Citation: Maoji Ri, Shuibo Huang, Qiaoyu Tian, Zhan-Ping Ma. Existence of $W_0^{1,1}(\Omega)$ solutions to nonlinear elliptic equation with singular natural growth term[J]. AIMS Mathematics, 2020, 5(6): 5791-5800. doi: 10.3934/math.2020371
[1] | A. Alvino, L. Boccardo, V. Ferone, et al. Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., 182 (2003), 53-79. doi: 10.1007/s10231-002-0056-y |
[2] | D. Arcoya, J. Carmona, T. Leonori, et al. Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042. doi: 10.1016/j.jde.2009.01.016 |
[3] | L. Boccardo, G. R. Cirmi, $W_0^{1,1}$ solutions of some unilateral problems, Nonlinear Anal., 121 (2015), 447-457. |
[4] | L. Boccardo, G. Croce, $W_0^{1,1}(\Omega)$ solutions in some borderline cases of elliptic equations with degenerate coercivity, Nonlinear Differential Equations Appl., 85 (2010), 135-143. |
[5] | L. Boccardo, G. Croce, L. Orsina, Nonlinear degenerate elliptic problems with $W_0^{1,1}(\Omega)$ solutions, Manuscripta Math., 137 (2012), 419-439. doi: 10.1007/s00229-011-0473-6 |
[6] | L. Boccardo, A. Dall'Aglio, L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-81. |
[7] | L. Boccardo, T. Gallouet, $W_0^{1,1}$ solutions in some borderline cases of Calderon-Zygmund theory, J. Differential Equations, 253 (2012), 2698-2714. |
[8] | L. Boccardo, F. Murat, J. P. Puel, L∞-estimates for some nonlinear partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326-333. doi: 10.1137/0523016 |
[9] | G. Croce, An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term, Discrete Contin. Dyn. Syst., 5 (2012), 507-530. doi: 10.3934/dcdss.2012.5.507 |
[10] | C. De Coster, L. Jeanjean, Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient, J. Differential Equations, 262 (2017), 5231-5270. doi: 10.1016/j.jde.2017.01.022 |
[11] | S. Huang, Quasilinear elliptic equations with exponential nonlinearity and measure data, Math. Methods Appl. Sci., 43 (2020), 2883-2910. doi: 10.1002/mma.6088 |
[12] | S. Huang, Q. Tian, Harnack-type inequality for fractional elliptic equations with critical exponent, Math. Methods Appl. Sci., 43 (2020), 5380-5397. doi: 10.1002/mma.6280 |
[13] | S. Huang, Q. Tian, J. Wang, et al. Stability for noncoercive elliptic equations, Electron. J. Differential Equations, 242 (2016), 1-11. |
[14] | M. Ri, S. Huang, C. Huang, Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data, Electron. Res. Arch., 28 (2020), 165-182. doi: 10.3934/era.2020011 |
[15] | R. Souilah, Existence and regularity results for some elliptic equations with degenerate coercivity and singular quadratic lower-order terms, Mediterr. J. Math., 16 (2019), 87. |
[16] | J. Xiawu, S. Huang, Y. Mi, et al. Existence of $W_{0}^{1,1}(\Omega)$ solutions to non-coercivity quasilinear elliptic problem, J. Funct. Spaces, 2020, 5017818. |