Mealybugs cause mechanical damage and diseases to plants. Through their feeding activities, they reduce the yield, quality and productivity of crops. This review discusses mealybug vectors of plant viruses, the economic losses they cause, mealybug species and their hosts. Among the numerous mealybug species, Planococcus species are the most effective vector of plant viruses, transmitting many Ampeloviruses. Diverse methods for the control and regulation of mealybugs are also discussed. Physical, cultural and biological control methods are labor-intensive but environmentally friendly compared to chemical methods. However, chlorpyrifos are one the active ingredients of insecticides effective against several mealybug species. Using plant products such as neem oil as a biocontrol method has been effective, similar to other insecticides. Notwithstanding, the biological method of controlling mealybugs is effectively slow but safe and highly recommended. The Anagyrus species have the highest success rate amongst other natural parasites of mealybugs. Also, farm sanitation and pruning as cultural methods help reduce mealybug populations.
Citation: Abdul Razak Ahmed, Samuel Obeng Apori, Abdul Aziz Karim. Mealybug vectors: A review of their transmission of plant viruses and their management strategies[J]. AIMS Agriculture and Food, 2023, 8(3): 736-761. doi: 10.3934/agrfood.2023040
Mealybugs cause mechanical damage and diseases to plants. Through their feeding activities, they reduce the yield, quality and productivity of crops. This review discusses mealybug vectors of plant viruses, the economic losses they cause, mealybug species and their hosts. Among the numerous mealybug species, Planococcus species are the most effective vector of plant viruses, transmitting many Ampeloviruses. Diverse methods for the control and regulation of mealybugs are also discussed. Physical, cultural and biological control methods are labor-intensive but environmentally friendly compared to chemical methods. However, chlorpyrifos are one the active ingredients of insecticides effective against several mealybug species. Using plant products such as neem oil as a biocontrol method has been effective, similar to other insecticides. Notwithstanding, the biological method of controlling mealybugs is effectively slow but safe and highly recommended. The Anagyrus species have the highest success rate amongst other natural parasites of mealybugs. Also, farm sanitation and pruning as cultural methods help reduce mealybug populations.
[1] | World Bank (2018) World Development Indicators, United Nations Population Division. World Population Prospects: 2019 Revision. |
[2] | The World Bank (2021) Thailand Healthcare Spending, WDI-Home. |
[3] | Vollset SE, Goren E, Yuan CW, et al. (2020) Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the Global Burden of Disease Study. Lancet 396: 1285–1306. https://doi.org/10.1016/S0140-6736(20)30677-2 doi: 10.1016/S0140-6736(20)30677-2 |
[4] | Procheş Ş, Wilson JRU, Vamosi JC, et al. (2008) Plant diversity in the human diet: Weak phylogenetic signal indicates breadth. Bioscience 58: 151–159. https://doi.org/10.1641/B580209 doi: 10.1641/B580209 |
[5] | Ficke A, Cowger C, Bergstrom G, et al. (2018) Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch—A case study in wheat. Plant Dis 102: 696–707. https://doi.org/10.1094/PDIS-09-17-1375-FE doi: 10.1094/PDIS-09-17-1375-FE |
[6] | Wang A, Krishnaswamy S (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol Plant Pathol 13: 795–803. https://doi.org/10.1111/j.1364-3703.2012.00791.x doi: 10.1111/j.1364-3703.2012.00791.x |
[7] | Ali Şevik M, Akyazi F, Karantina Müdürlüğü Z (2008) Bitki Patojeni Virüslerin Bitki Parazit Nematodlarla Taşınması. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Derg 25: 1–12. |
[8] | Heck M (2018) Insect transmission of plant pathogens: A systems biology perspective. mSystems 3: e00168-17. https://doi.org/10.1128/mSystems.00168-17 doi: 10.1128/mSystems.00168-17 |
[9] | Shi X, Zhang Z, Zhang C, et al. (2021) The molecular mechanism of efficient transmission of plant viruses in variable virus–vector–plant interactions. Hortic Plant J 7: 501–508. https://doi.org/10.1016/j.hpj.2021.04.006 doi: 10.1016/j.hpj.2021.04.006 |
[10] | Cid M, Fereres A (2010) Characterization of the probing and feeding behavior of planococcus citri (Hemiptera: Pseudococcidae) on grapevine. Ann Entomol Soc Am 103: 404–417. https://doi.org/10.1603/AN09079 doi: 10.1603/AN09079 |
[11] | Wielkopolan B, Jakubowska M, Obrępalska-Stęplowska A (2021) Beetles as plant pathogen vectors. Front Plant Sci 12: 748093. https://doi.org/10.3389/fpls.2021.748093 doi: 10.3389/fpls.2021.748093 |
[12] | Bandte M, Pestemer W, Büttner C, et al. (2009) Ecological aspects of plant viruses in tomato and pathogen risk assessment. Acta Hortic 821: 161–168. https://doi.org/10.17660/ActaHortic.2009.821.17 doi: 10.17660/ActaHortic.2009.821.17 |
[13] | Jones DR (2005) Plant viruses transmitted by thrips. Eur J Plant Pathol 113: 119–157. https://doi.org/10.1007/s10658-005-2334-1 doi: 10.1007/s10658-005-2334-1 |
[14] | Krishnareddy M (2013) Impact of climate change on insect vectors and vector-borne plant viruses and phytoplasma. In: Singh HCP, Rao NKS, Shivashankar KS (Eds.), Climate-Resilient Horticulture: Adaptation and Mitigation Strategies, Chapter 23, Springer, 255–277. https://doi.org/10.1007/978-81-322-0974-4_23 |
[15] | Zimmer R, Mpyers K, Haber S, et al. (1992) Tomato spotted wilt virus, a problem on grass pea and field pea in the greenhouse in 1990 and 1991. Can Plant Dis Surv 72: 29–31. |
[16] | Dawidowicz Ł, Rozwałka R (2016) Honeydew Moth Cryptoblabes gnidiella (MILLIÈRE, 1867) (Lepidoptera: Pyralidae): an adventive species frequently imported with fruit to Poland. Polish J Entomol 85: 181–189. https://doi.org/10.1515/pjen-2016-0010 doi: 10.1515/pjen-2016-0010 |
[17] | Gharsan FN (2019) A Review of the Bioactivity of Plant Products Against Aedes aegypti (Diptera: Culicidae). J Entomol Sci 54: 256–274. https://doi.org/10.18474/JES18-82 doi: 10.18474/JES18-82 |
[18] | Ordax M, Piquer-Salcedo JE, Santander RD, et al. (2015) Medfly ceratitis capitata as potential vector for fire blight pathogen erwinia amylovora: Survival and transmission. PLoS One 10: e127560. https://doi.org/10.1371/journal.pone.0127560 doi: 10.1371/journal.pone.0127560 |
[19] | Sastry KS (2013) Chapter 1—Transmission of Plant Viruses and Viroids. In: Plant Virus and Viroid Diseases in the Tropics, Springer, 1–10. https://doi.org/10.1007/978-94-007-6524-5 |
[20] | Fereres A, Raccah B (2015) Plant Virus Transmission by Insects, eLS. https://doi.org/10.1002/9780470015902.a0000760.pub3 doi: 10.1002/9780470015902.a0000760.pub3 |
[21] | Perilla-Henao LM, Casteel CL (2016) Vector-borne bacterial plant pathogens: Interactions with hemipteran insects and plants. Front Plant Sci 7: 1163. https://doi.org/10.3389/fpls.2016.01163 doi: 10.3389/fpls.2016.01163 |
[22] | Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109: 195–219. https://doi.org/10.1023/A:1022846630513 doi: 10.1023/A:1022846630513 |
[23] | Ng JCK, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5: 505–511. https://doi.org/10.1111/j.1364-3703.2004.00240.x doi: 10.1111/j.1364-3703.2004.00240.x |
[24] | Sarwar M (2020) Chapter 27—Insects as transport devices of plant viruses. In: Awasthi LP (Ed.), Applied Plant Virology: Advances, Detection, and Antiviral Strategies, Academic Press, 381–402. https://doi.org/10.1016/B978-0-12-818654-1.00027-X |
[25] | Chiquito-Almanza E, Acosta-Gallegos JA, García-Álvarez NC, et al. (2017) Simultaneous detection of both RNA and DNA viruses infecting dry bean and occurrence of mixed infections by BGYMV, BCMV and BCMNV in the Central-West Region of Mexico. Viruses 9: 63. https://doi.org/10.3390/v9040063 doi: 10.3390/v9040063 |
[26] | Franco JC, Zada A, Mendel Z (2009) Chapter 9—Novel Approaches for the Management of Mealybug Pests. In: Ishaaya I, Horowitz AR (Eds.), Biorational Control Arthropod Pest (Application and Resistance Management), Springer, 233–278. https://doi.org/10.1007/978-90-481-2316-2_10 |
[27] | Cox JM (1989) The mealybug genus Planococcus (Homoptera: Pseudococcidae). Bull Br Museum (Natural Hist) Entomol 58: 1–78. https://biostor.org/reference/113927 |
[28] | Naegele RP, Cousins P, Daane KM (2020) Identification of Vitis cultivars, rootstocks, and species expressing resistance to a Planococcus mealybug. Insects 11: 86. https://doi.org/10.3390/insects11020086 doi: 10.3390/insects11020086 |
[29] | Pitino M, Hoffman MT, Zhou L, et al. (2014) The phloem-sap feeding mealybug (Ferrisia virgata) carries 'Candidatus Liberibacter asiaticus' populations that do not cause disease in host plants. PLoS One 9: e85503. https://doi.org/10.1371/journal.pone.0085503 doi: 10.1371/journal.pone.0085503 |
[30] | Prabhakar M, Prasad YG, Vennila S, et al. (2013) Hyperspectral indices for assessing damage by the solenopsis mealybug (Hemiptera: Pseudococcidae) in cotton. Comput Electron Agric 97: 61–70. https://doi.org/10.1016/j.compag.2013.07.004 doi: 10.1016/j.compag.2013.07.004 |
[31] | Alliaume A, Reinbold C, Uzest M, et al. (2018) Mouthparts morphology of the mealybug Phenacoccus aceris. Bull Insectology 71: 1–9. http://www.bulletinofinsectology.org/ |
[32] | Bhat AI, Hohn T, Selvarajan R (2016) Badnaviruses: The current global scenario. Viruses 8: 177. https://doi.org/10.3390/v8060177 doi: 10.3390/v8060177 |
[33] | Kaydan MB, Kozár F, Hodgson C (2015) A review of the phylogeny of Palaearctic mealybugs (Hemiptera: Coccomorpha: Pseudococcidae). Arthropod Syst Phylogeny 73: 175–195. |
[34] | Coaker TH, Hill DS (1984) Agricultural insect pests of the tropics and their control. J Appl Ecol 21: 721. https://trove.nla.gov.au/work/16341512 |
[35] | Neuenschwander P, Borgemeister C, Langewald J, et al. (2003) Biological control in IPM systems in Africa, 1–414. https://doi.org/10.1079/9780851996394.0000 |
[36] | Mendel Z, Protasov A, Jasrotia P, et al. (2012) Sexual maturation and aging of adult male mealybug (Hemiptera: Pseudococcidae). Bull Entomol Res 102: 385–394. https://doi: 10.1017/S0007485311000605 doi: 10.1017/S0007485311000605 |
[37] | Joy PP, Anjana R (2016) Insect pests of pineapple and their management. Pineapple Research Station (Karela Agicultural University), Vazhakhulam 1–3. |
[38] | Kono M, Koga R, Shimada M, et al. (2008) Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl Environ Microbiol 74: 4175–4184. https://doi.org/10.1128/AEM.00250-08 doi: 10.1128/AEM.00250-08 |
[39] | Byron MA, Gillett-kaufman JL (2020)Targioni Tozzetti (Insecta : Hemiptera : Pseudococcidae) 1. Biology (Basel) 1–3. |
[40] | Daane KM, Cooper ML, Triapitsyn SV, et al. (2008) Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex. Calif Agric 62: 167–176. http://dx.doi.org/10.3733/ca.v062n04p167 doi: 10.3733/ca.v062n04p167 |
[41] | Ben-Dov Y (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance, Intercept Limited. Available from: https://www.cabdirect.org/cabdirect/abstract/19941106629. |
[42] | Khan M (2019) Abundance, damage severity and management of guava mealybug, ferrisia virgata ckll. SAARC J Agric 16: 73–82. http://dx.doi.org/10.3329/sja.v16i2.40260 doi: 10.3329/sja.v16i2.40260 |
[43] | Afzal M, Rahman SU, Siddiqui MT (2009) Appearance and management of a new devastating pest of cotton, Phenacoccus solenopsis Tinsley in Pakistan. 2009 Beltwide Cotton Conferences, San Antonio, Texas, 1023–1039. Available from: https://www.cotton.org/beltwide/proceedings/2005-2022/data/conferences/2009/papers/9051.pdf. |
[44] | Aheer GM, Shah Z, Saeed M (2009) Seasonal history and biology of cotton mealy, Phenacoccus solenopsis Tinsley. J Agric Res 4: 423–432. |
[45] | Bhat AI, Devasahayam S, Sarma YR, et al. (2003) Association of a badnavirus in black pepper (Piper nigrum L.) transmitted by mealybug (Ferrisia virgata) in India. Curr Sci 84: 1547–1550. https://www.jstor.org/stable/24108260 |
[46] | Khumpumuang P, Urairong H, Yongsawatdigul J, et al. (2019) Selection of soil bacteria for controlling cassava mealybugs. Suranaree J Sci Technol 26: 166–186. |
[47] | Roivainen O (1976) Transmission of cocoa viruses by mealybugs (Homoptera: Pseudococcidae). Agric Food Sci 48: 203–304. https://doi.org/10.23986/afsci.71915 doi: 10.23986/afsci.71915 |
[48] | Sarpong TM, Asare-Bediako E, Acheampong L (2017) Perception of mealybug wilt effect and management among pineapple farmers in Ghana. J Agric Ext 21: 1–16. https://doi.org/10.4314/jae.v21i2.1 doi: 10.4314/jae.v21i2.1 |
[49] | Watson GW, Kubiriba J (2005) Identification of mealybugs (Hemiptera: Pseudococcidae) on banana and plantain in Africa. African Entomol 13: 35–47. https://hdl.handle.net/10520/EJC32626 |
[50] | Asare‐Bediako E, Nyarko J, Puije GC (2020) First report of Pineapple mealybug wilt associated virus‐2 infecting pineapple in Ghana. New Dis Reports 41: 9. https://doi.org/10.5197/j.2044-0588.2020.041.009 doi: 10.5197/j.2044-0588.2020.041.009 |
[51] | Celepci E, Uygur S, Bora Kaydan M, et al. (2017) Mealybug (Hemiptera: Pseudococcidae) species on weeds in Citrus (Rutaceae) plantations in Çukurova Plain, Turkey Çukurova Bölgesi'nde turunçgil alanlarındaki yabancıotlar üzerinde bulunan unlubit (Hemiptera: Pseudococcidae) türleri. Türk entomol bült 7: 15–21. https://doi: 10.16969/teb.14076 doi: 10.16969/teb.14076 |
[52] | Lopes FSC, de Oliveira JV, Oliveira JE de M, et al. (2019) Host plants for mealybugs (Hemiptera: Pseudococcidae) in grapevine crops. Pesqui Agropecu Trop 49. https://doi.org/10.1590/1983-40632019v4954421 doi: 10.1590/1983-40632019v4954421 |
[53] | Kansiime MK, Rwomushana I, Mugambi I, et al. (2020) Crop losses and economic impact associated with papaya mealybug (Paracoccus marginatus) infestation in Kenya. Int J Pest Manag 69: 1861363. https://doi.org/10.1080/09670874.2020.1861363 doi: 10.1080/09670874.2020.1861363 |
[54] | Sosan MB, Ajibade RO, Udah O, et al. (2020) Preliminary survey of mealybug incidence and infestation on pawpaw (Carica papaya l.) in a rainforest ecology in Nigeria. Ife J Agric 32: 79–90. Available from: https://ija.oauife.edu.ng/index.php/ija/article/view/337. |
[55] | Tachie-Menson J, Sarkodie-Addo J, Carlson A (2015) Effects of weed management on the prevalence of pink Pineapple mealybugs in Ghana. J Sci Technol 34: 17–25. https://doi.org/10.4314/just.v34i2.3 doi: 10.4314/just.v34i2.3 |
[56] | Wih K, Billah M (2012) Diversity of fruit flies and mealybugs in the upper west region of Ghana. J Dev Sustain Agric 7: 39–45. http://197.255.68.203/handle/123456789/1766 |
[57] | Muniappan R, Shepard BM, Watson GW, et al. (2008) First report of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in Indonesia and India. J Agric Urban Entomol 25: 37–40. https://doi.org/10.3954/1523-5475-25.1.37 doi: 10.3954/1523-5475-25.1.37 |
[58] | Charles JG (1988) Economic damage and preliminary economic thresholds for mealybugs (Pseudococcus longispinus t-t.) in auckland vineyards. New Zeal J Agric Res 25: 415–420. https://doi.org/10.1080/00288233.1982.10417905 doi: 10.1080/00288233.1982.10417905 |
[59] | Fand BB, Kumar M, Kamble AL (2014) Predicting the potential geographic distribution of cotton mealybug Phenacoccus solenopsis in India based on MAXENT ecological niche Model. J Environ Biol 35: 973–982. |
[60] | Nagrare VS, Kranthi S, Biradar VK, et al. (2009) Widespread infestation of the exotic mealybug species, Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae), on cotton in India. Bull Entomol Res 99: 537–541. https://doi.org/10.1017/S0007485308006573 doi: 10.1017/S0007485308006573 |
[61] | Thennarasi A, Jeyarani S, Sathiah N (2021) Diversity of predators associated with the mealybug complex in cassava growing districts of Tamil Nadu, India. Int J Plant Soil Sci 33: 62–79. https://doi.org/10.9734/ijpss/2021/v33i2230684 doi: 10.9734/ijpss/2021/v33i2230684 |
[62] | Rauwane ME, Odeny DA, Millar I, et al. (2018) The early transcriptome response of cassava (Manihot esculenta Crantz) to mealybug (Phenacoccus manihoti) feeding. PLoS One 13: e0202541. https://doi.org/10.1371/journal.pone.0202541 doi: 10.1371/journal.pone.0202541 |
[63] | Dey KK, Green JC, Melzer M, et al. (2018) Mealybug wilt of pineapple and associated viruses. Horticulturae 4. https://doi.org/10.3390/horticulturae4040052 doi: 10.3390/horticulturae4040052 |
[64] | Franco JC, Suma P, Da Silva EB, et al. (2004) Management strategies of mealybug pests of citrus in mediterranean countries. Phytoparasitica 32: 507–522. https://doi.org/10.1007/BF02980445 doi: 10.1007/BF02980445 |
[65] | Woolf AB, Ben-Arie R (2011) Chapter 9—Persimmon (Diospyros kaki L.). In: Kader AA, Yahia EL (Eds.), Postharvest Biology and Technology of Tropical and Subtropical Fruits, Woodhead Publishing, 166–194e. https://doi.org/10.1533/9780857092618.166 |
[66] | Grasswitz TR, James DG (2008) Movement of grape mealybug, Pseudococcus maritimus, on and between host plants. Entomol Exp Appl 129: 268–275. https://doi.org/10.1111/j.1570-7458.2008.00786.x doi: 10.1111/j.1570-7458.2008.00786.x |
[67] | Heppner JB, Heppner JB, Capinera JL, et al. (2008) Vine Mealybug, Planococcus ficus Signoret (Hemiptera: Pseudococcidae). In: Capinera JL (Ed.), Encyclopedia of Entomology, Springer, 4108–4111. https://doi.org/10.1007/978-1-4020-6359-6_3979 |
[68] | Nébié K, Nacro S, Otoidobiga L, et al. (2016) Population dynamics of the mango mealybug Rastrococcus invadens Williams (Homoptera: Pseudococcidea) in western Burkina Faso. Am J Exp Agric 11: 1–11. https://doi.org/10.9734/AJEA/2016/24819 doi: 10.9734/AJEA/2016/24819 |
[69] | Kubiriba J, Legg JP, Tushemereirwe W, et al. (2001) Vector transmission of Banana streak virus in the screenhouse in Uganda. Ann Appl Biol 139: 37–43. https://doi.org/10.1111/j.1744-7348.2001.tb00128.x doi: 10.1111/j.1744-7348.2001.tb00128.x |
[70] | Yu N, Luo Z, Fan H, et al. (2015) Complete genomic sequence of a Pineapple mealybug wilt-associated virus-1 from Hainan Island, China. Eur J Plant Pathol 141: 611–615. https://doi.org/10.1007/s10658-014-0545-z doi: 10.1007/s10658-014-0545-z |
[71] | Kumar PKV, Reddy GVM, Seetharama HG, et al. (2016) Coffee. In: Mani M, Shivaraju C (Eds.), Mealybugs and their Management in Agricultural and Horticultural crops, Springer, 643–655. https://doi.org/10.1007/978-81-322-2677-2_70 |
[72] | Rae DJ, Jones RE (1992) Influence of host nitrogen levels on development, survival, size and population dynamics of sugarcane mealybug, Saccharicoccus sacchari (Cockerell) (Hemiptera: Pseudococcidae). Aust J Zool 40: 327–369. https://doi.org/10.1071/ZO9920327 doi: 10.1071/ZO9920327 |
[73] | Haviland DR, Beede RH (2012) Seasonal phenology of Ferrisia gilli (Hemiptera: pseudococcidae) in commercial pistachios. J Econ Entomol 105: 1681–1687. https://doi.org/10.1603/ec12070 doi: 10.1603/ec12070 |
[74] | Bertin S, Cavalieri V, Gribaudo I, et al. (2016) Transmission of Grapevine virus A and Grapevine leafroll-associated virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) nymphs from plants with mixed infections. J of Econ Entom 109: 1504–1511. https://doi.org/10.1093/jee/tow120 doi: 10.1093/jee/tow120 |
[75] | Abdel-Moniem ASH, Farag NA, Abbass MH (2005) Vertical distribution of some piercing sucking insects on some roselle varieties in Egypt and the role of amino acids concentration in infestation. Arch Phytopathol Plant Prot 38: 245–255. https://doi.org/10.1080/03235400400008390 doi: 10.1080/03235400400008390 |
[76] | Myrick S, Norton GW, Selvaraj KN, et al. (2014) Economic impact of classical biological control of papaya mealybug in India. Crop Prot 56: 82–86. https://doi.org/10.1016/j.cropro.2013.10.023 doi: 10.1016/j.cropro.2013.10.023 |
[77] | Mani M, Krishnamoorthy A, Shivaraju C (2011) Biological suppression of major mealybug species on horticultural crops in India. J Hortl Sci 6: 85–100. |
[78] | Ghosh AB, Ghosh SK (1985) Effect of infestation of Nipaecoccus vastator (Maskell) on host plants. Indian Agric 29: 141–147. |
[79] | Roda A, Francis A, Kairo MTK, et al. (2013) Planococcus minor (Hemiptera: Pseudococcidae): Bioecology, survey and mitigation strategies. In: Potential Invasive Pests Agric Crop, Wallingford UK: CABI, 288–300. https://doi.org/10.1079/9781845938291.0288 |
[80] | Charles JG (2010) Using parasitoids to infer a native range for the obscure mealybug, Pseudococcus viburni, in South America. BioControl 56: 155–161. https://doi.org/10.1007/s10526-010-9322-x doi: 10.1007/s10526-010-9322-x |
[81] | Sakthivel P, Karuppuchamy, Kalyanasundaram M, et al. (2012) Host plants of invasive papaya mealybug, Paracoccus marginatus (Williams and Granara de Willink) in Tamil Nadu. Madras Agric J 99: 615–619. https://doi.org/10.29321/MAJ.10.100154 doi: 10.29321/MAJ.10.100154 |
[82] | Cocco A, Pacheco da Silva VC, Benelli G, et al. (2021) Sustainable management of the vine mealybug in organic vineyards. J Pest Sci 94: 153–185. https://doi.org/10.1007/s10340-020-01305-8 doi: 10.1007/s10340-020-01305-8 |
[83] | Selvarajan R, Balasubramanian V, Padmanaban B (2016) Mealybugs as vectors. In: Mani M, Shivaraju C (Eds.), Mealybugs and their Management in Agricultural and Horticultural Crops, Springer, 123–130. |
[84] | Sether DM, Hu JS (2002) Closterovirus infection and mealybug exposure are necessary for the development of mealybug wilt of pineapple disease. Phytopathology 92: 928–935. https://doi.org/10.1094/PHYTO.2002.92.9.928 doi: 10.1094/PHYTO.2002.92.9.928 |
[85] | Obok EE, Aikpokpodion PO, Ani OC, et al. (2021) Cacao swollen shoot virus detection and DNA barcoding of its vectors and putative vectors in Theobroma cacao L. by using polymerase chain reaction. Biotechnologia 102: 229–244. https://doi.org/10.5114/bta.2021.108719 doi: 10.5114/bta.2021.108719 |
[86] | Fuchs M, Bar-Joseph M, Candresse T, et al. (2020) ICTV virus taxonomy profile: Closteroviridae. J Gen Virol 101: 364–365. https://doi.org/10.1099/jgv.0.001397 doi: 10.1099/jgv.0.001397 |
[87] | Martelli GP, Abou Ghanem-Sabanadzovic N, Agranovsky AA, et al. (2012) Taxonomic revision of the family closteroviridae with special reference to the grapevine leafroll-associated members of the genus ampelovirus and the putative species unassigned to the family. J Plant Pathol 94: 7–19. https://www.jstor.org/stable/45156004 |
[88] | Dey KK, Sugikawa J, Kerr C, et al. (2019) Air potato (Dioscorea bulbifera) plants displaying virus-like symptoms are co-infected with a novel potyvirus and a novel ampelovirus. Virus Genes 55: 117–121. https://doi.org/10.1007/s11262-018-1616-6 doi: 10.1007/s11262-018-1616-6 |
[89] | Martelli GP, Agranovsky AA, Bar-Joseph M, et al. (2002) The family Closteroviridae revised. Arch Virol 147: 2039–2044. https://doi.org/10.1007/s007050200048 doi: 10.1007/s007050200048 |
[90] | Ameyaw GA, Dzahini-Obiatey HK, Domfeh O (2014) Perspectives on cocoa swollen shoot virus disease (CSSVD) management in Ghana. Crop Prot 65: 64–70. https://doi.org/10.1016/j.cropro.2014.07.001 doi: 10.1016/j.cropro.2014.07.001 |
[91] | Fariña AE, Rezende JAM, Wintermantel WM (2019) Expanding knowledge of the host range of tomato chlorosis virus and host plant preference of Bemisia tabaci MEAM1. Plant Dis 103: 1132–1137. https://doi.org/10.1094/PDIS-11-18-1941-RE doi: 10.1094/PDIS-11-18-1941-RE |
[92] | Flint ML (2016) PEST NOTES Statewide integrated pest management program integrated pest management for homes, gardens, and landscapes mealybugs publication 74174. Available from: https://ipm.ucanr.edu/PMG/PESTNOTES/pn74174.html. |
[93] | Tsai CW, Rowhani A, Golino DA, et al. (2010) Mealybug transmission of grapevine leafroll viruses: An analysis of virus-vector specificity. Phytopathology 100: 830–834. https://doi.org/https://doi.org/10.1094/phyto-100-8-0830 |
[94] | Sether DM, Melzer MJ, Busto J, et al. (2005) Diversity and mealybug transmissibility of ampeloviruses in pineapple. Plant Dis 89: 450–456. https://doi.org/10.1094/PD-89-0450 doi: 10.1094/PD-89-0450 |
[95] | Ito T, Nakaune R (2016) Molecular characterization of a novel putative ampelovirus tentatively named grapevine leafroll-associated virus 13. Arch Virol 161: 2555–2559. https://doi.org/https://doi.org/10.1007/s00705-016-2914-8 doi: 10.1007/s00705-016-2914-8 |
[96] | Bahder BW, Poojari S, Alabi OJ, et al. (2013) Pseudococcus maritimus (Hemiptera: Pseudococcidae) and Parthenolecanium corni (hemiptera: coccidae) are capable of transmitting grapevine leafroll-associated virus 3 between vitis x labruscana and vitis vinifera. Environ Entomol 42: 1292–1298. https://doi.org/10.1603/EN13060 doi: 10.1603/EN13060 |
[97] | Thekke-Veetil T, Aboughanem-Sabanadzovic N, Keller KE, et al. (2013) Molecular characterization and population structure of blackberry vein banding associated virus, new ampelovirus associated with yellow vein disease. Virus Res 178: 234–240. https://doi.org/10.1016/j.virusres.2013.09.039 doi: 10.1016/j.virusres.2013.09.039 |
[98] | Larrea-Sarmiento A, Olmedo-Velarde A, Wang X, et al. (2021) A novel ampelovirus associated with mealybug wilt of pineapple (Ananas comosus). Virus Genes 57: 464–468. https://doi.org/10.1007/s11262-021-01852-x doi: 10.1007/s11262-021-01852-x |
[99] | Wallingford AK, Fuchs MF, Martinson T, et al. (2015) Slowing the spread of grapevine leafroll-associated viruses in commercial vineyards with insecticide control of the vector, Pseudococcus maritimus (Hemiptera: Pseudococcidae). J Insect Sci 15: 112. https://doi.org/10.1093%2Fjisesa%2Fiev094 |
[100] | Wistrom CM, Blaisdell GK, Wunderlich LR, et al. (2016) Ferrisia gilli (Hemiptera: Pseudococcidae) transmits grapevine leafroll-associated viruses. J Econ Entomol 109: 1519–1523. https://doi.org/10.1093/jee/tow124 doi: 10.1093/jee/tow124 |
[101] | Maguet J Le, Beuve M, Herrbach E, et al. (2012) Transmission of six ampeloviruses and two vitiviruses to grapevine by Phenacoccus aceris. Phytopathology 102: 717–723. https://doi.org/10.1094/phyto-10-11-0289 doi: 10.1094/phyto-10-11-0289 |
[102] | Petersen CL, Charles JG (1997) Transmission of grapevine leafroll-associated closteroviruses by Pseudococcus longispinus and P. calceolariae. Plant Pathol 46: 509–515. https://doi.org/10.1046/j.1365-3059.1997.d01-44.x doi: 10.1046/j.1365-3059.1997.d01-44.x |
[103] | Reynard JS, Schneeberger PHH, Frey JE, et al. (2015) Biological, serological, and molecular characterization of a highly divergent strain of grapevine leafroll-associated virus 4 causing grapevine leafroll disease. Phytopathology 105: 1164–1284. https://doi.org/10.1094/PHYTO-12-14-0386-R doi: 10.1094/PHYTO-12-14-0386-R |
[104] | Ochoa-Martínez DL, Uriza-Ávila DE, Rojas-Martínez RI (2016) Detection of Pineapple mealybug wilt-associated virus 1 and 3 in Mexico. Revista Mexicana de Fitopatología 34: 131–141. https://doi.org/10.18781/R.MEX.FIT.1601-1 doi: 10.18781/R.MEX.FIT.1601-1 |
[105] | Al Rwahnih M, Rowhani A, Westrick N, et al. (2018) Discovery of viruses and virus-like pathogens in pistachio using high-throughput sequencing. Plant Dis 102: 1189–1471. https://doi.org/10.1094/pdis-12-17-1988-re doi: 10.1094/pdis-12-17-1988-re |
[106] | Chouk G, Elair M, Chaabouni AC, et al. (2021) Pistacia vera L. hosts pistachio ampelovirus A in Tunisia. J Plant Pathol 103: 1335. http://dx.doi.org/10.1007/s42161-021-00905-2 doi: 10.1007/s42161-021-00905-2 |
[107] | Elbeaino T, Digiaro M, De Stradis A, et al. (2007) Identification of a second member of the family Closteroviridae in mosaic-diseased figs. J Plant Pathol 89: 119–124. https://www.jstor.org/stable/41998365 |
[108] | Yorganci S, Açıkgöz S (2019) Transmission of fig leaf mottle-associated virus 1 by Ceroplastes rusci. J Plant Pathol 101: 1199–1201. https://www.jstor.org/stable/48699659 |
[109] | Dolja VV, Koonin EV (2013) The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology. Front Microbiol 4: 83. https://doi.org/10.3389/fmicb.2013.00083 doi: 10.3389/fmicb.2013.00083 |
[110] | Komorowska B, Hasiów-Jaroszewska B, Czajka A (2020) Occurrence and detection of little cherry virus 1, little cherry virus 2, cherry green ring mottle virus, cherry necrotic rusty mottle virus, and cherry virus A in stone fruit trees in Poland. Acta Virol 64: 100–103. https://doi.org/10.4149/av_2020_112 doi: 10.4149/av_2020_112 |
[111] | Ferreira CHL de H, Jordão LJ, Ramos-Sobrinho R, et al. (2019) Diversification into the genus Badnavirus: Phylogeny and population genetic variability. Rev Ciência Agrícola 17: 59. https://doi.org/10.28998/rca.v17i2.6286 doi: 10.28998/rca.v17i2.6286 |
[112] | Kreuze JF, Perez A, Gargurevich MG, et al. (2020) Badnaviruses of sweet potato: Symptomless coinhabitants on a global scale. Front Plant Sci 11: 313. https://doi.org/10.3389/fpls.2020.00313 doi: 10.3389/fpls.2020.00313 |
[113] | Borah BK, Sharma S, Kant R, et al. (2013) Bacilliform DNA-containing plant viruses in the tropics: Commonalities within a genetically diverse group. Mol Plant Pathol 14: 759–771. https://doi.org/10.1111/mpp.12046 doi: 10.1111/mpp.12046 |
[114] | Quainoo AK, Wetten AC, Allainguillaume J (2008) Transmission of cocoa swollen shoot virus by seeds. J Virol Methods 150: 45–49. https://doi.org/10.1016/j.jviromet.2008.03.009 doi: 10.1016/j.jviromet.2008.03.009 |
[115] | Ameyaw GA (2020) Management of the cacao swollen shoot virus (CSSV) menace in Ghana: The past, present and the future. In: Topolovec-Pintarić S (Ed.), Plant Diseases—Current Threats and Management Trends, London, UK: IntechOpen., 1–3. https://doi.org/10.5772/intechopen.87009 |
[116] | Bömer M, Rathnayake AI, Visendi P, et al. (2018) Complete genome sequence of a new member of the genus Badnavirus, Dioscorea bacilliform RT virus 3, reveals the first evidence of recombination in yam badnaviruses. Arch Virol 163: 533–538. https://doi.org/10.1007/s00705-017-3605-9 doi: 10.1007/s00705-017-3605-9 |
[117] | Koch KG, Jones T-KL, Badillo-Vargas IE (2020) Chapter 26—Arthropod vectors of plant viruses. In: Awasthi LP (Ed.), Applied Plant Virology—Advances, Detection, and Antiviral Strategies, Academic Press, 349–379. https://doi.org/10.1016/b978-0-12-818654-1.00026-8 |
[118] | Adams MJ, Candresse T, Hammond J, et al. (2012) Family—Betaflexiviridae. In: King AMQ, Lefkowitz E, Adams MJ, et al. (Eds.), Virus Taxonomy—Ninth Report of the International Committee on Taxonomy of Viruses, London, Elsevier Academic Press, 920–941. https://doi.org/10.1016/B978-0-12-384684-6.00078-1 |
[119] | Hull R (2002) Chapter 6—Genome Organization. In: Matthews REF, Hull R (Eds.), Matthews' Plant Virology, Gulf professional publishing, 171–224. https://doi.org/10.1016/B978-0-12-361160-4.X5050-6 |
[120] | Mani M, Joshi S, Kalyanasundaram M, et al. (2013) A new invasive jack beardsley mealybug, Pseudococcus jackbeardsleyi (Hemiptera: Pseudococcidae) on papaya in India. Florida Entomol 96: 242–245. https://doi.org/10.1653/024.096.0135 doi: 10.1653/024.096.0135 |
[121] | Andres C, Gattinger A, Dzahini-Obiatey HK, et al. (2017) Combatting cocoa swollen shoot virus disease: What do we know? Crop Prot 98: 76–84. https://doi.org/10.1016/j.cropro.2017.03.010 doi: 10.1016/j.cropro.2017.03.010 |
[122] | Karar H, Sayyed AH, Arif MJ, et al. (2010) Integration of cultural and mechanical practices for management of the mango mealybug Drosicha mangiferae. Phytoparasitica 38: 223–229. http://dx.doi.org/10.1007/s12600-010-0094-8 doi: 10.1007/s12600-010-0094-8 |
[123] | Haviland DR, Bentley WJ, Daane KM (2005) Hot-water treatments for control of Planococcus ficus (Homoptera: Pseudococcidae) on dormant grape cuttings. J Econ Entomol 98: 1109–1115. https://doi.org/10.1603/0022-0493-98.4.1109 doi: 10.1603/0022-0493-98.4.1109 |
[124] | Carabalí-Banguero DJ, Wyckhuys KAG, Montoya-Lerma J, et al. (2013) Do additional sugar sources affect the degree of attendance of Dysmicoccus brevipes by the fire ant Solenopsis geminata? Entomol Exp Appl 148: 65–73. http://dx.doi.org/10.1111/eea.12076 doi: 10.1111/eea.12076 |
[125] | Vincent C, Weintraub P, Hallman G (2009) Chapter 200—Physical control of insect pests. In: Resh VH, Cardé RT (Eds.), Encyclopedia of Insects (Second Edition), Academic press, 794–798. http://dx.doi.org/10.1016/B978-0-12-374144-8.00209-5 |
[126] | Franco JC, Silva EB, Cortegano E, et al. (2008) Kairomonal response of the parasitoid Anagyrus spec. nov. near pseudococci to the sex pheromone of the vine mealybug. Entomol Exp Appl 126: 122–130. http://dx.doi.org/10.1111/j.1570-7458.2007.00643.x doi: 10.1111/j.1570-7458.2007.00643.x |
[127] | Kaur Gill H, Gaurav G, Gillett-Kaufman JL (2019) Citrus mealybug Planococcus citri (Risso) (Insecta: Hemiptera: Pseudococcidae). University of Florida. Available from: https://edis.ifas.ufl.edu/publication/IN947. |
[128] | Hartley DE (1992) 12—Poinsettias. In: Larson RA (Ed.), Introduction to Floriculture (Second Edition), Academic Press, 305–331. |
[129] | Le Vieux PD, Malan AP (2013) An overview of the vine mealybug (Planococcus ficus) in South African vineyards and the use of entomopathogenic nematodes as potential biocontrol agent. South African J Enol Vitic 34: 108–118. http://dx.doi.org/10.21548/34-1-1086 doi: 10.21548/34-1-1086 |
[130] | Tohamy TH, El-Raheem AAA, El-Rawy AM (2008) Role of the cultural practices and natural enemies for suppressing infestation of the pink sugarcane mealybug, Saccharicoccus sacchari (Cockerell) (Hemiptera: Pseudococcidae) in sugarcane fields at Minia Governorate, Middle Egypt. Egypt J Biol Pest Control 18: 177–188. Available from: https://www.cabdirect.org/cabdirect/abstract/20093037731. |
[131] | Mani M, Shivaraju C (2016) Mealybugs and their management in agricultural and horticultural crops, Springer, 1–655. |
[132] | Cadée N, Van Alphen JJM (1997) Host selection and sex allocation in Leptomastidea abnormis, a parasitoid of the citrus mealybug Planococcus citri. Entomol Exp Appl 83: 277–284. https://doi.org/10.1046/j.1570-7458.1997.00182.x doi: 10.1046/j.1570-7458.1997.00182.x |
[133] | Giordanengo P, Nénon JP (1990) Melanization and encapsulation of eggs and larvae of Epidinocarsis lopezi by its host Phenacoccus manihoti; effects of superparasitism and egg laying patterns. Entomol Exp Appl 56: 155–163. https://doi.org/10.1111/j.1570-7458.1990.tb01393.x doi: 10.1111/j.1570-7458.1990.tb01393.x |
[134] | Pijls JWAM, Poleij LM, Van Alphen JJM, et al. (1996) Interspecific interference between Apoanagyrus lopezi and A. diversicornis, parasitoids of the cassava mealybug Phenacoccus manihoti. Entomol Exp Appl 78: 221–230. http://dx.doi.org/10.1111/j.1570-7458.1996.tb00785.x doi: 10.1111/j.1570-7458.1996.tb00785.x |
[135] | Lapointe SL (2015) A tribute to Dr. Anthony C. Bellotti and his contributions to Cassava entomology. Fla Entomol 98: 810–814. https://doi.org/10.1653/024.098.0267 doi: 10.1653/024.098.0267 |
[136] | Walton VM, Pringle KL (2017) A survey of mealybugs and associated natural enemies in vineyards in the Western Cape Province, South Africa. South African J Enol Vitic 25: 23–25. http://dx.doi.org/10.21548/25-1-2134 doi: 10.21548/25-1-2134 |
[137] | Çalışkan AF, Ulusoy MR (2018) Distribution, host plants, parasitoids, and predators of cotton mealybug. Phenacoccus solenopsis Tinsley (Hemiptera: Coccomorpha: Pseudococcidae) from Eastern Mediterrenean region, 4th International Agriculture Congress, Muğla, 05–08. |
[138] | Chen HY, Li HL, Pang H, et al. (2021) Investigating the parasitoid community associated with the invasive mealybug Phenacoccus solenopsis in Southern China. Insects 12: 290. https://doi.org/10.3390/insects12040290 doi: 10.3390/insects12040290 |
[139] | Zart M, De MacEdo MF, Rando JSS, et al. (2021) Performance of entomopathogenic nematodes on the mealybug, Dysmicoccus brevipes (Hemiptera: Pseudococcidae) and the compatibility of control agents with nematodes. J Nematol 53: 2021–2041. https://doi.org/10.21307/jofnem-2021-020 doi: 10.21307/jofnem-2021-020 |
[140] | Chellappan M (2019) Evaluation of entomopathogenic fungus for the management of pink mealybug, Dysmicoccus brevipes (Cockerell) (Hemiptera: Pseudococcidae) on pineapple in Kerala. J Entomol Zool Stud 7: 1215–1222. |
[141] | Bigger M (1981) The relative abundance of the mealybug vectors (Hemiptera: Coccidae and Pseudococcidae) of Cocoa swollen shoot disease in Ghana. Bull Entomol Res 71: 435–448. https://doi.org/10.1017/S0007485300008464 doi: 10.1017/S0007485300008464 |
[142] | Fuenmayor Y, Portillo E, Bastidas B, et al. (2021) Infection parameters of Heterorhabditis amazonensis (Nematoda: Heterorhabditidae) in different stages of Hibiscus pink mealybug. J Nematol 52: 1–7. https://doi.org/10.21307/jofnem-2020-077 doi: 10.21307/jofnem-2020-077 |
[143] | Katiyar RL, Kumar V, Manjunath D, et al. (2000) Biology of Anagyrus kamali (Moursi) (Hymenoptera : Encyrtidae)—A parasitoid of the mealybug, Maconellicoccus hirsutus (Green), with a note on its incidence. Int J Ind Entomol 1: 143–148. |
[144] | Singh KD, Mobolade AJ, Bharali R, et al. (2021) Main plant volatiles as stored grain pest management approach: A review. J Agric Food Res 4: 100127. https://doi.org/10.1016/j.jafr.2021.100127 doi: 10.1016/j.jafr.2021.100127 |
[145] | Taylor A, Birkett JW (2020) Pesticides in cannabis: A review of analytical and toxicological considerations. Drug Test Anal 12: 180–190. https://doi.org/10.1002/dta.2747 doi: 10.1002/dta.2747 |
[146] | Farahy O, Laghfiri M, Bourioug M, et al. (2021) Overview of pesticide use in Moroccan apple orchards and its effects on the environment. Curr Opin Environ Sci Heal 19: 100223. http://dx.doi.org/10.1016/j.coesh.2020.10.011 doi: 10.1016/j.coesh.2020.10.011 |
[147] | Kaur R, Mavi GK, Raghav S, et al. (2019) Pesticides classification and its impact on environment. Int J Curr Microbiol Appl Sci 8: 1889–1897. https://doi.org/10.20546/ijcmas.2019.803.224 doi: 10.20546/ijcmas.2019.803.224 |
[148] | Babar M, Afzal S, Sikandar Z, et al. (2018) Efficacy of different insecticides under laboratory conditions against Drosicha mangiferae Green (Homoptera : Margarodidae) collected from citrus orchards of Sargodha, Pakistan. Pakistan J Entomol Zool Stud 6: 2855–2858. |
[149] | Mansour R, Belzunces LP, Suma P, et al. (2018) Vine and citrus mealybug pest control based on synthetic chemicals. A review. Agron Sustain Dev 38: 37. http://dx.doi.org/10.1007/s13593-018-0513-7 doi: 10.1007/s13593-018-0513-7 |
[150] | Edde PA (2022) 4—Arthropod pests of cotton (Gossypium hirsutum L.). In: Field Crop Arthropod Pests of Economic Importance, Academic Press, 208–274. http://dx.doi.org/10.1016/B978-0-12-818621-3.00003-3 |
[151] | Akhter A, Hage-Ahmed K, Soja G, et al. (2016) Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil 406: 425–440. https://link.springer.com/article/10.1007/s11104-016-2948-4 |
[152] | Sequeira RV, Khan M, Reid DJ (2020) Chemical control of the mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Australian cotton–glasshouse assessments of insecticide efficacy. Austral Entomol 59: 375–385. https://doi.org/10.1111/aen.12446 doi: 10.1111/aen.12446 |
[153] | Waiganjo MM, Waturu CN, Mureithi JM (2011) Use of entomopathogenic Fungi and neem bio-pesticides for Brassica pests control and conservation of their natural enemies. East Afr Agric For J 77: 1&2. |
[154] | Gahukar RT (2014) Factors affecting content and bioefficacy of neem (Azadirachta indica A. Juss.) phytochemicals used in agricultural pest control: A review. Crop Prot 62: 93–99. https://doi.org/10.1016/j.cropro.2014.04.014 doi: 10.1016/j.cropro.2014.04.014 |
[155] | Pascoli M, de Albuquerque FP, Calzavara AK, et al. (2020) The potential of nanobiopesticide based on zein nanoparticles and neem oil for enhanced control of agricultural pests. J Pest Sci 93: 793–806. https://link.springer.com/article/10.1007/s10340-020-01194-x |
[156] | Ahmed S, Grainge M (1986) Potential of the neem tree (Azadirachta indica) for pest control and rural development. Econ Bot 40: 201–209. https://doi.org/10.1007/BF02859144 doi: 10.1007/BF02859144 |
[157] | Abul Monjur Khan M (2016) Efficacy of insect growth regulator Buprofezin against Papaya mealybug. J Entomol Zool Stud 4: 730–733. |
[158] | Ujváry I (2010) Chapter 3—Pest control agents from natural products. In: Krieger R (Ed.), Hayes' Handbook of Pesticide Toxicology (Third Edition), Academic press, 119–229. https://doi.org/10.1016/B978-0-12-374367-1.00003-3 |
[159] | ShouHorng H, ChingYi L (2014) Distribution and control of pink pineapple mealybug and survey of insect pests on pineapple. J Taiwan Agric Res 63: 68–76. |
[160] | Rai BK, Sinha AK (1980) Pineapple: Chemical control of mealybug and associated ants in Guyana. J Econ Entomol 73: 41–45. https://doi.org/10.1093/jee/73.1.41 doi: 10.1093/jee/73.1.41 |
[161] | Hussain M, Noureen N, Fatima S, et al. (2016) Cotton mealybug management: A Review. Middle-East J Sci Res 24: 2424–2430. https://doi.org/10.5829/idosi.mejsr.2016.24.08.101221 doi: 10.5829/idosi.mejsr.2016.24.08.101221 |
[162] | Atu UG, Okeke JE (2009) Effect of insecticide application on cassava yield in control of cassava mealybug (Phenacoccus Manlhotl). Trop Pest Manag 27: 434–435. https://doi.org/10.1080/09670878109413818 doi: 10.1080/09670878109413818 |
[163] | Hanna AD, Heatherington W, Judenko E (1952) Control of the mealybug vectors of the swollen shoot virus by a systemic insecticide. Nature 169: 334–335. https://doi.org/10.1038/169334a0 doi: 10.1038/169334a0 |
[164] | Islam M, Ahmad M, Islam K, et al. (2006) Chemical control of citrus mealybug planococcus Citri risso (Pseudococcidae: Hemiptera) and the toxicological effects of insecticides on its predators Menochilussexmaculatus F. and Micraspis discolor F. (Coccinellidae: Coleoptera). J Sci Found 4: 27–30. |
[165] | Ganjisaffar F, Andreason SA, Perring TM (2019) Lethal and sub-lethal effects of insecticides on the pink hibiscus mealybug, Maconellicoccus hirsutus (Hemiptera: Pseudococcidae). Insects 10: 31. https://doi.org/10.3390/insects10010031 doi: 10.3390/insects10010031 |