spinal cord hemisection in rat. J Biomed Mater Res A 105: 2004-2019. https://doi.org/10.1002/jbm.a.36067 ![]() |
[25] | Hadasha W, Bezuidenhout D (2018) Poly(lactic acid) as biomaterial for cardiovascular devices and tissue engineering applications. Industrial Applications of Poly(lactic acid). Cham: Springer International Publishing 51-77. https://doi.org/10.1007/12_2017_27 |
[26] |
Fan Y, Liu X, Li J, et al. (2019) A miniaturized circularly-polarized antenna for in-body wireless communications. Micromachines 10: 70. https://doi.org/10.3390/mi10010070 ![]() |
[27] |
Kaim V, Kanaujia BK, Kumar S, et al. (2020) Ultra-miniature circularly polarized CPW-fed implantable antenna design and its validation for biotelemetry applications. Sci Rep 10: 6795. https://doi.org/10.1038/s41598-020-63780-4 ![]() |
[28] |
Blauert J, Kiourti A (2021) Quarter-wave plates to improve rotational misalignment robustness in medical telemetry. Bioelectromagnetics 42: 583-592. https://doi.org/10.1002/bem.22365 ![]() |
[29] |
Blauert J, Kiourti A (2020) Bio-matched antennas with flare extensions for reduced low frequency cutoff. IEEE Open J Antenn Propag 1: 136-141. https://doi.org/10.1109/OJAP.2020.2988133 ![]() |
[30] | Nishizawa N, Al-Qadi B, Kuchimaru T (2021) Angular optimization for cancer identification with circularly polarized light. J Biophotonics 14: e202000380. https://doi.org/10.1002/jbio.202000380 |
[31] |
Hosseini ES, Dervin S, Ganguly P, et al. (2021) Biodegradable materials for sustainable health monitoring devices. ACS ApplBio Mater 4: 163-194. https://doi.org/10.1021/acsabm.0c01139 ![]() |
1. | E. M. Starodubtseva, I. N. Tsymbalov, D. A. Gorlova, K. A. Ivanov, A. B. Savel’ev, Polarization state control for high-peak-power applications, 2025, 42, 1084-7529, 285, 10.1364/JOSAA.544487 |
Angle of the |
||||||||||||||||||||
Angle of the second polarizer (°) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | |
0 | 212 | 233 | 319 | 319 | 300 | 313 | 270 | 265 | 276 | 294 | 294 | 305 | 279 | 212 | 217 | 193 | 22 | 233 | 236 | |
10 | 251 | 265 | 320 | 320 | 268 | 242 | 163 | 148 | 176 | 217 | 254 | 294 | 299 | 236 | 146 | 228 | 256 | 280 | 270 | |
20 | 283 | 291 | 321 | 321 | 244 | 176 | 101 | 69 | 94 | 151 | 226 | 286 | 310 | 253 | 266 | 249 | 289 | 312 | 300 | |
30 | 299 | 304 | 323 | 323 | 229 | 146 | 64 | 32 | 57 | 125 | 213 | 284 | 317 | 261 | 273 | 263 | 306 | 330 | 318 | |
40 | 299 | 305 | 324 | 324 | 228 | 145 | 64 | 38 | 61 | 130 | 218 | 286 | 316 | 259 | 271 | 263 | 310 | 335 | 318 | |
50 | 285 | 293 | 326 | 326 | 241 | 179 | 108 | 85 | 117 | 170 | 243 | 294 | 309 | 247 | 252 | 251 | 299 | 319 | 306 | |
60 | 265 | 269 | 328 | 328 | 266 | 238 | 194 | 181 | 209 | 246 | 281 | 305 | 295 | 225 | 230 | 224 | 268 | 293 | 277 | |
70 | 236 | 237 | 328 | 328 | 303 | 312 | 316 | 308 | 344 | 340 | 336 | 319 | 273 | 198 | 190 | 192 | 234 | 252 | 235 | |
80 | 192 | 199 | 329 | 329 | 341 | 403 | 435 | 429 | 460 | 447 | 393 | 330 | 253 | 168 | 153 | 153 | 188 | 204 | 200 | |
90 | 143 | 154 | 330 | 330 | 389 | 502 | 559 | 564 | 574 | 556 | 448 | 341 | 232 | 135 | 115 | 113 | 143 | 152 | 150 | |
100 | 109 | 122 | 329 | 329 | 429 | 589 | 659 | 692 | 710 | 646 | 493 | 350 | 212 | 110 | 82 | 81 | 101 | 102 | 110 | |
110 | 68 | 95 | 329 | 329 | 457 | 663 | 744 | 787 | 806 | 715 | 533 | 357 | 197 | 91 | 61 | 57 | 68 | 72 | 79 | |
120 | 55 | 82 | 328 | 328 | 471 | 689 | 787 | 831 | 851 | 745 | 557 | 360 | 190 | 81 | 50 | 46 | 50 | 49 | 63 | |
130 | 50 | 82 | 327 | 327 | 472 | 689 | 787 | 825 | 850 | 740 | 554 | 357 | 190 | 84 | 51 | 48 | 48 | 45 | 63 | |
140 | 61 | 97 | 326 | 326 | 458 | 660 | 744 | 770 | 808 | 694 | 531 | 350 | 199 | 98 | 64 | 64 | 60 | 59 | 76 | |
150 | 86 | 118 | 324 | 324 | 430 | 595 | 668 | 677 | 715 | 646 | 490 | 338 | 215 | 119 | 85 | 96 | 87 | 86 | 104 | |
160 | 114 | 153 | 323 | 323 | 395 | 503 | 556 | 552 | 597 | 521 | 447 | 324 | 235 | 151 | 119 | 127 | 121 | 124 | 139 | |
170 | 161 | 192 | 323 | 323 | 348 | 416 | 431 | 427 | 460 | 397 | 384 | 309 | 256 | 180 | 148 | 171 | 168 | 172 | 186 | |
180 | 233 | 155 | 323 | 323 | 303 | 336 | 320 | 260 | 285 | 299 | 322 | 294 | 280 | 215 | 180 | 211 | 204 | 222 | 228 |
Angle of the |
||||||||||||||||||||
Angle of the second polarizer (°) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | |
0 | 212 | 233 | 319 | 319 | 300 | 313 | 270 | 265 | 276 | 294 | 294 | 305 | 279 | 212 | 217 | 193 | 22 | 233 | 236 | |
10 | 251 | 265 | 320 | 320 | 268 | 242 | 163 | 148 | 176 | 217 | 254 | 294 | 299 | 236 | 146 | 228 | 256 | 280 | 270 | |
20 | 283 | 291 | 321 | 321 | 244 | 176 | 101 | 69 | 94 | 151 | 226 | 286 | 310 | 253 | 266 | 249 | 289 | 312 | 300 | |
30 | 299 | 304 | 323 | 323 | 229 | 146 | 64 | 32 | 57 | 125 | 213 | 284 | 317 | 261 | 273 | 263 | 306 | 330 | 318 | |
40 | 299 | 305 | 324 | 324 | 228 | 145 | 64 | 38 | 61 | 130 | 218 | 286 | 316 | 259 | 271 | 263 | 310 | 335 | 318 | |
50 | 285 | 293 | 326 | 326 | 241 | 179 | 108 | 85 | 117 | 170 | 243 | 294 | 309 | 247 | 252 | 251 | 299 | 319 | 306 | |
60 | 265 | 269 | 328 | 328 | 266 | 238 | 194 | 181 | 209 | 246 | 281 | 305 | 295 | 225 | 230 | 224 | 268 | 293 | 277 | |
70 | 236 | 237 | 328 | 328 | 303 | 312 | 316 | 308 | 344 | 340 | 336 | 319 | 273 | 198 | 190 | 192 | 234 | 252 | 235 | |
80 | 192 | 199 | 329 | 329 | 341 | 403 | 435 | 429 | 460 | 447 | 393 | 330 | 253 | 168 | 153 | 153 | 188 | 204 | 200 | |
90 | 143 | 154 | 330 | 330 | 389 | 502 | 559 | 564 | 574 | 556 | 448 | 341 | 232 | 135 | 115 | 113 | 143 | 152 | 150 | |
100 | 109 | 122 | 329 | 329 | 429 | 589 | 659 | 692 | 710 | 646 | 493 | 350 | 212 | 110 | 82 | 81 | 101 | 102 | 110 | |
110 | 68 | 95 | 329 | 329 | 457 | 663 | 744 | 787 | 806 | 715 | 533 | 357 | 197 | 91 | 61 | 57 | 68 | 72 | 79 | |
120 | 55 | 82 | 328 | 328 | 471 | 689 | 787 | 831 | 851 | 745 | 557 | 360 | 190 | 81 | 50 | 46 | 50 | 49 | 63 | |
130 | 50 | 82 | 327 | 327 | 472 | 689 | 787 | 825 | 850 | 740 | 554 | 357 | 190 | 84 | 51 | 48 | 48 | 45 | 63 | |
140 | 61 | 97 | 326 | 326 | 458 | 660 | 744 | 770 | 808 | 694 | 531 | 350 | 199 | 98 | 64 | 64 | 60 | 59 | 76 | |
150 | 86 | 118 | 324 | 324 | 430 | 595 | 668 | 677 | 715 | 646 | 490 | 338 | 215 | 119 | 85 | 96 | 87 | 86 | 104 | |
160 | 114 | 153 | 323 | 323 | 395 | 503 | 556 | 552 | 597 | 521 | 447 | 324 | 235 | 151 | 119 | 127 | 121 | 124 | 139 | |
170 | 161 | 192 | 323 | 323 | 348 | 416 | 431 | 427 | 460 | 397 | 384 | 309 | 256 | 180 | 148 | 171 | 168 | 172 | 186 | |
180 | 233 | 155 | 323 | 323 | 303 | 336 | 320 | 260 | 285 | 299 | 322 | 294 | 280 | 215 | 180 | 211 | 204 | 222 | 228 |