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Abstract: Mealybugs cause mechanical damage and diseases to plants. Through their feeding 

activities, they reduce the yield, quality and productivity of crops. This review discusses mealybug 

vectors of plant viruses, the economic losses they cause, mealybug species and their hosts. Among the 

numerous mealybug species, Planococcus species are the most effective vector of plant viruses, 

transmitting many Ampeloviruses. Diverse methods for the control and regulation of mealybugs are 

also discussed. Physical, cultural and biological control methods are labor-intensive but 

environmentally friendly compared to chemical methods. However, chlorpyrifos are one the active 

ingredients of insecticides effective against several mealybug species. Using plant products such 

as neem oil as a biocontrol method has been effective, similar to other insecticides. 

Notwithstanding, the biological method of controlling mealybugs is effectively slow but safe and 

highly recommended. The Anagyrus species have the highest success rate amongst other natural 

parasites of mealybugs. Also, farm sanitation and pruning as cultural methods help reduce 

mealybug populations.  

Keywords: Mealybugs; Planococcus; Pseudococcus longispinus; Dysmicoccus brevipes; 
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1. Introduction 

The world’s population is growing so fast that at the end of 2021 it was 7.9 billion people [1]. 

This is a rapid growth rate compared to ten years ago (6.194 billion) [2]. With this growth rate, it is 

estimated that the world population will be around 9,782,061,758 in 2051 [3]. 

This exponential growth trend has an adverse impact on food security. To meet the dietary 

requirements for this population growth, food production needs to be scaled up. Among the various 

food sources, plants are the largest food source for humans. A total of 50–90% of the human diet is of 

plant origin [4]. However, these contributions of plant products to the human diet are likely to diminish 

due to several factors. The decrease in agricultural land use size, plant diseases and other biotic factors 

threaten plant productivity. Among these factors, plant pathogenic diseases are the major problem, where 

16% of annual plant yield losses are due to plant pathogenic diseases [5]. 

Plant pathogens contributes a troubling decline in global food security and crop production [6]. 

Plant pathogens are transmitted through a variety of vectors. Insects and nematodes [7] play a role in 

pathogen transmission. Insects, the most popular and effective of all the vectors, pose a concern for 

plants, animals and human health [8]. 

Two orders of insects (Hemipterans and Thysanopteras) have the most devastating effect on crop 

yield [9]. Among the various orders of insects, Hemipteran [10], Coleopteras [11], Thysanoptera (generally 

thrips) [12–15], Lepidoptera [16] and Diptera [17,18] are known vectors of plant viruses, fungi and 

bacteria. Close to one-fourth of all plant viruses require insect vectors for effective transmission [9]. 

Coleopterans are effective transmitters of Bromoviruses, Carmoviruses, Comoviruses, 

Machlomoviruses, Sobemoviruses and Tymoviruses [19]. Hemipterans (aphids, whiteflies and 

leafhoppers), transmit most plant viruses and bacteria. They are infamous for the transmission of more 

than one pathogen. Furthermore, their brisk reproductive cycles and diverse plant hosts give them an 

advantage in plant virus transmission [20,21]. Although thrips, aphids and whiteflies account for over 

50% of plant virus transmission [22,23], the role of mealybugs in plant viruses transmission is 

noteworthy. Of the Homoptera insect order, mealybugs are one of the major vectors of plant viruses [24]. 

With various biotic problems of plants, viral diseases are one of the biggest constraints to plant 

health [25]. Transmission of plant viruses is dependent on the mealybug life stage, temperature and 

suitable host. However, information about the viruses transmitted by mealybugs is not comprehensive 

as that of aphids, whiteflies and thrips. This article provides a comprehensive review of the different 

types of plant viruses transmitted by different species of mealybugs, and various management 

strategies to reduce and control the devastating effects of mealybugs. 

2. Morphology of mealybugs 

Mealybugs (Pseudococcidae) are destructive insect pests of crop plants. Mealybugs are either 

monophagous [26] or polyphagous. Mealybugs perfectly homogenize with their host plant, thanks to 

the wax produced by the host plant, which covers them and offers them camouflage. It is estimated 

that 149 mealybug species feed on plants with their piercing and sucking feeding behavior. The 

Planococcus species are the most common and destructive [27], causing severe mechanical damages 

to crop plants. Despite having a diverse feeding host, woody and herbaceousplants are most preferred. 

They pierce and suck the plant sap, which causes sooty mold from releasing sap materials, reduces the 

plant chlorophyll content and thus affect photosynthesis [28–30]. During feeding, viral particles (especially 
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those retained in the stylet and foregut) are released through their stylet [31]. The stylets are withdrawn 

into the body after and when not feeding [32]. 

Mealybugs are approximately 5mm long [33], with adult females 3-5mm and males average 3mm 

long [34,35]. Adult females retain some nymph-like features attributable to incomplete metamorphosis 

and are wingless. Similarly, male adults also undergo incomplete metamorphosis, but they are much 

smaller than the females and possess wings that aid them in moving to female mealybugs for 

mating [26,33,36].  

2.1. Life cycle of mealybugs 

The lifecycles of mealybugs differ according to their sex and species [37]. Male and female 

mealybugs have the same life cycle from the egg stage to the 2nd instar stage. In males, the prepupa 

stage is the next stage after the 2nd instar stage, then follows the Pupa, and finally to the adult male 

stage. However, unlike the male, the female mealybug has a 3rd instar stage that ends at the adult stage [38], 

as observed in Figure 1a and b below. 

 

Figure 1. Illustration of female and male mealybug lifecycles (adapted and altered from [37,38]). 

As observed from Figure 1a and b, male and female mealybugs have similar life cycles. However, 

certain mealybug species may require additional stages. The male pineapple mealybug (Dysmicoccus 

brevipes Cockerell), longtailed mealybug (Pseudococcus longispinus) were confirmed to have a third 

Instar stage between the second instar and prepupa stage [37,39]. Also, the female pineapple mealybug 

had a crawler stage instead of the first instar stage. Daane et al. (2008) also reported a similar life cycle 

of Planococcusficus to that of Dysmicoccus brevipes. 

2.2. Hosts of mealybugs 

Different species of mealybugs are found on plants in greenhouses, nurseries, plants and 

landscapes. Over the world, approximately 246 of several plant families serve as hosts for almost 5000 
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species of mealybugs [41]. Poaceae are the most popular host plants (585 species) for mealybugs, with 

Cyperaceae having the least number of host plants (75 species), and [42–44] emphasized that 

mealybugs feed on nearly 149 plant species, through the sucking of plant sap which causes leaves to 

distort and fall.. Destruction and pathogen transmission by mealybugs have been reported on guava, 

citrus, pomegranate, grapes, sugarcane, banana, black pepper, pineapple plantain, stone fruit, berries, 

yam, cassava, cashew, papaya, pawpaw and cocoa [31,42,45–50].  

Weeds such as Amaranthus vividus, Bidens Pilosa, Sonchus oleraceus, Chenopodus ambrosoides, 

Commelina sp., Cucumis anguria, Momordica charantia, Cyperus rotundus, Chamaesyce hirta, 

Croton sonderianus, Jatropha urens, Mimosa pudica, Piptadenia moniliformis, Serra macranthera, 

Herissanthia crispa, Sida cordifolia, Sida galheirensis, Sida rhombifolia, Sidastrum micranthum, 

Sidastrum sp., Digitaria horizontalis, Talinum paniculatum, Watheria douradinha, Malva sylvestris 

L., Redroot pigweed, Amaranthus retriflexus L., Crimson clover, Trifolium incarnatum L., Toadflax, 

Linaria sp. and Chorizococcus rostellum also serve as host plants for mealybugs [51,52]. Various 

degrees of mealybug infestation have been reported in Kenya [53], Nigeria [54], Ghana [48,50,55,56], 

Indonesia [57], New Zealand [58], India [57,59–61] and Israel [26]. In Turkey, 25 weed species from 

14 plant families were found to host 5 mealybug species [51]. 

2.3. Some reported economic losses due to mealybugs 

Several studies have confirmed the economic losses caused by the destructive effects of 

mealybugs and the virus diseases they transmit. According to Asare Bediako et al. [50], the mealybug 

wilt of pineapple (MWP) causes approximately US $248/ha in losses to pineapple fruit yield in Ghana, 

while causing 30–50 % of fruit yield loss in Hawai in the United States, depending on the age of the 

plant. Three cassava mealybugs (Phenacoccus manihoti, Planococcus herreni and Planococcus spp.) 

have been reported to cause cassava yield reduction in Sub-Saharan Africa. Phenacoccus manihoti is 

estimated to cause an 80% reduction in cassava yield [62]. Similarly, the Hibiscus mealybug 

(Maconellicoccus hirsutus) is indicated to cause a US $75 million loss annually in the United States 

of America [26]. Prabhakar et al.[30] reported various economic losses in several countries due to 

cotton mealybug (Phenacoccus solenopsis),Papaya mealybug (Paracoccus marginatus) and several 

mealybugs on cotton plant yields. Previous studies show that green coloration occurs in situations 

where both the male and female mealybug are found (especially between Dysmicoccus brevipes and 

Dysmicoccus neobrevipes) but are absent in a situation where only one parent was found (either male 

or the female) [63]. This green colouration affects the quality and market value of the produce. It is 

worth noting that the direct effect of viruses transmitted by mealy bugs is difficult to estimate since 

other factors in combination with the virus diseases cause economic damages to the crops. In a review 

by Franco et al. [64], Planoccocus citri and other species of mealybug cause economic losses in citrus 

orchards in the Mediteranean regions. 
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Table 1. A summary of selected plant virus mealybug vectors, their common names and host plant information. 

Species of Mealybugs Common Names Host Plants References 

Pseudococcus longispinus Longtailed mealybug Citrus, grapes, nursery stock, indoor ornamentals, citrus, taro, 

avocado, guava, eggplant. 

[34,35,65] 

Pseudococcus maritimus Grape mealybug Grapes, Pears, Pomegranate other fruit trees, apricots [34,35,66] 

Planococcus citri (cryptus) Citrus mealybug Citrus, landscape shrubs [34,35,51] 

Planococcus ficus Vine mealybug Grapes, fruits, ornamental plants [34,35,40,67] 

Rastrococcus iceryoides and R. invadens Mango Mealybug Mango and Citrus [35,68] 

Dysmicoccus brevipes Pineapple mealybug Pineapple, avocado, banana, celery, citrus, clover, cocoa, coconut, 

coffee, custard apple, figs, ginger, guava, maize, mango, oil palm, 

orchids, groundnut, peppers, plantain, potato and sugarcane. 

[26,35,69,70] 

Planococcus kenyae Kenya mealybug Coffee, yam, pigeon pea, passion fruit, sugarcane and sweet potato [27,71] 

Saccharicoccus sacchari Sugarcane mealybug sorghum, rice and some grasses, sugarcane [26,72] 

Ferrisia virgata Striped mealybug Common on most crops [26,34] 

Ferrisia gilli Gill’s mealybug Pistachios [73] 

Heliococcus bohemicus Bohemian mealybug Grapevine [74] 

Phenacoccus aceris Apple mealybug Grapevine, apple [74] 

Planococcus solani Ferris Phenococcus 

solenopsis Tinsley 

Solanum mealybug Solanaceous crops [34,35] 

Maconellicoccus hirsutus Pink hibiscus mealybug Hibiscus [35,75] 

Paracoccus marginatus Papaya mealybug Papaya, Solanaceous crops, cotton, pomegranate, pea, sweet potato. [30,53,76] 

Nipaecoccus viridis Spherical mealybug Cotton [77] 

Planococcus kraunhiae Japanese mealybug Broad bean [26,78] 

Planococcus minor Passionvine mealybug Vine [79] 

Planococcus njalensis Cocoa mealybug Cocoa [54] 

Pseudococcus viburni Tuber mealybug Donkey lettuce, Whitestem filaree, Tubular flower, Spanish needle, 

Hairy fleabane, grapes, persimmon 

[80–82] 
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3. Mealybug vectors of plant viruses 

Compared to aphids and whiteflies, mealybugs are transmitters of a few genera of plant viruses. 

Due to their less mobile nature, they are less effective in transmitting plant viruses than aphids, 

leafhoppers and other insect vectors. In addition, the sex and age of mealybugs affect virus transmission 

rates. For example, old female mealybugs are less efficient in transmitting plant viruses [83]. Also, the life 

stages of the nymph affect their transmission rate of viruses (adults are more effective than nymphs) [19]. 

Mealybugs transmit viruses of the genus Ampelovirus [31,63], and some Closteroviruses [84], of 

the Closteroviridae family. Mealybugs also transmit badnavirus [47,85] of the Caulimoviridae family. 

Closteroviridae generally consists of four genera- Closterovirus, Ampelovirus and Crinivirus, 

Velarivirus [86,87]. Some studies have also confirmed the transmission of vitiviruses by some 

mealybug species [83]. These viruses trigger leaf discoloration, deformation, mottling and leaf 

yellowing.  

3.1. Ampeloviruses transmitted by mealybugs 

Based on the organization of the positive-strand RNA genomes, Ampeloviruses can be subdivided 

into different groups [87]. Ampeloviruses have a non-enveloped capsid, 1400–2200 nm long virion, 

13.0–18.5 kb segmented genome [86] and filamentous shape. The genome of Ampelo-like air potato 

virus 1 (AiPoV1) is estimated to be around 13,398 nucleotides [88]. Mealybugs are the main vectors 

of Ampeloviruses. In a semi-persistent manner, mealybugs transmit Ampelovirus and other viruses in 

the Ampelovirus genus in a semi-persistent mode (GLRaV 3) [31,89]. In semi-persistent (foregut-

borne) virus transmission, viruses are spread from the stylet of the insect up to the foregut. The virus 

does not spread beyond the foregut of the insect vector. Within 20 minute-period, the mealybug picks 

up the virus and infects the host [90]. The virus does not reproduce and multiply in the vector, and 

retention of the virus in the host spans from hours to days [9]. Studies indicate that semi-persistent 

viruses influence the feeding behavior of their host [91]. The injuries caused by their stylets during 

feeding, triggers plant defense response [62]. During feeding, the saliva of some mealybug species, 

especially Maconellicoccus hirsutus, causes harmful effects to plants [92]. Ampeloviruses cause 

vascular diseases with obscure symptoms. However, studies show that Ampelovirus, when combined with 

other viruses, causes mixed infection in plants [88]. Most Ampeloviruses are transmitted by Dysmicoccus 

brevipes (Pseudococcus brevipes), Dysmicoccus neobrevipes [63] and Pseudococcus longispinus. 

From Table 1, Planoccocus mealybug species are more active in transmitting plant 

Ampeloviruses. Planococcus ficus is a regular transmitter of five strains of Grapevine leafroll 

associated viruses [93]. These can cause mixed infections since the mealybugs are vectors of numerous 

viruses [88] as observed in Table 2. According to a study by Sether et al. [94], Pineapple mealybug-

associated wilt viruses, when associated with pineapple’s Mealybug wilt virus, resulted in 100% yield 

loss. Also, mealybugs acquire and transmit viruses with or without association with other viruses. 

For example, mealybugs (Dysmicoccus brevipes and Dysmicoccus neobrevipes) were found to 

transmit Pineapple Mealybug-associated virus-3 (PmaV-3) without the transmission of PmaV-1 [94], 

although they are vectors of these two viruses [95]. It is worth noting that some other insect species 

do actively transmit Ampeloviruses. For example, Parthenolecanium corni (Coccidae) was 

reported to transmit GLRaV-3 [96]. 
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Table 2. A summary of some ampeloviruses and their mealybug vectors. 

Virus species Mealybug vectors Hosts References 

Air potato ampelovirus 

(AiPoV 1) 

Planococcus spp. Air potato [88] 

Blackberry Vein banding 

associated virus 

Planococcus spp. Blackberry [97,98] 

Grapevine leafroll-

associated virus 1 

Planococcus ficus, Pseudococcus 

longispinus, Phenacoccus aceris, 

Heliococcus bohemicus  

Grapevine [19,74,99] 

Grapevine Leafroll -

associated virus 3 

Planococcus ficus, Pseudococcus. 

longispinus, Ferrisia gilli, Phenacoccus 

aceris, Pseudococcus calceolariae, 

Heliococcus bohemicus,Pseudococcus 

maritimus 

Grapevine [19,74,96,99–

102] 

Grapevine leafroll-

associated virus 4 

Planococcus ficus, Pseudococcus 

longispinus, Phenacoccus aceris 

Grapevine [19,101,103] 

Grapevine leafroll 

associated virus 13 

Planococcus ficus, Pseudococcus longispinus Grapevine [19,95] 

Pineapple mealybug 

associated viruses 1 and 3 

Dysmicoccus brevipes,Dysmicoccus 

neobrevipes 

Pineapple [19,104] 

Pineapple mealybug 

associated virus 2 

Dysmicoccus brevipes, Dysmicoccus 

neobrevipes 

Pineapple [19,50,63,98] 

Pistachio ampelovirus Planococcus ficus Pistachio [105,106] 

Fig leaf mottle associated 

viruses 1 and 2 

Ceroplastes spp. Fig [107,108] 

Manihot esculenta virus 1 Phenacoccus manihoti, Phenacoccus herreni Cassava [62] 

3.2. Closteroviruses transmitted by mealybugs 

The genus Closterovirus belongs to the family Closteroviridae. Closteroviruses have two huge 

gene modules: one for genome replication, and the other for genome packaging and transport within 

the cells. The genome of Closterovirus is linear, positive RNA, with a maximum size of 19.3 kb [109]. 

In comparison to Ampeloviruses, fewer Closteroviruses are transmitted by mealybug vector 

species. For example, the Little cherry virus 2 belonging to the closterovirus genera is transmitted by 

Phenacoccus aceris [83,110]. 

3.3. Badnavirus transmitted by mealybugs 

The genus Badnavirus belongs to the Caulimoviridae family. Viruses found in Caulimoviridae 

have semicircular double-stranded DNA. They have a genome length range of 7.2–9.2 kbp. Eight 

divisions (Badnavirus, Caulimovirus, Cavemovirus, Petuvirus ,Rosadnavirus, Solendovirus, 

Soymovirus and Tungrovirus) are members of the Caulimoviridae family based on host range, insect 

vector and the basis of genome organization [111]. Badnaviruses affect monocots and dicots. Most 

Badnaviruses are horizontally transmitted through mealybugs and aphids [111,112]. Fewer or no 

symptom is associated with Badnavirus infections [113]. The effectiveness of their transmission is 
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dependent on the species of mealybugs. Badnavirus often have more than one species of the same 

vector as transmitters (Table 3). For example, 14 established vectors of Cocoa Swollen Shoot Virus [114], 

of which Planoccoides njalensis, Planococcus citri, Ferrissia virgata are potent transmitters of the 

Cocoa Swollen Shoot Virus [115]. Mealybugs usually feed on the flowers and pods. Like Ampelovirus, 

Badnaviruses are transmitted by mealybugs in a semi-persistent manner [115]. 

Table 3. A summary of badnaviruses transmitted by mealybug vectors. 

Virus Species Mealybug vectors Hosts Reference 

Cocoa Swollen Shoot Virus Planoccoides njalensis, Planococcus 

citri, Ferrissia virgata 

Cacao [114,115] 

Banana Streak Virus Planoccocus citri Risso,Saccharicoccus 

sacchari,Dysmicoccus brevipes,Ferrisia 

virgata 

Banana [69,83] 

Citrus Yellow Mosaic 

Badnavirus 

Planococcus citri Citrus [33] 

Sugarcane bacilliform virus Saccharicoccus sacchari Sugarcane (Sastry, 2013) 

Piper yellow mottle virus Ferrisia virgata,Planococcus 

citri,Pseudococcus elisae, 

Black pepper [19,83] 

Sugarcane mild mosaic virus Saccharicoccus sacchari Sugarcane [19] 

Taro bacilliform badnavirus Pseudococcus solomonensis Taro [83] 

Schefflera ringspot virus Planococcus citri Schefflera [83] 

Dioscorea bacilliform RT virus Planococcus spp Yam [116] 

3.4. Vitiviruses transmitted by mealybugs 

Vitiviruses belong to the family Flexiviridae and they are flexuous, filamentous, 12–13 in 

diameter [117] and 725–825 nm in length [118]. They are monopartite, positive sense and single-

stranded. Vitiviruses were initially considered Trichoviruses, but the differences in their genome 

organizations provided a basis for their differentiation [119]. Their virions contain RNA genome in a 

tail-like structure facilitating their transmission to plants by their insect vector [117]. 

Table 4. A summary of vitiviruses and mealybug vectors. 

Plant virus Mealybug vector Hosts References 

Grapevine virus A (Kober 

Stem Grooving) 

Pseudococcus spp,Planococcus 

ficus 

Grapevine [31,82,83] 

Grapevine virus B (Corky 

bark disease) 

Planococcus ficus Grapevine [31,82,83] 

Grapevine Virus D Phenacoccus spp Grapevine [83] 

Grapevine Virus E Heliococcus spp Grapevine [31,83] 

Vitiviruses are transmitted by mealybugs and other insect genera (Pseudococcus, Planococcus, 

Phenacoccus, Heliococcus, Neopulvinaria, Parthenolecanium, Cavariella and Ovatus)(Table 4) in a 

semipersistent manner [83]. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/vitivirus
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4. Management strategies for mealybugs 

Recent technological advances have influenced the methods and dynamics of controlling and 

managing mealybugs. Feeding behaviors determine the control strategy. The common management 

strategies are physical, chemical, cultural and biological. Environmental conditions such as 

temperature, humidity and others are considered when designing pest management strategies. 

Table 5. A summary of mealybug species and physical control. 

Mealybug Species Physical Method  Key findings Reference 

Dysmicoccus brevipes, 

Dysmicoccus 

neobrevipes 

Ant barriers Red ants were controlled causing 

the decrease in pink pineapple 

mealybug transportation 

[120] 

Planoccocus njalensis Crop barriers, Barrier 

cropping 

Farms with barrier crops had low 

mealybug infestation cases in 

comparison to those with none 

[115,121] 

Drosica mangiferae Crop rotation Adequate control of mango 

mealybug 

[122] 

Planococcus ficus 51–53 ℃ hot water 

treatment of grape 

cuttings  

Eradication of more than half of 

Planococcus ficus population 

[123] 

Planococcus ficus Ultralow oxygen 

treatment 

Complete eradication of all life 

stages of Planococcus ficus 

[82] 

Dysmicoccus brevipes, 

Dysmicoccus 

neobrevipes 

50 ℃-30 minutes hot 

water treatment of 

pineapple propagules  

Most of the mealybug population 

were destroyed 

[124] 

Planococcus citri Rossi, 

Pseudococcus odematti 

Miller and Williams 

Hot water immersion of 

propagules 

90–95% of the mealybug 

population were eliminated 

[123] 

4.1. Physical methods 

The physical (mechanical) pest control method involves using hurdle to reduce the contact 

between the pest and the crop. Physical control eliminates the pest or triggers behavioral or feeding 

changes in the pest [125]. 

Most physical methods share some similarities in their pest-elimination strategies. Despite their 

effectiveness, they are time-consuming and labor-intensive. Hand-picking of mealybugs, and cutting 

off tree parts heavily infested by mealybugs control mealybugs [34,35,115]. Growing barrier crops 

and destroying wild mealybug host plants have reduced contact between the mealybug vector and the 

host plant. Ameyaw et al.[115] reported on using citrus and oil palm in cocoa farms as barrier crops 

since they are not appropriate hosts for the mealybug vectors of Cocoa Swollen shoot virus. These 

crops break the mealybug vectors cycle since they are unsuitable hosts. 

Results from studies performed by Franco et al.(2004) on pheromone traps to control Planococcus 

citri and Pseudococcus cryptus male mealybugs indicated that male mealybugs of the Planococcus 

citri population was significantly reduced. Also, trapping and eliminating mealybugs have proven to 
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be a population regulator of mealybugs. Sticky plate traps help regulate some mealybugs species, 

especially Planococcus citri [26]. Similarly, the pheromone of some mealybug species can be 

manipulated to attract predators or natural enemies to them (as in the case of Anagyrus pseudococci in 

the control of Planococcus ficus) [26]. Also,the use of biological barriers,heat treatment amongst 

others are suitable in the control of mealybug species as seen in Table 5. 

4.2. Cultural Methods 

Like other pest control methods, cultural methods are diverse. They are environmentally friendly 

but labor-intensive. The cultural method involves a combination of practices that reduces the 

population and interrupt the infection cycle of pests. They include crop rotation, sanitation 

practices [34,35] and humidity control on the farm (Table 6). 

Table 6. A summary of mealybug species and cultural controls. 

Mealybug species Cultural method Key findings References 

Planococcus ficus resistant rootstocks 

(IAC 572,10-17A, 

RS-3) 

Resistant rootstocks were more resistant to 

Planococcus ficus infested as compared to other 

rootstocks 

[82,123,126] 

Planococcus ficus Low soil nitrogen 

content 

Grape plants on low nitrogen level soil had low 

mealybug presence in comparison to other grape 

plants on soils with high nitrogen content 

[82] 

Formicoccus 

njalensis, 

Planococcus citri 

Breeding resistant 

varieties 

Mealybug infestation was less in comparison to 

non-resistant varieties 

[121] 

Sachharicoccus 

sacchari 

Resistant varieties 

(Giza 96/74, Ph 

8013) 

Self-peeling varieties were less infected by the 

Saccharicoccus mealybug as compared to other 

varieties 

[127,128] 

Planococcus 

njalensis 

Roguing and 

pruning 

Cocoa crops with pruned diseased parts had less 

mealybug infestation as compared to those not 

pruned 

[121] 

Saccharicoccus 

sacchari 

Flood irrigation, 

burning of dry 

leaves in the field 

Number of mealybug infestation per plant was 

reduced 

[128] 

Saccharicoccus 

sacchari 

Low nitrogen 

fertilizer 

application, 

roguing, farm 

sanitation 

Mealybug population was lower in farms where 

these practices were enforced 

[128] 

Saccharicoccus 

sacchari 

Drip irrigation Increased drip irrigation method significantly 

reduced Saccharicoccus sacchari population 

[128] 

Some crops have a genetic combination that helps them rejuvenate and regenerate after heavy 

mealybug feeding. AR23 (cassava genotype), an improved variety of cassava, was found to develop 

new leaves and rejuvenate into a healthy plant after severe damage was caused by the cassava 

mealybug [62]. Inter-Upper Amazon Hybrids of cocoa also have resistivity against heavy mealybug 
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infestation [90]. However, there is innate resistance in some plants against some species of mealybugs. 

For example, different citrus varieties are reported to show varying levels of susceptibility to the citrus 

mealybug [79]. This underlines mealybug species preferences for special kinds of plants over others.  

In addition, regular pruning of trees in and around the farm is encouraged. Mealybugs develop 

and multiply rapidly in a warm and humid environment [83]. Pruning trees deprives mealybugs of the 

necessary moist conditions. Thus, it exposes them to harsh weather conditions, such as sunlight that 

will slow or stop their rapid growth and gradual extinction. 

Sanitation practices on the farm should be considered. The destruction of old and new heavily 

infested plant propagules should be practiced. In addition, farm equipment should be sanitized to 

reduce the transport of mealybug eggs within the farm. The destruction of cocoa trees affected by the 

Cocoa swollen Shoot Virus reduced the spread of the plant virus to healthy cocoa plants [90]. 

Also, fertilizers and irrigation within the farm should be regulated. Studies have demonstrated a 

relationship between wet soils coupled with high nitrogen content and mealybug growth [92]. There 

is a significant multiplication of mealybugs in the farm if the soil has high water content with 

significantly higher nitrogen levels. Daane et al. [40] confirmed the increase in the Planococcus ficus 

population due to increased nitrogen fertilizer use. Soils with high moisture content and adequate 

nitrogen levels help regenerate new plant parts. The mealybug then has new and succulent plant parts 

to feed on, and reproduction is encouraged. Adversely, Rae et al. [72] observed an increase in the 

Saccharicoccus sacchari at 320mg/L of nitrogen, but their population declined at a relatively higher 

nitrogen concentration. 

4.3. Biological control 

Biological pest control methods use natural enemies to eliminate or reduce the population of pests. 

Biological control methods, although labor-intensive, are environmentally friendly. Recently, 

biological pest control methods have been gaining popularity. Several natural parasitoids of mealybugs 

have been enacted, but only a few have proven very effective. Aphelinidae and Platygasterida species 

have yielded appreciable results [26]. Natural enemies of mealybugs are numerous e.g. parasitic wasps, 

ladybird beetles, hoverflies, lacewings [35], etc. This wasp lays its eggs on the maturing mealybugs, 

killing these mealybugs and feeding on them. Gyranusoidea, Coccophagus, Leptomastix, Allotropa, 

Pseudaphycus and Acerophagus are reported to be parasitic wasps of mealybugs [26,129]. In Africa 

and South America, Apoanagyrus lopezi and Epidicarno lopezi are reported to be effective in 

regulating the Cassava mealybug (Phenaccocus manihoti) [35,62]. Gyranusoidea tebygi and Anagyrus 

mangicola are natural enemies of the mango mealybugs, Rastrococcus invadens and Rastrococcus 

iceryoides [34,35]. In addition, the population of citrus mealybug is reported to be reduced by natural 

parasites, such as Leptomastidea abnormis (Girault), Leptomastix dactylopii Howard, 

Chrysoplatycerus splendens Howard and Anagyrus pseudococci (Girault). However, parasitic fungus, 

such as Entomophthora fumosa and other natural parasites (brown lacewing, Sympherobius 

barberi (Banks) and green lacewing, Chrysopa lateralis Guérin, trash bugs, syrphid fly larvae and 

scale-eating caterpillars, Laetitia coccidivor, Cryptolaemus montrouzieri Mulsant, Decadiomus 

bahamicus (Casey) Scymnus flavifrons Melsheimer, Chilocorus stigma (Say) and Olla abdominalis 

var. plagiata (Say), are reportedly effective against some species of mealybug [130]. 

The mode of action by which these parasitoids and predators suppress and eliminate different 

species of mealybugs differs. For example, Epidicarnosis lopezi, a parasitoid of cassava mealybugs, 
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lays eggs on the mealybug and their larvae feed on them [26]. Similarly, the mealybug predator 

Cryptolaemus montrouzieri, reported by Anjana and Joy [37], can feed on a maximum of 5000 

mealybug eggs in various life stages. Additionally, Anagyrus kamali controls the pink mealybug 

population by piercing the adult mealybug and laying eggs in them. The eggs hatch and the contents 

of the mealybug are used to nourish itself until it attains adulthood [37]. 

Consideration should be given to other insects (especially ants) that may antagonize the success 

of this biological control based on their relationship with mealybugs. The population of ants must be 

under control since they can mitigate the effectiveness of this method. Some ants have a mutualistic 

relationship with mealybugs [26,37,40], since they benefit from the honeydews made by mealybugs. 

Ants have an antagonistic relationship with the natural enemies of mealybugs. Also, ants play a role 

in the transportation and dispersion of several mealybug species [90], as several studies have 

demonstrated the transport and dispersal of mealybugs by ants [26,131].  

The citrus mealybug (Planococcus citri) is reported to be effectively controlled by a range of 

parasites such as Eptomastidea abnormis (Girault), Leptomastix dactylopii Howard,Chrysoplatycerus 

splendens Howard and Anagyrus pseudococci (Girault) (Table 7). 

Table 7. A summary of mealybug species and biological control agents. 

Mealybug species Natural Predators Key findings References 

Planococcus citri Leptomastix dactylopii  Leptomastix was superior to 

other natural enemies  

[26,132] 

Phenacoccus 

manihoti 

Apoanagyrus lopezi, Epidinocarsis 

lopezi,Apoanagyrus diversicornis 

Apoanagyrus species had 

maximum control of the cassava 

mealybug species in relation to 

other natural enemies  

[133–135] 

Rastrococcus 

invadens 

Gyranusoide tebygi, Anagyrus mangicola Effective control of 

Rastrococcus invadens 

[35] 

Planococcus ficus Anagyrus pseudococci, Nephus angustus, 

Nephus quadrivattus, Nephus ninaevatus, 

Nephus sp., Hyperaspis felixi, Sycmnus 

nubilis Mulsant, Cynodia lunata, 

Rhizobiellus sp., Hippodamia sp., 

Chrysopa sp. 

The Anagyrus species was more 

effective in controlling 

Planoccocus ficus mealybug  

[26,136] 

Phenacoccus 

solenopsis 

Oenopia (Synharmonia) conglobata(L.), 

Cheilomenes propingua (Mulsant) 

Chrysoperla carnea (Stephens), 

Chrysoperla mutata (Mc Lachlan) 

(Neuroptera: Chrysopidae), Sympherobius 

elegans (Stephens); Sympherobius fallax 

(Navas), (Neuroptera: Hemerobiidae) 

These parasitoids had higher 

parasitizing activity as compared 

to other predators 

[137,138] 

Dysmicoccus 

brevipes 

Heterorhabditis amazonensis (NEPET 11 

and IBCD.n40) 

These two isolates reduced over 

80% of the Dysmicoccus 

brevipes population 

[139] 

Continued on the next page 
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Mealybug species Natural Predators Key findings References 

Dysmicoccus 

brevipes 

Metarhizium anisopliae, Beauveria 

bassiana and Lecanicillium lecanii 

These fungi had maximum 

control of pink pineapple 

mealybug and other mealybugs 

[140] 

Planococcoides 

njalensis 

Acerophagus notativentis, Acerophagus 

pallidus, Aenasius abengoroui, Aenasius 

martini, Anagyrus aurantifrons, Anagyrus 

beneficiens, Arhopoides sp., Blepyrus 

saccharicola, Leptomastix bifasciatus, 

Leptomastix dactylopii, Platynapsis 

higginsi, Pseudaphycus sp., Scymnus sp., 

Tetracnemoidea sydneyensis, 

Tropidophryne melvillei 

These predators have higher 

success in the control of 

Planococcoides njalensis 

[141] 

Maconellicoccus 

hirsutus 

Anagyrus kamali Anagyrus kamali fed on more 

than 78 % of Maconellicoccus 

hirsutus reducing their 

population 

[142,143] 

The use of chemicals during biocontrol methods should be regulated. In addition, non-selective 

insecticides tend to kill or neutralize several beneficial insect pollinators. 

4.4. Chemical control 

In recent times, chemical control methods have generated public outcry due to the accumulation 

of chemical residues in plant and food products [144,145] and their negative effects on the 

environment [146,147]. Cocco et al. [82] reported on the harmful levels of imidacloprid and 

chlorpyrifos (active ingredients in the control of several mealybug species) in waterbodies in 

Spain.Similarly, Babar et al. [148] emphasized on the need to regulate the use of profenofos, 

carbosulfan and methidathion during the control of Drosicha mangiferae on citrus farms in Pakistan. 

Mansour et al. [149] proposed in their review paper that the use of spirotetramat in combination with 

other treatments will effectively help reduce the population of Planococcus ficus and Planococcus citri. 

Chemicals used in pest control include acaricides, insecticides, rodenticides, fungicides, larvicides. 

The use of insecticides in the control of mealybugs is not recommended because their outer 

covering, made up of wax, protect them against the insecticides [26]. With time, they develop 

resistance to these chemical insecticides. Phenacoccus solenopsis is reported to show a minimal 

reaction to insecticides that are lethal to other mealybug species [150]. Also, mealybugs hide underneath 

leaves and their large group makes it difficult for the chemicals to have maximum contact [150]. Their 

rapid reproduction cycle is also reported to contribute to their resistivity to insecticides [151]. 

Insecticides containing dinotefuran, imidacloprid, or pyrethroids [26,152], which are active ingredients 

that are effective against crawling mealybugs but have serious irritations on other beneficial insect 

pollinators. Daane et al. [40] confirmed the reduction in the population of Planococcus ficus when 

insecticides with chlorpyrifos active ingredients were applied. 

Alcohol is effective in the control of mealybug. A previous study confirmed the association 

between alcohol application and mealybug mortality. A spray with a 70% concentration of isopropyl 

alcohol killed 70-80% of most mealybug species when applied against them [92].  
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Biopesticides where plant extracts are used to combat mealybugs infestation are also effective 

against mealybugs. Extracts from plants, such as neem, have proven effective against plant pathogens 

and pests [153–156]. According to Abul Monjur Khan et al. [157], 2% of neem oil effectively reduced 

30% of the papaya mealybug when applied. Azadirachtin, a compound in neem trees, slows insect 

metamorphosis and reproduction. the Azadirachtin compound leads to a reduced growth rate and death 

of insects [158]. Neem Kernel water extracts are deadly to young cassava mealybugs [34,35]. 1–2% 

concentration of insecticidal soaps and vegetable oil as biopesticides have successfully controlled 

mealybugs [34,35]. Additives, such as oil, dissolve and break up the thick covering of the mealybug [26].  

Insecticides that disrupt the nervous system of insects, like the organophosphates class of 

insecticides (chlorpyrifos, acephate, dichlorvos and diazinon), are recommended to control 

mealybugs (Table 8). When applied in the right amount, this class of insecticides has been proven to 

eliminate most species of mealybugs [26].  

Table 8. A summary of some chemical controls on mealybug species. 

Mealybug species Chemical Control Key Findings References 

Dysmicoccus 

brevipes 

(Cockerell)/Pineappl

e mealybug 

50% Fenithrothion,50% 

Fenthion,40.8% 

Chlorpyrifos 

After 21 days, the mixture of these 

chemicals resulted in higher mealybug 

mortality after the second dose than the 

other tested chemicals 

[159] 

Dysmicoccus 

brevipes 

Omethoate,48mg of AI 

Phorate per plant 

More than half of the Dysmicoccus brevipes 

population were eliminated 

[160] 

Phenacoccus 

solenopsis 

Acephate, Chlorpyrifos Planococcus solenopsis mealybug was 

reduced by 69% after Acephate and 

Chlorpyrifos as compared to other chemical 

treatments 

[161] 

Phenacoccus 

solenopsis 

Brufozen After 3 days, Brufozen decreased the 

mealybug population by 95% 

[161] 

Phenacoccus 

manihoti 

Diazinon,Phosphamidon, 

Methidathion 

Diazinon, Phosphamidon and Methidathion 

were 12.7,10.8 and 7.3% effective in 

controlling the cassava mealybug as 

compared to the control 

[162] 

Pseudococcuscoccus 

njalensis 

(CR409) 

Bisdimethylamino-fluoro-

phosphine oxide 

CR409 was superior in the control of the 

cocoa mealybug 

[163] 

Planococcus citri 0.075% Zethiol,0.075% 

Nogos 100 EC, 

Bisdimethylamino-fluoro-

phosphine oxide (CR409) 

0.075% Zethiol and 0.075% Nogos 100EC 

completely eliminated Pseudococcus 

citri.CR409 had complete control over 

Planococcus citri 

[164] 

Maconellicoccus 

hirsutus 

Spirotetramat, bifenthrin, 

flypyradifurone, 

fenpropathrin 

In the nymph stage, the fecundity of 

mealybug was highly affected after day 6 

[165] 

Planococcus ficus Chlorpyrifos, Mevinphos Chlorpyrifos, mevinphos had superior 

control as compared to other methods 

[126] 
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5. Conclusions 

This paper reviewed the economic losses caused by mealybugs, mealybug-transmitted plant 

viruses, their mode of transmission, host plants of mealybugs and the control methods of mealybugs. 

The paper also highlighted someeconomic losses of mealybugs. In times of evolving plant viruses, the 

role of mealybugs cannot be underestimated.  

Mealybugs are active in transmitting plant viruses’ genera belonging to the Closteroviridae family. 

Of these genera, Ampeloviruses and Badnaviruses are actively transmitted by mealybug species.  

Due to various environmental pollution problems, chemicals should be reduced or replaced by 

other safe control methods. Therefore, the biological control method of environmentally friendly 

mealybugs should be encouraged. For example, the Anagyrus species are effective against several 

mealybug species as biological control methods. Additionally, the use of plant products with 

insecticidal properties (neem seeds, leaves) to control mealybugs should be well researched. 

Breeding of more mealybug-resistant varieties of plants should be encouraged. Genes that allow 

crop plants to withstand the aggressive feeding of mealybugs must be well studied. The acquisition and 

use of more tolerant varieties will help small-scale farmers who cannot afford expensive control methods. 

Using one control method at a time makes the mealybug species build up resistance in a shorter 

time. In effect, further studies should be conducted on using Integrated Pest Management (IPM) 

strategies in the management of mealybug species. IPM strategies are critical in controlling and 

managing mealybugs in the long term.  
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