Citation: Changhao Zhu, Jie Zhang. Developing robust nonlinear models through bootstrap aggregated deep belief networks[J]. AIMS Electronics and Electrical Engineering, 2020, 4(3): 287-302. doi: 10.3934/ElectrEng.2020.3.287
[1] | Zhang J, Jin Q, Xu Y (2006) Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology 29: 442-448. |
[2] | Shao W, Yao L, Ge Z, et al. (2018) Parallel computing and SGD-based DPMM for soft sensor development with large-scale semisupervised data. IEEE T Ind Electron 66: 6362-6373. |
[3] | Shao W, Ge Z, Song Z (2019) Quality variable prediction for chemical processes based on semi-supervised Dirichlet process mixture of Gaussians. Chem Eng Sci 193: 394-410. doi: 10.1016/j.ces.2018.09.031 |
[4] | Yuan X, Ou C, Wang Y, et al. (2020) Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE. Neurocomputing 396: 375-382. doi: 10.1016/j.neucom.2018.11.107 |
[5] | Yuan X, Zhou J, Huang B, et al. (2019) Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy. IEEE T Ind Inform 16: 3721-3730. |
[6] | Werbos P (1974) Beyond regression: new fools for prediction and analysis in the behavioral sciences. Harvard University. |
[7] | Rosa E, Yu W (2016) Randomized algorithms for nonlinear system identification with deep learning modification. Inform Sciences 364: 197-212. |
[8] | Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18: 1527-1554. doi: 10.1162/neco.2006.18.7.1527 |
[9] | Yuan X, Huang B, Wang Y, et al. (2018) Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE. IEEE T Ind Inform 14: 3235-3243. doi: 10.1109/TII.2018.2809730 |
[10] | Yuan X, Ou C, Wang Y, et al. (2019) A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process. IEEE T Neur Net Lear. |
[11] | Mnih A, Hinton GE (2009) A scalable hierarchical distributed language model. Advances in Neural Information Processing Systems, 1081-1088. |
[12] | Li F, Zhang J, Shang C, et al. (2018) Modelling of a post-combustion CO2 capture process using deep belief network. Appl Therm Eng 130: 997-1003. doi: 10.1016/j.applthermaleng.2017.11.078 |
[13] | Shang C, Yang F, Huang D, et al. (2014) Data driven soft sensor development based on deep learning technique. J Process Contr 24: 223-233. doi: 10.1016/j.jprocont.2014.01.012 |
[14] | Wang Y, Pan Z, Yuan X, et al. (2020) A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network. ISA Transactions 96: 457-467. doi: 10.1016/j.isatra.2019.07.001 |
[15] | Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9: 1735-1780. doi: 10.1162/neco.1997.9.8.1735 |
[16] | Yuan X, Li L, Wang Y (2019) Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE T Ind Inform 16: 3168-3176. |
[17] | Yuan X, Li L, Shardt Y, et al. (2020) Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development. IEEE T Ind Electron. |
[18] | Wöllmer M, Schuller B, Eyben F, et al. (2010) Combining long short-term memory and dynamic Bayesian networks for incremental emotion-sensitive artificial listening. IEEE J-STSP 4: 867-881. |
[19] | Zhang J (1999) Developing robust non-linear models through bootstrap aggregated neural networks. Neurocomputing 25: 93-113. doi: 10.1016/S0925-2312(99)00054-5 |
[20] | Zhang J, Pantelelis NG (2011) Modelling and optimisation control of polymer composite moulding processes using bootstrap aggregated neural network models. 2011 International Conference on Electric Information and Control Engineering, 2363-2366. |
[21] | Kaunga DL, Zhang J, Ferguson K (2013) Reliable modelling of chemical durability of high-level waste glass using bootstrap aggregated neural networks. 2013 Ninth International Conference on Natural Computation, 178-183. |
[22] | Mohammed KJR, Zhang J (2013) Reliable optimisation control of a reactive polymer composite moulding process using ant colony optimisation and bootstrap aggregated neural networks. Neural Comput Appl 23: 1891-1898. doi: 10.1007/s00521-012-1273-y |
[23] | Osuolale FN, Zhang J (2018) Exergetic optimization of atmospheric and vacuum distillation system based on bootstrap aggregated neural network models. Exergy for A Better Environment and Improved Sustainability 1: 1033-1046. |
[24] | Mukherjee A, Zhang J (2008) A reliable multi-objective control strategy for batch processes based on bootstrap aggregated neural network models. J Process Contr 18: 720-734. doi: 10.1016/j.jprocont.2007.11.008 |
[25] | Zhou H, Huang GB, Lin Z, et al. (2015) Stacked extreme learning machines. IEEE T Syst Man Cy B 45: 2013-2025. |
[26] | Low CY, Teoh ABJ (2017) Stacking-based deep neural network: Deep analytic network on convolutional spectral histogram features. 2017 IEEE International Conference on Image Processing (ICIP), 1592-1596. |
[27] | Smolensky P (1986) Information processing in dynamical systems: Foundations of harmony theory. Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1: 194-281. |
[28] | Hinton GE (2012) A practical guide to training restricted Boltzmann machines. Neural networks: Tricks of the trade, 599-619. |
[29] | Zhang J, Morris AJ (2000) Long range predictive control of nonlinear processes based on recurrent neurofuzzy network models. Neural Comput Appl 9: 50-59. doi: 10.1007/s005210070035 |
[30] | Soares JBP, Hamielec AE (1996) Kinetics of propylene polymerization with a non-supported heterogeneous Ziegler-Natta catalyst-effect of hydrogen on rate of polymerization, stereoregularity, and molecular weight distribution. Polymer 37: 4607-4614. doi: 10.1016/0032-3861(96)00286-8 |