Citation: Yang Cao, Quan Shi, Sen-Lai Zhu. A relaxed generalized Newton iteration method for generalized absolute value equations[J]. AIMS Mathematics, 2021, 6(2): 1258-1275. doi: 10.3934/math.2021078
[1] | J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear Algebra, 52 (2004), 421-426. doi: 10.1080/0308108042000220686 |
[2] | O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl., 36 (2007), 43-53. |
[3] | J. L. Dong, M. Q. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numer. Linear Algebra Appl., 16 (2009), 129-143. doi: 10.1002/nla.609 |
[4] | Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 17 (2010), 917-933. doi: 10.1002/nla.680 |
[5] | R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, SIAM: Philadelphia, 2009. |
[6] | O. L. Mangasarian, R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), 359-367. |
[7] | U. Schäfur, On the modulus algorithm for the linear complementarity problem, Oper. Res. Lett., 32 (2004), 350-354. |
[8] | Z. Z. Bai, L. L. Zhang, Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 20 (2013), 425-439. doi: 10.1002/nla.1835 |
[9] | N. Zheng, J. F. Yin, Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem, Numer. Algor., 64 (2013), 245-262. doi: 10.1007/s11075-012-9664-9 |
[10] | J. Rohn, On unique solvability of the absolute value equation, Optim. Lett., 3 (2009), 603-606. doi: 10.1007/s11590-009-0129-6 |
[11] | S. L. Wu, C. X. Li, The unique solution of the absolute value equations, Appl. Math. Lett., 76 (2018), 195-200. doi: 10.1016/j.aml.2017.08.012 |
[12] | S. L. Wu, C. X. Li, A note on unique solvability of the absolute value equation, Optim. Lett., 14 (2020), 1957-1960. doi: 10.1007/s11590-019-01478-x |
[13] | J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35-44. doi: 10.1007/s11590-012-0560-y |
[14] | S. L. Wu, P. Guo, On the unique solvability of the absolute value equation, J. Optim. Theory Appl., 169 (2016), 705-712. doi: 10.1007/s10957-015-0845-2 |
[15] | O. L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett., 1 (2007), 3-8. |
[16] | O. L. Mangasarian, Linear complementarity as absolute value equation solution, Optim. Lett., 8 (2014), 1529-1534. doi: 10.1007/s11590-013-0656-z |
[17] | J. Rohn, An algorithm for solving the absolute value equation, Electron. J. Linear Algebra, 18 (2009), 589-599. |
[18] | O. A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 44 (2009), 363-372. doi: 10.1007/s10589-007-9158-1 |
[19] | O. L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett., 9 (2015), 1469-1474. doi: 10.1007/s11590-015-0893-4 |
[20] | C. X. Li, A preconditioned AOR iterative method for the absolute value equations, Int. J. Comput. Meth., 14 (2017), 1750016. doi: 10.1142/S0219876217500165 |
[21] | D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2016), 2191-2202. |
[22] | O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3 (2009), 101-108. doi: 10.1007/s11590-008-0094-5 |
[23] | C. Zhang, Q. J. Wei, Global and finite convergence of a generalized Newton method for absolute value equations, J. Optim. Theory Appl., 143 (2009), 391-403. doi: 10.1007/s10957-009-9557-9 |
[24] | A. Wang, Y. Cao, J. X. Chen, Modified Newton-type iteration methods for generalized absolute value equations, J. Optim. Theory Appl., 181 (2019), 216-230. doi: 10.1007/s10957-018-1439-6 |
[25] | S. L. Hu, Z. H. Huang, Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, J. Comput. Appl. Math., 235 (2011), 1490-1501. doi: 10.1016/j.cam.2010.08.036 |
[26] | L. Caccetta, B. Qu, G. L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 48 (2011), 45-58. doi: 10.1007/s10589-009-9242-9 |
[27] | Y. Y. Lian, C. X. Li, S. L. Wu, Weaker convergent results of the generalized Newton method for the generalized absolute value equations, J. Comput. Appl. Math., 338 (2018), 221-226. |
[28] | N. Zainali, T. Lotfi, On developing a stable and quadratic convergent method for solving absolute value equation, J. Comput. Appl. Math., 330 (2018), 742-747. doi: 10.1016/j.cam.2017.07.009 |
[29] | F. K. Haghani, On generalized Traub's method for absolute value equations, J. Optim. Theory Appl., 166 (2015), 619-625. doi: 10.1007/s10957-015-0712-1 |
[30] | C. X. Li, A modified generalized Newton method for absolute value equations, J. Optim. Theory Appl., 170 (2016), 1055-1059. doi: 10.1007/s10957-016-0956-4 |
[31] | J. Y. Bello Cruz, O. P. Ferreira, L. F. Prudente, On the global convergence of the inexact semismooth Newton method for absolute value equation, Comput. Optim. Appl., 65 (2016), 93-108. doi: 10.1007/s10589-016-9837-x |
[32] | J. M. Feng, S. Y. Liu, A new two-step iterative method for solving absolute value equations, J. Inequal. Appl., 2019 (2019), 39. doi: 10.1186/s13660-019-1969-y |
[33] | G. H. Golub, C. F. Van Loan, Matrix computations, 3 Eds., Maryland: The Johns Hopkins University Press, 2009. |
[34] | G. Ramadurai, S. V. Ukkusuri, J. Y. Zhao, J. S. Pang, Linear complementarity formulation for single bottleneck model with heterogeneous commuters, Transport. Res. Part B, 44 (2010), 193-214. doi: 10.1016/j.trb.2009.07.005 |
[35] | R. Li, J. F. Yin, On the convergence of modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems with H+-matrices, J. Comput. Appl. Math., 342 (2018), 202-209. doi: 10.1016/j.cam.2017.12.029 |
[36] | A. Wang, Y. Cao, Q. Shi, Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems, J. Inequal. Appl., 2018 (2018), 2. doi: 10.1186/s13660-017-1593-7 |
[37] | Y. Cao, A. Wang, Two-step modulus-based matrix splitting iteration methods for implicit complementarity problems, Numer. Algor., 82 (2019), 1377-1394. doi: 10.1007/s11075-019-00660-7 |
[38] | S. L. Wu, P. Guo, Modulus-based matrix splitting algorithms for quasi-complementarity problems, Appl. Numer. Math., 132 (2018), 127-137. doi: 10.1016/j.apnum.2018.05.017 |
[39] | Q. Shi, Q. Q. Shen, T. P. Tang, A class of two-step modulus-basedmatrix splitting iteration methods for quasi-complementarity problems, Comput. Appl. Math., 39 (2020), 11. doi: 10.1007/s40314-019-0984-4 |