The current study tends to introduce the effects of three wet milling procedures and sorghum (Sorghum bicolor L. Moench) phenotype on starch recovery and some physico-chemical properties of starch isolated from grains. It explores the sorghum grains from landraces, cultivated in the Sahara of Algeria, which in fact has a high percentage of total starch with a little percentage of tannin compared to many regions of the world. This study attempts to unveil that the starch recovery, of fifteen starch isolates, ranged between 58.06% and 83.11%, and their total starch and protein contents ranged from 92.01% to 98.75% and 0.35% to 2.34% respectively. The extents kinetic curves of hydrolysis indicates that starch isolates have high susceptibilities for hydrolysis to glucose by glucoamylase from Aspergillus niger, and the degree of hydrolysis ranges from 50.85% to 81.45%. The results demonstrate that the wet milling procedures affect the starch recovery, and protein content and swelling power at 85 ℃ of starch isolates. The effect of grain phenotype appears in moisture content and swelling power at 95 ℃.
Citation: Badreddine Belhadi, Rachid Souilah, Redha Ould-Kiar, Mohamed Yousfi, Djaafar Djabali, Boubekeur Nadjemi. Effects of phenotype and wet milling procedures on the starch isolation from sorghum (Sorghum bicolor L. Moench) grains[J]. AIMS Agriculture and Food, 2021, 6(2): 448-461. doi: 10.3934/agrfood.2021026
The current study tends to introduce the effects of three wet milling procedures and sorghum (Sorghum bicolor L. Moench) phenotype on starch recovery and some physico-chemical properties of starch isolated from grains. It explores the sorghum grains from landraces, cultivated in the Sahara of Algeria, which in fact has a high percentage of total starch with a little percentage of tannin compared to many regions of the world. This study attempts to unveil that the starch recovery, of fifteen starch isolates, ranged between 58.06% and 83.11%, and their total starch and protein contents ranged from 92.01% to 98.75% and 0.35% to 2.34% respectively. The extents kinetic curves of hydrolysis indicates that starch isolates have high susceptibilities for hydrolysis to glucose by glucoamylase from Aspergillus niger, and the degree of hydrolysis ranges from 50.85% to 81.45%. The results demonstrate that the wet milling procedures affect the starch recovery, and protein content and swelling power at 85 ℃ of starch isolates. The effect of grain phenotype appears in moisture content and swelling power at 95 ℃.
[1] | Beta T, Obilana AB, Corke H (2001) Genetic diversity in properties of starch from Zimbabwean sorghum landraces. Cereal Chem 78: 583-589. doi: 10.1094/CCHEM.2001.78.5.583 |
[2] | Ratnavathi CV, Komala VV (2016) Sorghum grain quality, In: Ratnavathi CV, Patil JV, Chavan UD. (Eds), Sorghum Biochemistry: An Industrial Perspective, London: Academic Press, 1-61. |
[3] | Haros CM, Wronkowska M (2017) Pseudocereal dry and wet milling: processes, products and applications, In: Haros CM, Schoenlechner R. (Eds), Pseudocereals: Chemistry and Technology, West Sussex: John Wiley and Sons, Ltd, 140-162. |
[4] | Nghiem NP, Montanti J, Johnston DB (2016) Sorghum as a renewable feedstock for production of fuels and industrial chemicals. AIMS Bioengineering 3: 75-91. doi: 10.3934/bioeng.2016.1.75 |
[5] | FAO (1995) Le sorgho et le mil dans la nutrition humaine, Alimentation et nutrition, n27, Collection FAO, Rome. |
[6] | Munck L, (1995) New milling technologies and products: whole plant utilization by milling and separation of the botanical and chemical components, In: Dendy AV, Sorghum and Millets: Chemistry and Technology, St. Paul: American Association of Cereal Chemists, 223-281. |
[7] | Satin M, (2002) Functional properties of starches. Food and Agriculture Organization of the United Nations. Available from: http://www.fao.org/ag/ags/agsi/starchh41.htm. consulted 22.10.08. |
[8] | Estrada-León RJ, Moo-Huchin VM, Ríos-Soberanis CR, et al. (2016) The effect of isolation method on properties of parota (Enterolobium cyclocarpum) starch. Food Hydrocolloids 57: 1-9. doi: 10.1016/j.foodhyd.2016.01.008 |
[9] | Souilah R, Boudries N, Djabali D, et al. (2013) Kinetic study of enzymatic hydrolysis of starch isolated from sorghum grain cultivars by various methods. J Food Sci Technol 52: 451-457. doi: 10.1007/s13197-013-0977-z |
[10] | Belhadi B, Djabali D, Souilah R, et al. (2013) Three small-scale laboratory steeping and wet-milling procedures for isolation of starch from sorghum grains cultivated in Sahara of Algeria. Food Bioprod Process 91: 225-232. doi: 10.1016/j.fbp.2012.09.008 |
[11] | Boudries N, Belhaneche N, Nadjemi B, et al. (2009) Physicochemical and functional properties of starches from sorghum cultivated in the Sahara of Algeria. Carbohyd Polym 78: 475-480. doi: 10.1016/j.carbpol.2009.05.010 |
[12] | Driessen P, Deckers J, Spaargaren O, et al. (2001) Lecture notes on the major soils of the world, Food and Agriculture Organization of the United Nations FAO, Rome: World Soil Resources Reports, 94,191. |
[13] | IBPGR et ICRISAT (1993) Descripteurs du mil penicillaire[Pennisetum glaucum (L.) R. Br.], Conseil international des ressources phytogenetiques, Rome, Italie; Institut international de recherche sur les cultures des zones tropicales semi-arides, Patancheru, Inde. |
[14] | Jain RK, Bal S (1997) Properties of pearl millet. J Agric Eng Res 66: 85-91. doi: 10.1006/jaer.1996.0119 |
[15] | Waniska RD, Hugo LF, Rooney LW (1992) Practical methods to determine presence of tannins in sorghum. J Appl Poultry Res 1: 122-128. doi: 10.1093/japr/1.1.122 |
[16] | Taylor JRN, Taylor J (2008) Five simple methods for the determination of sorghum grain end-use quality (with adaptations for those without laboratory facilities), INTSORMIL Scientific Publications, 17. |
[17] | AACC (2000) Approved methods of the American association of cereal chemists, 10th edition, Method 44-15A, St Paul (MN), AACC, USA. |
[18] | Goñi I, Garcia-Alonso A, Saura-Calixto F (1997) A starch hydrolysis procedure to estimate glycemic index. Nutr Res 17: 427-437. doi: 10.1016/S0271-5317(97)00010-9 |
[19] | Waterman PG, Mole S (1994) Extraction and chemical quantification, Analysis of phenolic plant metabolites, London: Blackwell scientific publications, 66-103. |
[20] | Price ML, Van Scoyoc S, Butler LG, et al. (1978) A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem 26: 1214-1218. doi: 10.1021/jf60219a031 |
[21] | Pérez OE, Haros M, Suarez C, et al. (2001) Corn steeping: influence of time and lactic acid on isolation and thermal properties of starch. J Food Eng 48: 251-256. doi: 10.1016/S0260-8774(00)00165-5 |
[22] | Yang P, Seib PA, et al. (1996) Wet milling of grain sorghum using a short steeping period. Cereal Chem 73: 751-755. |
[23] | Pérez-Sira EE, Amaiz ML (2004) A laboratory scale method for isolation of starch from pigmented sorghum. J Food Eng 64: 515-519. doi: 10.1016/j.jfoodeng.2003.11.019 |
[24] | Li JY, Yeh AI, et al. (2001) Relationships between thermal, rheological characteristics and swelling power for various starches. J Food Eng 50: 141-148. doi: 10.1016/S0260-8774(00)00236-3 |
[25] | Murty DS, Kumar KA (1995) Traditional uses of sorghum and millets, In: Dendy DAV. (Eds), Sorghum and Millets: Chemistry and Technology, St. Paul: American Association of Cereal Chemists, 185-221. |
[26] | Gomez MI, Obilana AB, Martin DF, et al. (1997) Manual of laboratory procedures for quality evaluation of sorghum and pearl millet, International crops research institute for the semi-arid tropics, Technical Manual no2, Andhra Pradesh, India 116. |
[27] | Serna-Saldivar S, Rooney LW (1995) Structure and chemistry of sorghum and millets, In: Dendy DAV. (Eds), Sorghum and Millets: Chemistry and Technology, St. Paul: American Association of Cereal Chemists, 69-111. |
[28] | Mwithiga G, Sifuna MM (2006) Effect of moisture content on the physical properties of three varieties of sorghum seeds. J Food Eng 75: 480-486. doi: 10.1016/j.jfoodeng.2005.04.053 |
[29] | Buffo RA, Weller CL, Parkhurst AM (1998) Wet-milling factors of sorghum and relationship to grain quality. J Cereal Sci 27: 327-334. doi: 10.1006/jcrs.1997.0171 |
[30] | ICC (2008) Estimation of sorghum grain endosperm texture, International association for cereal science and technology, ICC Standard 176, Vienna. |
[31] | Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65: 1199-1221. doi: 10.1016/j.phytochem.2004.04.001 |
[32] | Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44: 236-251. doi: 10.1016/j.jcs.2006.06.007 |
[33] | Rooney LW, Miller FR (1982) Variation in the structure and kernel characteristics of sorghum, In: Rooney LW, Murty DS, Mertin JV. (Eds), Proceedings of the international symposium on sorghum grain quality. Patancheru, A.P., India. |
[34] | Souilah R, Djabali D, Belhadi B, et al. (2014) In vitro starch digestion in sorghum flour from Algerian cultivars. Food Sci Nutr 2: 251-259. doi: 10.1002/fsn3.104 |
[35] | Xie JX, Sieb PA (2002) Laboratory wet-milling of grain sorghum with abbreviated steeping to give two products. Starch 54: 169-178. doi: 10.1002/1521-379X(200205)54:5<169::AID-STAR169>3.0.CO;2-7 |
[36] | Wang FC, Chung DS, Seib PA, et al. (2000) Optimum steeping process for wet milling of sorghum. Cereal Chem 77: 478-483. doi: 10.1094/CCHEM.2000.77.4.478 |
[37] | Higiro J, Flores RA, Seib PA (2003) Starch production from sorghum grits. J Cereal Sci 37: 101-109. doi: 10.1006/jcrs.2002.0480 |
[38] | Wang L, Seib PA (1996) Australian salt noodle flours and their starches compared to U.S. wheat flours and their starches. Cereal Chem 73: 167-175. |
[39] | Shandera DL, Jackson DS (1996) Effect of corn wet-milling conditions (sulfur dioxide, lactic acid, and steeping temperature) on starch functionality. Cereal Chem 73: 632-637. |
[40] | Brandemarte EA, Franco CML, Lopes-Filho JF (2004) Physicochemical properties of maize starch obtained from intermittent milling and dynamic steeping (IMDS) under various steeping conditions. Cereal Chem 81: 369-376. doi: 10.1094/CCHEM.2004.81.3.369 |
[41] | Bello AB, Waniska RD, Gomez MH, et al. (1995) Starch solubilization and retrogradation during preparation of Tô (a food gel) from different sorghums. Cereal Chem 72: 80-84. |
[42] | Ring SM, Gee MJ, William M, et al. (1988) Resistant starch: Its chemical form in foodstuffs and effect on digestibility in vitro. Food Chem 28: 97-109. doi: 10.1016/0308-8146(88)90139-2 |