Exposure to certain acute stressors results in an immediate behavioral and physiological response to these situations during a significant period of days. The goal of the current study is to evaluate the long-lasting effect of single exposure of restraint stress among mice after 0 h, 24 h, 48 h and 72 h. Five groups of mice are under experiment: a control group and four groups exposed to one session of restraint stress. All these groups have been studied for behavioral tests in order to evaluate their memories. This is done through a Y-labyrinth and an object recognition test, and anxiety by using open field device. In the second part of the study, enzymatic assays (concerning catalase, glutathione s transferase, glutathione peroxidase and superoxide dismutase) are used to evaluate oxidative stress. The enzymatic activity of the antioxidant system is assessed in five brain structures, including the cerebellum, olfactory bulb, spinal bulb, hypothalamus, and hippocampus.
The obtained results show that acute restraint stress leads to a decrease in memory function and to the development of an anxious state; concomitant to an increase of locomotor activity afterword. It causes disturbance of antioxidant balance in the brain by developing a state of oxidative stress. Indeed, restraint stress causes a change in anti-oxidant stress enzymatic activity in the brain, notably in post-stress period. In conclusion, acute restraint stress is responsible for altering cognitive functions, especially memory, and the development of anxious behavior, which could be a result of the generation of oxidative stress; effects that are persistent over an important period after the cessation of stress.
Citation: Nouhaila Chaoui, Hammou Anarghou, Meriem Laaroussi, Oumaima Essaidi, Mohamed Najimi, Fatiha Chigr. Long lasting effect of acute restraint stress on behavior and brain anti-oxidative status[J]. AIMS Neuroscience, 2022, 9(1): 57-75. doi: 10.3934/Neuroscience.2022005
[1] | Yudan Ma, Ming Zhao, Yunfei Du . Impact of the strong Allee effect in a predator-prey model. AIMS Mathematics, 2022, 7(9): 16296-16314. doi: 10.3934/math.2022890 |
[2] | Chaoxiong Du, Wentao Huang . Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model. AIMS Mathematics, 2023, 8(11): 26715-26730. doi: 10.3934/math.20231367 |
[3] | Yougang Wang, Anwar Zeb, Ranjit Kumar Upadhyay, A Pratap . A delayed synthetic drug transmission model with two stages of addiction and Holling Type-II functional response. AIMS Mathematics, 2021, 6(1): 1-22. doi: 10.3934/math.2021001 |
[4] | Jawdat Alebraheem . Asymptotic stability of deterministic and stochastic prey-predator models with prey herd immigration. AIMS Mathematics, 2025, 10(3): 4620-4640. doi: 10.3934/math.2025214 |
[5] | Komal Bansal, Trilok Mathur, Narinderjit Singh Sawaran Singh, Shivi Agarwal . Analysis of illegal drug transmission model using fractional delay differential equations. AIMS Mathematics, 2022, 7(10): 18173-18193. doi: 10.3934/math.20221000 |
[6] | Binfeng Xie, Na Zhang . Influence of fear effect on a Holling type III prey-predator system with the prey refuge. AIMS Mathematics, 2022, 7(2): 1811-1830. doi: 10.3934/math.2022104 |
[7] | Sahabuddin Sarwardi, Hasanur Mollah, Aeshah A. Raezah, Fahad Al Basir . Direction and stability of Hopf bifurcation in an eco-epidemic model with disease in prey and predator gestation delay using Crowley-Martin functional response. AIMS Mathematics, 2024, 9(10): 27930-27954. doi: 10.3934/math.20241356 |
[8] | Ruizhi Yang, Dan Jin, Wenlong Wang . A diffusive predator-prey model with generalist predator and time delay. AIMS Mathematics, 2022, 7(3): 4574-4591. doi: 10.3934/math.2022255 |
[9] | Yingyan Zhao, Changjin Xu, Yiya Xu, Jinting Lin, Yicheng Pang, Zixin Liu, Jianwei Shen . Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Mathematics, 2024, 9(11): 29883-29915. doi: 10.3934/math.20241445 |
[10] | Ming Wu, Hongxing Yao . Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins. AIMS Mathematics, 2023, 8(9): 21943-21967. doi: 10.3934/math.20231119 |
Exposure to certain acute stressors results in an immediate behavioral and physiological response to these situations during a significant period of days. The goal of the current study is to evaluate the long-lasting effect of single exposure of restraint stress among mice after 0 h, 24 h, 48 h and 72 h. Five groups of mice are under experiment: a control group and four groups exposed to one session of restraint stress. All these groups have been studied for behavioral tests in order to evaluate their memories. This is done through a Y-labyrinth and an object recognition test, and anxiety by using open field device. In the second part of the study, enzymatic assays (concerning catalase, glutathione s transferase, glutathione peroxidase and superoxide dismutase) are used to evaluate oxidative stress. The enzymatic activity of the antioxidant system is assessed in five brain structures, including the cerebellum, olfactory bulb, spinal bulb, hypothalamus, and hippocampus.
The obtained results show that acute restraint stress leads to a decrease in memory function and to the development of an anxious state; concomitant to an increase of locomotor activity afterword. It causes disturbance of antioxidant balance in the brain by developing a state of oxidative stress. Indeed, restraint stress causes a change in anti-oxidant stress enzymatic activity in the brain, notably in post-stress period. In conclusion, acute restraint stress is responsible for altering cognitive functions, especially memory, and the development of anxious behavior, which could be a result of the generation of oxidative stress; effects that are persistent over an important period after the cessation of stress.
In the last two decades, the fractional difference equations have recently received considerable attention in many fields of science and engineering, see [1,2,3,4] and the references therein. On the other hand, the q-difference equations have numerous applications in diverse fields in recent years and has gained intensive interest [5,6,7,8,9]. It is well know that the q-fractional difference equations can be used as a bridge between fractional difference equations and q-difference equations, many papers have been published on this research direction, see [10,11,12,13,14,15] for examples. We recommend the monograph [16] and the papers cited therein.
For 0<q<1, we define the time scale Tq={qn:n∈Z}∪{0}, where Z is the set of integers. For a=qn0 and n0∈Z, we denote Ta=[a,∞)q={q−ia:i=0,1,2,...}.
In [17], Abdeljawad et.al generalized the q-fractional Gronwall-type inequality in [18], they obtained the following q-fractional Gronwall-type inequality.
Theorem 1.1 ([17]). Let α>0, u and ν be nonnegative functions and w(t) be nonnegative and nondecreasing function for t∈[a,∞)q such that w(t)≤M where M is a constant. If
u(t)≤ν(t)+w(t)q∇−αau(t), |
then
u(t)≤ν(t)+∞∑k=1(w(t)Γq(α))kq∇−kαaν(t). | (1.1) |
Based on the above result, Abdeljawad et al. investigated the following nonlinear delay q-fractional difference system:
{qCαax(t)=A0x(t)+A1x(τt)+f(t,x(t),x(τt)),t∈[a,∞)q,x(t)=ϕ(t),t∈Iτ, | (1.2) |
where qCαa means the Caputo fractional difference of order α∈(0,1), ˉIτ={τa,q−1τa,q−2τa,...,a}, τ=qd∈Tq with d∈N0={0,1,2,...}.
Remark 1.1. The domain of t in (1.2) is inaccurate, please see the reference [19].
In [20], Sheng and Jiang gave the following extended form of the fractional Gronwall inequality :
Theorem 1.2 ([20]). Suppose α>0, β>0, a(t) is a nonnegative function locally integrable on [0,T), ˜g(t), and ˉg(t) are nonnegative, nondecreasing, continuous functions defined on [0,T); ˜g(t)≤˜M, ˉg(t)≤ˉM, where ˜M and ˉM are constants. Suppose x(t) is a nonnegative and locally integrable on [0,T) with
x(t)≤a(t)+˜g(t)∫t0(t−s)α−1x(s)ds+ˉg(t)∫t0(t−s)β−1x(s)ds,t∈[0,T). |
Then
x(t)≤a(t)+∫t0∞∑n=1[g(t)]nn∑k=0Ckn[Γ(α)]n−k[Γ(β)]kΓ[(n−k)α+kβ](t−s)(n−k)α+kβ−1a(s)ds, | (1.3) |
where t∈[0,T), g(t)=˜g(t)+ˉg(t) and Ckn=n(n−1)⋯(n−k+1)k!.
Corollary 1.3 [20] Under the hypothesis of Theorem 1.2, let a(t) be a nondecreasing function on [0,T). Then
x(t)≤a(t)Eγ[g(t)(Γ(α)tα+Γ(β)tβ)], | (1.4) |
where γ=min{α,β}, Eγ is the Mittag-Leffler function defined by Eγ(z)=∞∑k=0zkΓ(kγ+1).
Finite-time stability is a more practical method which is much valuable to analyze the transient behavior of nature of a system within a finite interval of time. It has been widely studied of integer differential systems. In recent decades, the finite-time stability analysis of fractional differential systems has received considerable attention, for instance [21,22,23,24,25] and the references therein. In [26], Du and Jia studied the finite-time stability of a class of nonlinear fractional delay difference systems by using a new discrete Gronwall inequality and Jensen inequality. Recently, Du and Jia in [27] obtained a criterion on finite time stability of fractional delay difference system with constant coefficients by virtue of a discrete delayed Mittag-Leffler matrix function approach. In [28], Ma and Sun investigated the finite-time stability of a class of fractional q-difference equations with time-delay by utilizing the proposed delayed q-Mittag-Leffler type matrix and generalized q-Gronwall inequality, respectively. Based on the generalized fractional (q,h)-Gronwall inequality, Du and Jia in [19] derived the finite-time stability criterion of nonlinear fractional delay (q,h)-difference systems.
Motivated by the above works, we will extend the q-fractional Gronwall-type inequality (Theorem 1.1) to the spreading form of the q-fractional Gronwall inequality. As applications, we consider the existence and uniqueness of the solution of the following nonlinear delay q-fractional difference damped system :
{qCαax(t)−A0qCβax(t)=B0x(t)+B1x(τt)+f(t,x(t),x(τt)),t∈[a,b)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ, | (1.5) |
where [a,b)q=[a,b)∩Ta, b∈Ta, Iτ={qτa,τa,q−1τa,q−2τa,...,a}, τ=qd∈Tq with d∈N0={0,1,2,...}, qCαa and qCβa mean the Caputo fractional difference of order α∈(1,2) and order β∈(0,1), respectively, and the constant matrices A0, B0 and B1 are of appropriate dimensions. Moreover, a novel criterion of finite-time stability criterion of (1.5) is established. We generalized the main results of [17] in this paper.
The organization of this paper is given as follows: In Section 2, we give some notations, definitions and preliminaries. Section 3 is devoted to proving a spreading form of the q-fractional Gronwall inequality. In Section 4, the existence and uniqueness of the solution of system (1.5) are given and proved, and the finite-time stability theorem of nonlinear delay q-fractional difference damped system is obtained. In Section 5, an example is given to illustrate our theoretical result. Finally, the paper is concluded in Section 6.
In this section, we provided some basic definitions and lemmas which are used in the sequel.
Let f:Tq→R (q∈(0,1)), the nabla q-derivative of f is defined by Thabet et al. as follows:
∇qf(t)=f(t)−f(qt)(1−q)t,t∈Tq∖{0}, |
and q-derivatives of higher order by
∇nqf(t)=∇q(∇n−1qf)(t),n∈N. |
The nabla q-integral of f has the following form
∫t0f(s)∇qs=(1−q)t∞∑i=0qif(tqi) | (2.1) |
and for 0≤a∈Tq
∫taf(s)∇qs=∫t0f(s)∇qs−∫a0f(s)∇qs. | (2.2) |
The definition of the q-factorial function for a nonpositive integer α is given by
(t−s)αq=tα∞∏i=01−stqi1−stqi+α. | (2.3) |
For a function f:Tq→R, the left q-fractional integral q∇−αa of order α≠0,−1,−2,... and starting at 0<a∈Tq is defined by
q∇−αaf(t)=1Γq(α)∫ta(t−qs)α−1qf(s)∇qs, | (2.4) |
where
Γq(α+1)=1−qα1−qΓq(α),Γq(1)=1, α>0. | (2.5) |
The left q-fractional derivative q∇βa of order β>0 and starting at 0<a∈Tq is defined by
q∇βaf(t)=(q∇maq∇−(m−β)af)(t), | (2.6) |
where m is the smallest integer greater or equal than β.
Definition 2.1 ([11]). Let 0<α∉N and f:Ta→R. Then the Caputo left q-fractional derivative of order α of a function f is defined by
qCαaf(t):=q∇−(n−α)a∇nqf(t)=1Γq(n−α)∫ta(t−qs)n−α−1q∇nqf(s)∇qs,t∈Ta, | (2.7) |
where n=[α]+1.
Let us now list some properties which are needed to obtain our results.
Lemma 2.1 ([29]). Let α,β>0 and f be a function defined on (0,b). Then the following formulas hold:
(q∇−βaq∇−αaf)(t)=q∇−(α+β)af(t),0<a<t<b, |
(q∇αaq∇−αaf)(t)=f(t),0<a<t<b. |
Lemma 2.2 ([11]). Let α>0 and f be defined in a suitable domain. Thus
q∇−αaqCαaf(t)=f(t)−n−1∑k=0(t−a)kqΓq(k+1)∇kqf(a) | (2.8) |
and if 0<α≤1 we have
q∇−αaqCαaf(t)=f(t)−f(a). | (2.9) |
The following identity plays a crucial role in solving the linear q-fractional equations:
q∇−αa(x−a)μq=Γq(μ+1)Γq(α+μ+1)(x−a)μ+αq,0<a<x<b, | (2.10) |
where α∈R+ and μ∈(−1,∞).
Apply q∇αa on both sides of (2.10), by virtue of Lemma 2.1, one can obtain
q∇αa(x−a)μ+αq=Γq(α+μ+1)Γq(μ+1)(x−a)μq,0<a<x<b, | (2.11) |
where α∈R+ and μ∈(−1,∞).
By Theorem 7 in [11], for any 0<β<1, one has
(qCβaf)(t)=(q∇βaf)(t)−(t−a)−βqΓq(1−β)f(a). | (2.12) |
For any 1<α≤2, by (2.8), one has
q∇−αaqCαaf(t)=f(t)−f(a)−(t−a)1q∇qf(a). | (2.13) |
Apply q∇αa on both sides of (2.13), by Lemma 2.1 and (2.11), we get
(qCαaf)(t)=(q∇αaf)(t)−f(a)q∇αa(t−a)0q−f(a)q∇αa(t−a)1q=(q∇αaf)(t)−(t−a)−αqΓq(1−α)f(a)−(t−a)1−αqΓq(2−α)∇qf(a). | (2.14) |
In this section, we give and prove the following spreading form of generalized q-fractional Gronwall inequality, which extend a q-fractional Gronwall inequality in Theorem 1.1.
Theorem 3.1. Let α>0 and β>0. Assume that u(t) and g(t) are nonnegative functions for t∈[a,T)q. Let wi(t) (i=1,2) be nonnegative and nondecreasing functions for t∈[a,T)q with wi(t)≤Mi, where Mi are positive constants (i=1,2) and
[Γq(α)Tα(1−q)α+Γq(β)Tβ(1−q)β]max{M1Γq(α), M2Γq(β)}<1. | (3.1) |
If
u(t)≤g(t)+w1(t)q∇−αau(t)+w2(t)q∇−βau(t),t∈[a,T)q, | (3.2) |
then
u(t)≤g(t)+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)ag(t),t∈[a,T)q, | (3.3) |
where w(t)=max{w1(t)Γq(α), w2(t)Γq(β)}.
Proof. Define the operator
Au(t)=w(t)∫ta[(t−qs)α−1q+(t−qs)β−1q]u(s)∇qs,t∈[a,T)q. | (3.4) |
According to (3.2), one has
u(t)≤g(t)+Au(t). | (3.5) |
By (3.5) and the monotonicity of the operator A, we obtain
u(t)≤n−1∑k=0Akg(t)+Anu(t),t∈[a,T)q. | (3.6) |
In the following, we will prove that
Anu(t)≤w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)au(t),t∈[a,T)q, | (3.7) |
and
limn→∞Anu(t)=0. | (3.8) |
Obviously, the inequality (3.7) holds for n=1. Assume that (3.7) is true for n=m, that is
Amu(t)≤w(t)mm∑k=0CkmΓq(α)m−kΓq(β)kq∇−((m−k)α+kβ)au(t)=w(t)mm∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)∫ta(t−qs)(m−k)α+kβ−1qu(s)∇qs,t∈[a,T)q. | (3.9) |
When n=m+1, by using (3.4), (3.9), (2.10) and the nondecreasing of function w(t), we get
Am+1u(t)=A(Amu(t))
≤w(t)∫ta[(t−qs)α−1q+(t−qs)β−1q]
×(w(s)mm∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr)∇qs
≤w(t)m+1∫tam∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[(t−qs)α−1q+(t−qs)β−1q]
×[∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr]∇qs
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[∫ta(t−qs)α−1q∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs
+∫ta(t−qs)β−1q∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs]
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[∫ta∫tqr(t−qs)α−1q(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs
+∫ta∫tqr(t−qs)β−1q(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs]
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)∫ta[1Γq(α)∫tqr(t−qs)α−1q(s−qr)(m−k)α+kβ−1q∇qs]u(r)∇qr
+Γq(β)∫ta[1Γq(β)∫tqr(t−qs)β−1q(s−qr)(m−k)α+kβ−1q∇qs]u(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)∫taq∇−αqr(t−qr)(m−k)α+kβ−1qu(r)∇qr
+Γq(β)∫taq∇−βqr(t−qr)(m−k)α+kβ−1qu(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)Γq((m−k)α+kβ)Γq((m−k+1)α+kβ)∫ta(t−qr)(m−k+1)α+kβ−1qu(r)∇qr
+Γq(β)Γq((m−k)α+kβ)Γq((m−k)α+(k+1)β)∫ta(t−qr)(m−k)α+(k+1)β−1qu(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)k
×(Γq(α)q∇−((m−k+1)α+kβ)au(t)+Γq(β)q∇−((m−k)α+(k+1)β)au(t))
=w(t)m+1m∑k=0CkmΓq(α)m+1−kΓq(β)kq∇−((m−k+1)α+kβ)au(t)
+w(t)m+1m+1∑k=1Ck−1mΓq(α)m+1−kΓq(β)kq∇−((m+1−k)α+kβ)au(t)
=w(t)m+1[C0mΓq(α)m+1q∇−((m+1)α)au(t)
+m∑k=1(Ckm+Ck−1m)Γq(α)m+1−kΓq(β)kq∇−((m−k+1)α+kβ)au(t)
+CmmΓq(β)m+1q∇−((m+1)β)au(t)]
=w(t)m+1m+1∑k=0Ckm+1Γq(α)m+1−kΓq(β)kq∇−((m+1−k)α+kβ)au(t).
Thus, (3.7) is proved.
Using Stirling's formula of the q-gamma function [30], yields that
Γq(x)=[2]1/2qΓq2(1/2)(1−q)12−xeθqx(1−q)−qx,0<θ<1, |
that is
Γq(x)∼D(1−q)12−x,x→∞, | (3.10) |
where D=[2]1/2qΓq2(1/2). Moreover, if t>a>0 and γ>0 (γ is not a positive integer), then 1−atqj<1−atqγ+j for each j=0,1,..., and
(t−a)γq=tγ∞∏j=01−atqj1−atqγ+j<tγ. | (3.11) |
By w1(t)<M1 and w2(t)<M2, one has that w(t)<max{M1Γq(α), M2Γq(β)}:=M. Applying the first mean value theorem for definite integrals [31], (3.10) and (3.11), there exists a ξ∈[a,t]q such that
limn→∞Anu(t)≤limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ)∫ta(t−qr)(n−k)α+kβ−1q∇qs=limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq≤limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)t(n−k)α+kβ=limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kD(1−q)12−((n−k)α+kβ+1)t(n−k)α+kβ=limn→∞u(ξ)√1−qDn∑k=0MnCkn[Γq(α)tα(1−q)α]n−k[Γq(β)tβ(1−q)β]k=limn→∞u(ξ)√1−qD[M(Γq(α)(1−q)αtα+Γq(β)(1−q)βtβ)]n. |
From (3.1), for each t∈[a,T)q, we have
[M(Γq(α)(1−q)αtα+Γq(β)(1−q)βtβ)]n→0,as n→∞. |
Thus, Anu(t)→0 as n→∞. Let n→∞ in (3.6), by (3.8) we get
u(t)≤g(t)+∞∑k=1Akg(t). | (3.12) |
From (3.7) and (3.12), we obtain (3.3). This completes the proof.
Corollary 3.2. Under the hypothesis of Theorem 3.1, let g(t) be a nondecreasing function on t∈[a,T)q. Then
u(t)≤g(t)∞∑n=0w(t)nn∑k=0CknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq | (3.13) |
Proof. By (3.3), (2.10) and the assumption that g(t) is nondecreasing function for t∈[a,T)q, we have
u(t)≤g(t)[1+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)a1]=g(t)[1+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)k1Γq((n−k)α+kβ+1)(t−a)(n−k)α+kβq]=g(t)∞∑n=0w(t)nn∑k=0CknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq. |
Throughout this paper, we make the following assumptions:
(H1) f∈D(Tq×Rn×Rn,Rn) is a Lipschitz-type function. That is, for any x,y:Tτa→Rn, there exists a positive constant L>0 such that
‖f(t,y(t),y(τt))−f(t,x(t),x(τt))‖≤L(‖y(t)−x(t)‖+‖y(τt)−x(τt)‖), | (4.1) |
for t∈[a,T)q.
(H2)
f(t,0,0)=[0,0,...,0]⏟nT. | (4.2) |
(H3)
[Γq(α)Tα(1−q)α+Γq(α−β)Tα−β(1−q)α−β]max{‖B0‖+‖B1‖+2LΓq(α), ‖A0‖Γq(α−β)}<1. | (4.3) |
Definition 4.1. The system (1.5) is finite-time stable w.r.t.{δ,ϵ,Te}, with δ<ϵ, if and only if max{‖ϕ‖,‖ψ‖}<δ implies ‖x(t)‖<ϵ, ∀t∈[a,Te]q=[a,Te]∩[a,T)q.
Theorem 4.1. Assume that (H1) and (H3) hold. Then the problem (1.5) has a unique solution.
Proof. First we have to prove that x:Tτa→Rm is a solution of system (1.5) if and only if
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs,t∈[a,T)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ. | (4.4) |
For t∈Iτ, it is clear that x(t)=ϕ(t) with ∇qx(t)=ψ(t) is the solution of (1.5). For t∈[a,T)q, we apply q∇αa on both sides of (4.4) to obtain
q∇αax(t)=ϕ(a)(t−a)−αqΓq(1−α)+ψ(a)(t−a)1−αqΓq(2−α)−ϕ(a)A0(t−a)−βqΓq(1−β)+A0q∇βax(t)+B0x(t)+B1x(τt)+f(t,x(t),x(τt)), | (4.5) |
where (q∇αaq∇−αax)(t)=x(t) and (q∇αaq∇−(α−β)ax)(t)=q∇βax(t) (by Lemma 2.1) have been used. By using (2.12) and (2.14), we get
qCαax(t)−A0qCβax(t)=B0x(t)+B1x(τt)+f(t,x(t),x(τt)),t∈[a,T)q. |
Conversely, from system (1.5), we can see that x(t)=ϕ(t) and ∇qx(t)=ψ(t) for t∈Iτ. For t∈[a,T)q, we apply q∇−αa on both sides of (1.5) to get
q∇−αa[qCαax(t)−A0qCβax(t)]=1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs. |
According to Lemma 2.2, we obtain
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs,t∈[a,T)q. |
Secondly, we will prove the uniqueness of solution to system (1.5). Let x and y be two solutions of system (1.5). Denote z by z(t)=x(t)−y(t). Obviously, z(t)=0 for t∈Iτ, which implies that system (1.5) has a unique solution for t∈Iτ.
For t∈[a,T)q, one has
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+B1z(τs)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs. | (4.6) |
If t∈Jτ={a,q−1a,...,τ−1a}, then τt∈Iτ and z(τt)=0. Hence,
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs, |
which implies that
‖z(t)‖≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+‖f(s,x(s),x(τs))−f(s,y(s),y(τs))‖]∇qs≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+L(‖z(s)‖+‖z(τs)‖)]∇qs(by (H1))=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1q‖z(s)‖∇qs. | (4.7) |
By applying Corollary 3.2 and (H3), we get
‖z(t)‖≤0⋅∞∑n=0wn1n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q=0, | (4.8) |
where w1=max{‖A0‖Γ(α−β),‖B0‖+LΓ(α)}. This implies x(t)=y(t) for t∈Jτ.
For t∈[τ−1a,T)q, we obtain
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs+1Γq(α)∫ta(t−qs)α−1qB1z(τs)∇qs. | (4.9) |
Therefore,
‖z(t)‖=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+‖f(s,x(s),x(τs))−f(s,y(s),y(τs))‖]∇qs+1Γq(α)∫ta(t−qs)α−1q‖B1‖‖z(τs)‖∇qs≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1q‖z(s)‖∇qs+‖B1‖+LΓq(α)∫ta(t−qs)α−1q‖z(τs)‖∇qs. | (4.10) |
Let z∗(t)=maxθ∈[a,t]q{‖z(θ)‖,‖z(τθ)‖} for t∈[τ−1a,T)q, where [a,t]q=[a,t]∩Ta, it is obvious that z∗(t) is a increasing function. From (4.10), we obtain that
z∗(t)≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qz∗(s)∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs+‖B1‖+LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qz∗(s)∇qs+‖B0‖+‖B1‖+2LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs. | (4.11) |
By applying Corollary 3.2 and (H3) again, we get
‖z(t)‖≤z∗(t)≤0⋅∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q=0, |
where w2=max{‖A0‖Γ(α−β),‖B0‖+‖B1‖+2LΓ(α)}. Thus, we end up with x(t)=y(t) for t∈[τ−1a,T)q. The proof is completed.
Theorem 4.2. Assume that the conditions (H1), (H2) and (H3) hold. Then the system (1.5) is finite-time stable if the following condition is satisfied:
(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q<εδ, | (4.12) |
where w2=max{‖B0‖+‖B1‖+2LΓq(α),‖A0‖Γq(α−β)}.
Proof. Applying left q-fractional integral on both sides of (1.5), we obtain
q∇−αa(qCαax(t))−A0q∇−αa(qCβax(t))=qΔ−αa(B0x(t)+B1x(τt)+f(t,x(t),x(τt))). | (4.13) |
By (4.12) and utilizing Lemma 2.2 we have
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs. |
Thus, by (H1) and (H2), we get
‖x(t)‖≤‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖x(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖x(s)‖+‖B1‖‖x(τs)‖+‖f(s,x(s),x(τs))‖]∇qs≤‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖x(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[(‖B0‖+L)‖x(s)‖+(‖B1‖+L)‖x(τs)‖]∇qs. | (4.14) |
Let g(t)=‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1), then g is a nondecreasing function.
Set ˉx(t)=maxθ∈[a,t]q{‖x(θ)‖,‖x(τθ)‖}, then by (4.14) we get
ˉx(t)≤g(t)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qˉx(s)∇qs+‖B0‖+‖B1‖+2LΓq(α)∫ta(t−qs)α−1qˉx(s)∇qs=g(t)+(‖B0‖+‖B1‖+2L)q∇−αaˉx(t)+‖A0‖q∇−(α−β)aˉx(t). | (4.15) |
Applying the result of Corollary 3.2, we have
‖x(t)‖≤ˉx(t)≤g(t)∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q≤δ(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q<ε. | (4.16) |
Therefore, the system (1.5) is finite-time stable. The proof is completed.
If x∈Rn, then ‖x‖=∑ni=1|xi|. If A∈Rn×n, then the induced norm ‖⋅‖ is defined as ‖A‖=max1≤j≤n∑ni=1|aij|.
Example 5.1. Consider the nonlinear delay q-fractional differential difference system
{qC1.8ax(t)−(00.620.560)qC0.8ax(t)=(00.080.1090)x(t)+(0.15000.12)x(τt)+f(t,x(t),x(τt)),t∈[a,T)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ, | (5.1) |
where α=1.8, β=0.8, q=0.6, a=q5=0.65, T=q−1=0.6−1, τ=q3=0.63, x(t)=[x1(t),x2(t)]T∈R2,
f(t,x(t),x(τt))=14[sinx1(t),sinx2(τt)]T−15[arctanx1(τt),arctanx2(τt)]T, |
and
ϕ(t)=[0.05,0.035]T,ψ(t)=[0.04,0.045]T,t∈Iτ={0.69,0.68,0.67,0.66,0.65}. |
Obviously, ‖ϕ‖=‖ψ‖=0.0085<0.1=δ, ϵ=1. We can see that f satisfies conditions (H1) (L=14) and (H2). We can calculate ‖A0‖=0.62, ‖B0‖=0.109, ‖B1‖=0.15.
When T=0.6−1, it is easy to check that
[Γq(α)Tα(1−q)α+Γq(α−β)Tα−β(1−q)α−β]max{‖B0‖+‖B1‖+2LΓq(α),‖A0‖Γq(α−β)}=0.8992<1, |
that is, (H3) holds. By using Matlab (the pseudo-code to compute different values of Γq(σ), see [32]), when t=1∈[a,T)q,
(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q≈8.4593<10=ϵδ. |
Thus, we obtain Te=1.
In this paper, we introduced and proved new generalizations for q-fractional Gronwall inequality. We examined the validity and applicability of our results by considering the existence and uniqueness of solutions of nonlinear delay q-fractional difference damped system. Moreover, a novel and easy to verify sufficient conditions have been provided in this paper which are easy to determine the finite-time stability of the solutions for the considered system. Finally, an example is given to illustrate the effectiveness and feasibility of our criterion. Motivated by previous works [33,34], the possible applications of fractional q-difference in the field of stability theory will be considered in the future.
The authors are grateful to the anonymous referees for valuable comments and suggestions that helped to improve the quality of the paper. This work is supported by Natural Science Foundation of China (11571136).
The authors declare that there is no conflicts of interest.
[1] |
Lloyd C, Smith J, Weinger K (2005) Stress and Diabetes: A Review of the Links. Diabetes Spectrum 18: 121-127. https://doi.org/10.2337/diaspect.18.2.121 ![]() |
[2] |
Manni L, Fausto VD, Fiore M, et al. (2008) Repeated Restraint and Nerve Growth Factor Administration in Male and Female Mice: Effect on Sympathetic and Cardiovascular Mediators of the Stress Response. Curr Neurovasc Res 5: 1-12. https://doi.org/10.2174/156720208783565654 ![]() |
[3] |
Wirtz PH, Redwine LS, Baertschi C, et al. (2008) Coagulation activity before and after acute psychosocial stress increases with age. Psychosom Med 70: 476-481. https://doi.org/10.1097/PSY.0b013e31816e03a5 ![]() |
[4] |
Quick SK, Shields PG, Nie J, et al. (2008) Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 17: 1082-1087. https://doi.org/10.1158/1055-9965.EPI-07-2755 ![]() |
[5] |
Chaplin TM, Hong K, Bergquist K, et al. (2008) Gender differences in response to emotional stress: an assessment across subjective, behavioral, and physiological domains and relations to alcohol craving. Alcohol Clin Exp Res 32: 1242-1250. https://doi.org/10.1111/j.1530-0277.2008.00679.x ![]() |
[6] |
Harris RBS, Mitchell TD, Simpson J, et al. (2002) Weight loss in rats exposed to repeated acute restraint stress is independent of energy or leptin status. Am J Physiol Regulatory Integrative Comp Physiol 282: R77-R88. https://doi.org/10.1152/ajpregu.2002.282.1.R77 ![]() |
[7] |
Hamer M, Stamatakis E (2008) Inflammation as an intermediate pathway in the association between psychosocial stress and obesity. Physiol Behav 94: 536-539. https://doi.org/10.1016/j.physbeh.2008.03.010 ![]() |
[8] |
Vallès A, Martí O, García A, et al. (2000) Single exposure to stressors causes long-lasting, stress-dependent reduction of food intake in rats. Am J Physiol Regulatory Integrative Comp Physiol 279: R1138-R1144. https://doi.org/10.1152/ajpregu.2000.279.3.R1138 ![]() |
[9] |
Charrier C, Chigr F, Tardivel C, et al. (2006) BDNF regulation in the rat dorsal vagal complex during stress-induced anorexia. Brain Res 1107: 52-57. https://doi.org/10.1016/j.brainres.2006.05.099 ![]() |
[10] |
Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91: 449-458. https://doi.org/10.1016/j.physbeh.2007.04.011 ![]() |
[11] |
Laurent L, Jean A, Manrique C (2013) Anorexia and drugs of abuse abnormally suppress appetite, the result of a shared molecular signal foul-up. Animal Models of Eating Disorders. Totowa: Humana Press 319-331. https://doi.org/10.1007/978-1-62703-104-2_19 ![]() |
[12] |
Gu H, Tang C, Yang Y (2012) Psychological stress, immune response, and atherosclerosis. Atheroscler 223: 69-77. https://doi.org/10.1016/j.atherosclerosis.2012.01.021 ![]() |
[13] |
Paskitti ME, McCreary BJ, Herman JP (2000) Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Mol Brain Res 80: 142-152. https://doi.org/10.1016/S0169-328X(00)00121-2 ![]() |
[14] |
Johnson JD, Barnard DF, Kulp AC, et al. (2019) Neuroendocrine regulation of brain cytokines after psychological stress. J Endocr Soc 3: 1302-1320. https://doi.org/10.1210/js.2019-00053 ![]() |
[15] |
Chigr F, Rachidi F, Tardivel C, et al. (2014) Modulation of orexigenic and anorexigenic peptides gene expression in the rat DVC and hypothalamus by acute immobilization stress. Front Cell Neurosci 8: 198. https://doi.org/10.3389/fncel.2014.00198 ![]() |
[16] |
Hayashi T (2014) Conversion of psychological stress into cellular stress response: Roles of the sigma-1 receptor in the process. Psychiatry Clin Neurosci 69: 179-191. https://doi.org/10.1111/pcn.12262 ![]() |
[17] |
Chaudhari N, Talwar P, Parimisetty A, et al. (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8: 213. https://doi.org/10.3389/fncel.2014.00213 ![]() |
[18] |
Santos CXC, Tanaka LY, Wosniak JJ, et al. (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11: 2409-2427. https://doi.org/10.1089/ars.2009.2625 ![]() |
[19] |
Bernasconi R, Molinari M (2011) ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr Opin Cell Biol 23: 176-183. https://doi.org/10.1016/j.ceb.2010.10.002 ![]() |
[20] |
Chaudhuri O, Koshy ST, Da Cunha CB, et al. (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13: 970-8. https://doi.org/10.1038/NMAT4009 ![]() |
[21] |
Ellman GL, Courtney KD, Andres JV, et al. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9 ![]() |
[22] |
Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 105: 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6 ![]() |
[23] |
Aebi H (1974) Catalase. Methods Enzym Anal 2: 673-684. https://doi.org/10.1016/B978-0-12-091302-2.50032-3 ![]() |
[24] |
Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105: 114-121. https://doi.org/10.1016/S0076-6879(84)05015-1 ![]() |
[25] |
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase the first step in mercapturic acid formation. J Biol Chem 249: 7130-9. ![]() |
[26] |
Asada K, Takahashi M, Nagate M (1974) Assay and inhibitors of spinach superoxide dismutase. Agric Biol Chem 38: 471-473. https://doiorg/10.1080/00021369.1974.10861178 ![]() |
[27] |
Lowry OH, Rosebrough NJ, Farr AL, et al. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275. ![]() |
[28] |
Kovács LÁ, Schiessl JA, Nafz AE, et al. (2018) Both basal and acute restraint stress-induced c-Fos expression is influenced by age in the extended amygdala and brainstem stress centers in male rats. Front Aging Neurosci 10: 248. https://doi.org/10.3389/fnagi.2018.00248 ![]() |
[29] |
Bland ST, Schmid MJ, Der-Avakian A, et al. (2005) Expression of c-fos and BDNF mRNA in subregions of the prefrontal cortex of male and female rats after acute uncontrollable stress. Brain Res 1051: 90-99. https://doi.org/10.1016/j.brainres.2005.05.065 ![]() |
[30] | Migdal C, Serres M (2011) Espèces réactives de l'oxygène et stress oxydant. Med Sci 27: 405-412. https://doi.org/10.1051/medsci/2011274017 |
[31] |
Cherian DA, Peter T, Narayanan A, et al. (2019) Malondialdehyde as a marker of oxidative stress in periodontitis patients. J Pharm Bioallied Sci 11: S297-S300. https://doi.org/10.4103/JPBS.JPBS_17_19 ![]() |
[32] | Tirani MM, Haghjou MM (2019) Reactive oxygen species (ROS), total antioxidant capacity (AOC) and malondialdehyde (MDA) make a triangle in evaluation of zinc stress extension. J Anim Plant Sci 29: 1100-1111. |
[33] |
Čolović M, Krstić D, Petrović S, et al. (2010) Toxic effects of diazinon and its photodegradation products. Toxicol Lett 193: 9-18. https://doi.org/10.1016/j.toxlet.2009.11.022 ![]() |
[34] |
Akhgari M, Abdollahi M, Kebryaeezadeh A, et al. (2003) Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum Exp Toxicol 22: 205-11. https://doi.org/10.1191/0960327103ht346oa ![]() |
[35] | Abdollahi M, Ranjbar A, Shadnia S, et al. (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10: 141-7. |
[36] |
Dal-Zotto S, Martí O, Delgado R, et al. (2004) Potentiation of glucocorticoid release does not modify the long-term effects of a single exposure to immobilization stress. Psychopharmacology 177: 230-237. https://doi.org/10.1007/s00213-004-1939-y ![]() |
[37] |
Akkerman S, Blokland A, Reneerkens O, et al. (2012) Object recognition testing: Methodological considerations on exploration and discrimination measures. Behav Brain Res 232: 335-347. https://doi.org/10.1016/j.bbr.2012.03.022 ![]() |
[38] |
Parent MB, Baxter MG (2004) Septohippocampal Acetylcholine: Involved in but not Necessary for Learning and Memory?. Learn Mem 11: 9-20. https://doi.org/10.1101/lm.69104 ![]() |
[39] |
Micheau J, Marighetto A (2011) Acetylcholine and memory: A long, complex and chaotic but still living relationship. Behav Brain Res 221: 424-429. https://doi.org/10.1016/j.bbr.2010.11.052 ![]() |
[40] |
Deschamps R, Moulignier A (2005) La mémoire et ses troubles Memory and related disorders. EMC- Neurol 2: 505-525. https://doi.org/10.1016/j.emcn.2005.07.003 ![]() |
[41] |
Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 6: 710-715. https://doi.org/10.1016/j.conb.2006.09.002 ![]() |
[42] |
Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76: 116-129. https://doi.org/10.1016/j.neuron.2012.08.036 ![]() |
[43] |
Haam J, Yakel JL (2017) Cholinergic modulation of the hippocampal region and memory function. J Neurochem 142: 111-121. https://doi.org/10.1111/jnc.14052 ![]() |
[44] |
Newman EL, Gupta K, Climer JR, et al. (2012) Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 6: 24. https://doi.org/10.3389/fnbeh.2012.00024 ![]() |
[45] |
Torres LF, Duchen LW (1987) The mutant mdx: inherited myopathy in the mouse: morphological studies of nerves, muscles and end-plates. Brain 110: 269-99. https://doi.org/10.1093/brain/110.2.269 ![]() |
[46] |
Hedner M, Larsson M, Arnold N, et al. (2010) Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J Clin Exp Neuropsychol 32: 1062-7. https://doi.org/10.1080/13803391003683070 ![]() |
1. | Wellington F. da Silva, Ricardo B. Viana, Naiane S. Morais, Thalles G. Costa, Rodrigo L. Vancini, Gustavo C. T. Costa, Marilia S. Andrade, Claudio A. B. de Lira, Acute effects of exergame-based calisthenics versus traditional calisthenics on state-anxiety levels in young adult men: a randomized trial, 2022, 18, 1824-7490, 715, 10.1007/s11332-021-00841-9 | |
2. | Myungjin Jung, Emily Frith, Minsoo Kang, Paul D. Loprinzi, Effects of Acute Exercise on Verbal, Mathematical, and Spatial Insight Creativity, 2023, 5, 2096-6709, 87, 10.1007/s42978-021-00158-6 | |
3. | Sedat Sen, Süreyya Yörük, A Reliability Generalization Meta‐Analysis of the Kaufman Domains of Creativity Scale, 2023, 0022-0175, 10.1002/jocb.620 | |
4. | Ramón Romance, Adriana Nielsen-Rodríguez, Rui Sousa Mendes, Juan Carlos Dobado-Castañeda, Gonçalo Dias, The influence of physical activity on the creativity of 10 and 11-year-old school children, 2023, 48, 18711871, 101295, 10.1016/j.tsc.2023.101295 | |
5. | Petra J. Luteijn, Inge S. M. van der Wurff, Piet van Tuijl, Amika S. Singh, Hans H. C. M. Savelberg, Renate H. M. de Groot, The Effect of Standing Versus Sitting on Creativity in Adolescents—A Crossover Randomized Trial: The PHIT2LEARN Study, 2023, 17, 1751-2271, 209, 10.1111/mbe.12381 | |
6. | Myungjin Jung, Matthew B. Pontifex, Charles H. Hillman, Minsoo Kang, Michelle W. Voss, Kirk I. Erickson, Paul D. Loprinzi, A mechanistic understanding of cognitive performance deficits concurrent with vigorous intensity exercise, 2024, 180, 02782626, 106208, 10.1016/j.bandc.2024.106208 |