Citation: Manuela Aguiar, Ana Dias, Miriam Manoel. Gradient and Hamiltonian coupled systems on undirected networks[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4622-4644. doi: 10.3934/mbe.2019232
[1] | J. C. Bronski, L. De Ville and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model, Chaos: an Int. J. Non. Sci., 22 (2012), 033133. |
[2] | M. Manoel and M. R. Roberts, Gradient systems on coupled cell networks, Nonlinearity, 28 (2015), 3487–3509. |
[3] | M. Plank, On the dynamics of Lotka-Volterra equations having an invariant hyperplane, SIAM J. Appl. Math., 59 (1999), 1540–1551. |
[4] | P.L. Buono, B. Chan and A. Palacios, Dynamics and Bifurcations in a D n -symmetric Hamiltonian Network. Application to Coupled Gyroscopes, Phys. D, 290 (2015), 8–23. |
[5] | B. S. Chan, P. L. Buono and A. Palacios, Topology and Bifurcations in Hamiltonian Coupled Cell Systems, Dyn. Syst., 32 (2017), 23–45. |
[6] | D. S Tourigny, Networks of planar Hamiltonian systems, Comm. in Non. Sci. and Num. Sim., 53 (2017), 263–277. |
[7] | V. V. Gafiychuk and A. K. Prykarpatsky, Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures, Cond. Matt. Phys., 7 (2004), 551– 563. |
[8] | E. Lee and D. Terman, Oscillatory rhythms in a model network of excitatory and inhibitory Neurons, SIAM J. Appl. Dyn. Syst, 18 (2019), 354–392. |
[9] | P. J. Uhlhaas and W. Singer, Neural Synchrony in Brain Review Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology, Neuron, 52 (2006), 155–168. |
[10] | P. Duarte, R. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations, J. Diff. Eq., 149 (1998), 143–189. |
[11] | J. M. Neuberger, N. Sieben and J. W. Swift, Synchrony and anti-synchrony for difference-coupled vector fields on graph network systems, preprint, arXiv:1805.04144. |
[12] | R. E. Mirollo and S. H. Strogatz. The spectrum of the locked state for the Kuramoto model of coupled oscillators, Physica D, 205 (2005), 249–266. |
[13] | S. E. Korshunov, Phase diagram of the antiferromagnetic XY model with a triangular lattice in an external magnetic field, J. Phys. C: Solid State Phys., 19 (1986), 5927–5935. |
[14] | D. H. Lee, R. G. Caflisch, J. D. Joannopoulos, et al., Antiferromagnetic classical XFmodel: A mean-field analysis, Phys. Rev. B, 29 (1984), 2680–2684. |
[15] | J. C. Walter and C. Chatelain, Numerical investigation of the ageing of the fully frustrated XY model, J. Stat. Mech., 10 (2009), P10017-1-17. |
[16] | E. Goles and G. A. Ruz, Dynamics of neural networks over undirected graphs, Neural Networks, 63 (2015), 156–169. |
[17] | M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: the groupoid formalism, B. Am. Math. Soc., 43 (2006), 305–364. |
[18] | M. Golubitsky, I. Stewart and A. Török, Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4 (2005), 78–100. |
[19] | I. Stewart, M. Golubitsky and M. Pivato, Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2 (2003), 609–646. |
[20] | M. Denaxa, G. Neves, A. Rabinowitz, S. Kemlo, P. Liodis, J. Burrone and V. Pachnis, Modulation of apoptosis controls inhibitory interneuron number in the cortex, Cell Rep., 22 (2018), 1710–1721. |
[21] | I. Stewart, The lattice of balanced equivalence relations of a coupled cell network, Math. Proc. Cambridge Philos. Soc., 143 (2007), 165–183. |
[22] | M. A. D. Aguiar and A. P. S. Dias, The Lattice of Synchrony Subspaces of a Coupled Cell Network: Characterization and Computation Algorithm, J. Nonlinear Sci., 24 (2014), 949–996. |
[23] | M. A. D. Aguiar, A. P. S. Dias., M. Golubitsky, et al., Bifurcations from regular quotient networks: a first insight, Physica D, 238 (2009), 137–155. |
[24] | A. P. S. Dias and E. M. Pinho, Spatially Periodic Patterns of Synchrony in Lattice Networks, SIAM J. Appl. Dyn. Syst., 8 (2009), 641–675. |
[25] | M. Aguiar, P. Ashwin, A. Dias, et al., Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation, J. Nonlinear Sci., 21 (2011), 271–323. |
[26] | M. A. D. Aguiar and A. P. S. Dias, Heteroclinic network dynamics on joining coupled cell networks, Dyn. Syst Int. J., 32 (2017), 4–22. |
[27] | S. Alford and M. Alpert, A synaptic mechanism for network synchrony, Front Cell Neurosci., 8 (2014), 290. |