Citation: Antonio Di Crescenzo, Fabio Travaglino. Probabilistic analysis of systems alternating for state-dependent dichotomous noise[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6386-6405. doi: 10.3934/mbe.2019319
[1] | I. Bena, Dichotomous Markov noise: exact results for out-of-equilibrium systems, Int. J. Modern Phys. B, 20 (2006), 2825–2888. |
[2] | P. Li, L. R. Nie, C. Z. Shu, et al., Effect of correlated dichotomous noises on stochastic resonance in a linear system, J. Stat. Phys., 146 (2012), 1184–1202. |
[3] | Y. Jin, Z. Ma and S. Xiao, Coherence and stochastic resonance in a periodic potential driven by multiplicative dichotomous and additive white noise, Chaos Solit. Fract., 103 (2017), 470–475. |
[4] | F. Müller-Hansen, F. Droste and B. Lindner, Statistics of a neuron model driven by asymmetric colored noise, Phys. Rev. E, 91 (2015), 022718. |
[5] | F. Droste and B. Lindner, Integrate-and-fire neurons driven by asymmetric dichotomous noise, Biol. Cybernet., 108 (2014), 825–843. |
[6] | R. Mankin and N. Lumi, Statistics of a leaky integrate-and-fire model of neurons driven by dichotomous noise, Phys. Rev. E, 93 (2016), 052143. |
[7] | S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation, Quart. J. Mech. Appl. Math., 4 (1951), 129–156. |
[8] | M. Kac, A stochastic model related to the telegrapher's equation, Rocky Mountain J. Math., 4 (1974), 497–509. |
[9] | A. D. Kolesnik and N. Ratanov, Telegraph Processes and Option Pricing, Springer Briefs in Statistics, Springer, Heidelberg, 2013. |
[10] | E. Orsingher, Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws, Stoch. Process. Appl., 34 (1990), 49–66. |
[11] | L. Beghin, L. Nieddu and E. Orsingher, Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations, J. Appl. Math. Stochastic Anal., 14 (2001), 11–25. |
[12] | O. López and N. Ratanov, On the asymmetric telegraph processes, J. Appl. Probab., 51 (2014), 569–589. |
[13] | D. Bshouty, A. Di Crescenzo, B. Martinucci, et al., Generalized telegraph process with random delays, J. Appl. Probab., 49 (2012), 850–865. |
[14] | A. Di Crescenzo and B. Martinucci, A damped telegraph random process with logistic stationary distribution, J. Appl. Probab., 47 (2010), 84–96. |
[15] | A. De Gregorio and C. Macci, Large deviations for a damped telegraph process, in Modern problems in insurance mathematics (eds. D. Silvestrov and A. Martin-Löf), EAA Ser., Springer, Cham, (2014), 275–289. |
[16] | A.D. Kolesnik, Probability distribution function for the Euclidean distance between two telegraph processes, Adv. Appl. Probab., 46 (2014), 1172–1193. |
[17] | A. D. Kolesnik, The explicit probability distribution of the sum of two telegraph processes, Stoch. Dyn., 15 (2015), 1550013. |
[18] | B. Martinucci and A. Meoli, Certain functionals of squared telegraph processes, Stoch. Dyn., (2019) Online Ready. |
[19] | A. Di Crescenzo, B. Martinucci and S. Zacks, Telegraph process with elastic boundary at the origin, Methodol. Comput. Appl. Probab., 20 (2018), 333–352. |
[20] | A. A. Pogorui, R. M. Rodr´ ıguez-Dagnino and T. Kolomiets, The first passage time and estimation of the number of level-crossings for a telegraph process, Ukrainian Math. J., 67 (2015), 998–1007. |
[21] | N. Ratanov, Telegraph processes with random jumps and complete market models, Methodol. Comput. Appl. Probab., 17 (2015), 677–695. |
[22] | A. Di Crescenzo and S. Zacks, Probability law and flow function of Brownian motion driven by a generalized telegraph process, Methodol. Comput. Appl. Probab., 17 (2015), 761–780. |
[23] | F. Travaglino, A. Di Crescenzo, B. Martinucci, et al., A new model of Campi Flegrei inflation and deflation episodes based on Brownian motion driven by the telegraph process, Math. Geosci., 50 (2018), 961–975. |
[24] | J. Bierkens, P. Fearnhead and G. Roberts, The zig-zag process and super-efficient sampling for Bayesian analysis of big data, arXiv:1607.03188v2. |
[25] | S. M. Iacus, Statistical analysis of the inhomogeneous telegrapher's process, Statist. Probab. Lett., 55 (2001), 83–88. |
[26] | R. Garra and E. Orsingher, Random motions with space-varying velocities, in Modern problems of stochastic analysis and statistics (ed. V. Panov), Springer Proc. Math. Stat., 208, Springer, Cham, (2017), 25–39. |
[27] | G. D'Onofrio, P. Lansky and E. Pirozzi, On two diffusion neuronal models with multiplicative noise: The mean first-passage time properties, Chaos, 28 (2018), 043103. |
[28] | A. Di Crescenzo and B. Martinucci, Analysis of a stochastic neuronal model with excitatory inputs and state-dependent effects, Math. Biosci., 209 (2007), 547–563. |
[29] | A. Di Crescenzo, On random motions with velocities alternating at Erlang-distributed random times, Adv. Appl. Probab., 33 (2001), 690–701. |
[30] | W. Alharbi and S. Petrovskii, Critical domain problem for the reaction-telegraph equation model of population dynamics, Mathematics, 6 (2018), 59. |
[31] | L. Angelani and R. Garra, Probability distributions for the run-and-tumble models with variable speed and tumbling rate, Mod. Stoch. Theory Appl., 6 (2019), 3–12. |
[32] | R. Garcia, F. Moss, A. Nihongi, et al., Optimal foraging by zooplankton within patches: the case of Daphnia, Math. Biosci., 207 (2007), 165–188. |
[33] | A. Di Crescenzo and B. Martinucci, Random motion with gamma-distributed alternating velocities in biological modeling, in Computer Aided Systems Theory - Eurocast 2007, Lecture Notes in Computer Science (eds. R. Moreno-Diaz, F. Pichler and A. Quesada-Arencibia), Springer-Verlag, Berlin, (2007), 163–170. |
[34] | G. Le Caër, A new family of solvable Pearson-Dirichlet random walks, J. Stat. Phys., 144 (2011), 23–45. |
[35] | A. A. Pogorui and R.M. Rodríguez-Dagnino, Random motion with gamma steps in higher dimen-sions, Statist. Probab. Lett., 83 (2013), 638–1643. |
[36] | R. Gorenflo, A. A. Kilbas, F. Mainardi, et al., The two-parametric Mittag-Leffler function, in Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics. Springer, Berlin, Heidelberg, (2014), 55–96. |
[37] | H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., (2011), Art. ID 298628, 51 pp. |
[38] | M. Alipour, L. Beghin and D. Rostamy, Generalized fractional nonlinear birth processes, Methodol. Comput. Appl. Probab., 17 (2015), 525–540. |
[39] | A. Di Crescenzo, B. Martinucci and A. Meoli, A fractional counting process and its connection with the Poisson process, ALEA Lat. Am. J. Probab. Math. Stat., 13 (2016), 291–307. |
[40] | E. Orsingher and F. Polito, On a fractional linear birth-death process, Bernoulli, 17 (2011), 114–137. |
[41] | P. Lansky, L. Sacerdote and C. Zucca, Optimum signal in a diffusion leaky integrate-and-fire neuronal model, Math. Biosci., 207 (2007), 261–274. |