Optical activity and its relation to molecular chirality are significant in the measurement of optical rotation or circular dichroism characteristics to determine the absolute configuration of a chiral molecule. A quarter-wave plate, which is usually made from quartz, can convert linearly polarized light into circularly polarized light. In this study, we suggest using
Citation: Po-Yeh Lin, Chien-Ming Chen, Jen-Ai Lee, Yu-Chia Cheng. Fabrication of biodegradable films using l-lactate as a chiral material to produce circularly polarized light[J]. AIMS Bioengineering, 2022, 9(4): 337-347. doi: 10.3934/bioeng.2022024
Optical activity and its relation to molecular chirality are significant in the measurement of optical rotation or circular dichroism characteristics to determine the absolute configuration of a chiral molecule. A quarter-wave plate, which is usually made from quartz, can convert linearly polarized light into circularly polarized light. In this study, we suggest using
[1] | Wang XY, Yang GM (2014) Dual frequency and dual circular polarization slot antenna for BeiDou navigation satellite system applications. Microw Opt Techn Let 56: 2222-2225. https://doi.org/10.1002/mop.28560 |
[2] | Al-Yasir YIA, Abdullah AS, Ojaroudi Parchin N, et al. (2018) A new polarization-reconfigurable antenna for 5G applications. Electronics 7: 293. https://doi.org/10.3390/electronics7110293 |
[3] | Snik F, Craven-Jones J, Escuti M, et al. (2014) An overview of polarimetric sensing techniques and technology with applications to different research fields. Polarization: measurement, analysis, and remote sensing XI 9099: 48-67. https://doi.org/10.1117/12.2053245 |
[4] | Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89: 392-400. https://doi.org/10.1002/bip.20853 |
[5] | Kunnen B, Macdonald C, Doronin A, et al. (2015) Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J Biophotonics 8: 317-323. https://doi.org/10.1002/jbio.201400104 |
[6] | de Boer JF, Hitzenberger CK, Yasuno Y (2017) Polarization sensitive optical coherence tomography - a review. Biomed Opt Express 8: 1838-1873. https://doi.org/10.1364/BOE.8.001838 |
[7] | Park JE, Xin Z, Kwon DY, et al. (2021) Application of polarization sensitive-optical coherence tomography to the assessment of phase retardation in subpleural cancer in rabbits. Tissue Eng Regen Med 18: 61-69. https://doi.org/10.1007/s13770-020-00318-9 |
[8] | Deák GG, Schmidt WM, Bittner RE, et al. (2019) Imaging of vitelliform macular lesions using polarization-sensitive optical coherence tomography. Retina 39: 558-569. https://doi.org/10.1097/IAE.0000000000001987 |
[9] | Saha A, Bhattacharya K, Chakraborty AK (2012) Achromatic quarter-wave plate using crystalline quartz. Appl Optics 51: 1976-1980. https://doi.org/10.1364/AO.51.001976 |
[10] | Abuleil MJ, Abdulhalim I (2014) Tunable achromatic liquid crystal waveplates. Opt Lett 39: 5487-5490. https://doi.org/10.1364/OL.39.005487 |
[11] | Savukov I, Budker D (2007) Wave-plate retarders based on overhead transparencies. Appl Optics 46: 5129-5136. https://doi.org/10.1364/AO.46.005129 |
[12] | Deguzman PC, Nordin GP (2001) Stacked subwavelength gratings as circular polarization filters. Appl Optics 40: 5731-5737. https://doi.org/10.1364/AO.40.005731 |
[13] | Jiang S, Kotov NA (2022) Circular polarized light emission in chiral inorganic nanomaterials. Adv Mater 2022: 2108431. https://doi.org/10.1002/adma.202108431 |
[14] | Zhang C, Wang X, Qiu L (2021) Circularly polarized photodetectors based on chiral materials: a review. Front Chem 9: 711488. https://doi.org/10.3389/fchem.2021.711488 |
[15] | Tian X, Chen H, Liu H, et al. (2021) Recent advances in lactic acid production by lactic acid bacteria. Appl Biochem Biotech 193: 4151-4171. https://doi.org/10.1007/s12010-021-03672-z |
[16] | Shi W, Chen X, Li B, et al. (2020) Spontaneous creation of anisotropic polymer crystals with orientation-sensitive birefringence in liquid drops. ACS Appl Mater Inter 12: 3912-3918. https://doi.org/10.1021/acsami.9b17308 |
[17] | DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41: 319-326. https://doi.org/10.1016/S0278-6915(02)00258-2 |
[18] | Tamura K, Ike O, Hitomi S, et al. (1986) A new hydrogel and its medical application. ASAIO J 32: 605-608. https://doi.org/10.1097/00002216-198609000-00049 |
[19] | Kawai F, Hu X (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol 84: 227-237. https://doi.org/10.1007/s00253-009-2113-6 |
[20] | Kita M, Ogura Y, Honda Y, et al. (1990) Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material. Graefe's Arch Clinl Exp Ophthalmol 228: 533-537. https://doi.org/10.1007/BF00918486 |
[21] | Noguchi T, Yamamuro T, Oka M, et al. (1991) Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: Evaluation of biocompatibility. J Appl Biomater 2: 101-107. https://doi.org/10.1002/jab.770020205 |
[22] | Adeva M, González-Lucán M, Seco M, et al. (2013) Enzymes involved in l-lactate metabolism in humans. Mitochondrion 13: 615-629. https://doi.org/10.1016/j.mito.2013.08.011 |
[23] | Yudkin J, Cohen RD (1975) The contribution of the kidney to the removal of a lactic acid load under normal and acidotic conditions in the conscious rat. Clin Sci Mol Med 48: 121-131. https://doi.org/10.1042/cs0480121 |
[24] | Nawrotek K, Marqueste T, Modrzejewska Z, et al. (2017) Thermogelling chitosan lactate hydrogel improves functional recovery after a C2 spinal cord hemisection in rat. J Biomed Mater Res A 105: 2004-2019. https://doi.org/10.1002/jbm.a.36067 |
[25] | Hadasha W, Bezuidenhout D (2018) Poly(lactic acid) as biomaterial for cardiovascular devices and tissue engineering applications. Industrial Applications of Poly(lactic acid). Cham: Springer International Publishing 51-77. https://doi.org/10.1007/12_2017_27 |
[26] | Fan Y, Liu X, Li J, et al. (2019) A miniaturized circularly-polarized antenna for in-body wireless communications. Micromachines 10: 70. https://doi.org/10.3390/mi10010070 |
[27] | Kaim V, Kanaujia BK, Kumar S, et al. (2020) Ultra-miniature circularly polarized CPW-fed implantable antenna design and its validation for biotelemetry applications. Sci Rep 10: 6795. https://doi.org/10.1038/s41598-020-63780-4 |
[28] | Blauert J, Kiourti A (2021) Quarter-wave plates to improve rotational misalignment robustness in medical telemetry. Bioelectromagnetics 42: 583-592. https://doi.org/10.1002/bem.22365 |
[29] | Blauert J, Kiourti A (2020) Bio-matched antennas with flare extensions for reduced low frequency cutoff. IEEE Open J Antenn Propag 1: 136-141. https://doi.org/10.1109/OJAP.2020.2988133 |
[30] | Nishizawa N, Al-Qadi B, Kuchimaru T (2021) Angular optimization for cancer identification with circularly polarized light. J Biophotonics 14: e202000380. https://doi.org/10.1002/jbio.202000380 |
[31] | Hosseini ES, Dervin S, Ganguly P, et al. (2021) Biodegradable materials for sustainable health monitoring devices. ACS ApplBio Mater 4: 163-194. https://doi.org/10.1021/acsabm.0c01139 |