Research article

Existence of $W_0^{1,1}(\Omega)$ solutions to nonlinear elliptic equation with singular natural growth term

  • Received: 06 April 2020 Accepted: 05 July 2020 Published: 13 July 2020
  • MSC : 35J67, 35R10

  • In this paper, we investigate the existence of $W_0^{1, 1}(\Omega)$ solutions to the following elliptic equation with principal part having noncoercivity and singular quadratic term $ \begin{equation*} \left \{ \begin{array}{rl} -\text{div}\left(\frac{\nabla u}{(1+|u|)^{\gamma}}\right)+\frac{|\nabla u|^2}{u^{\theta}} = f,&x\in\Omega,\\ u = 0,&x\in\partial\Omega, \end{array} \right. \end{equation*} $ where $\Omega$ is a bounded smooth domain of $\mathbb{R}^N(N\geq3)$, $\gamma \gt 0$, $\frac{N}{N-1}\leq\theta \lt 2$, $f\in L^m(\Omega)(m\geq1)$ is a nonnegative function.

    Citation: Maoji Ri, Shuibo Huang, Qiaoyu Tian, Zhan-Ping Ma. Existence of $W_0^{1,1}(\Omega)$ solutions to nonlinear elliptic equation with singular natural growth term[J]. AIMS Mathematics, 2020, 5(6): 5791-5800. doi: 10.3934/math.2020371

    Related Papers:

  • In this paper, we investigate the existence of $W_0^{1, 1}(\Omega)$ solutions to the following elliptic equation with principal part having noncoercivity and singular quadratic term $ \begin{equation*} \left \{ \begin{array}{rl} -\text{div}\left(\frac{\nabla u}{(1+|u|)^{\gamma}}\right)+\frac{|\nabla u|^2}{u^{\theta}} = f,&x\in\Omega,\\ u = 0,&x\in\partial\Omega, \end{array} \right. \end{equation*} $ where $\Omega$ is a bounded smooth domain of $\mathbb{R}^N(N\geq3)$, $\gamma \gt 0$, $\frac{N}{N-1}\leq\theta \lt 2$, $f\in L^m(\Omega)(m\geq1)$ is a nonnegative function.


    加载中


    [1] A. Alvino, L. Boccardo, V. Ferone, et al. Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., 182 (2003), 53-79. doi: 10.1007/s10231-002-0056-y
    [2] D. Arcoya, J. Carmona, T. Leonori, et al. Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042. doi: 10.1016/j.jde.2009.01.016
    [3] L. Boccardo, G. R. Cirmi, $W_0^{1,1}$ solutions of some unilateral problems, Nonlinear Anal., 121 (2015), 447-457.
    [4] L. Boccardo, G. Croce, $W_0^{1,1}(\Omega)$ solutions in some borderline cases of elliptic equations with degenerate coercivity, Nonlinear Differential Equations Appl., 85 (2010), 135-143.
    [5] L. Boccardo, G. Croce, L. Orsina, Nonlinear degenerate elliptic problems with $W_0^{1,1}(\Omega)$ solutions, Manuscripta Math., 137 (2012), 419-439. doi: 10.1007/s00229-011-0473-6
    [6] L. Boccardo, A. Dall'Aglio, L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-81.
    [7] L. Boccardo, T. Gallouet, $W_0^{1,1}$ solutions in some borderline cases of Calderon-Zygmund theory, J. Differential Equations, 253 (2012), 2698-2714.
    [8] L. Boccardo, F. Murat, J. P. Puel, L-estimates for some nonlinear partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326-333. doi: 10.1137/0523016
    [9] G. Croce, An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term, Discrete Contin. Dyn. Syst., 5 (2012), 507-530. doi: 10.3934/dcdss.2012.5.507
    [10] C. De Coster, L. Jeanjean, Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient, J. Differential Equations, 262 (2017), 5231-5270. doi: 10.1016/j.jde.2017.01.022
    [11] S. Huang, Quasilinear elliptic equations with exponential nonlinearity and measure data, Math. Methods Appl. Sci., 43 (2020), 2883-2910. doi: 10.1002/mma.6088
    [12] S. Huang, Q. Tian, Harnack-type inequality for fractional elliptic equations with critical exponent, Math. Methods Appl. Sci., 43 (2020), 5380-5397. doi: 10.1002/mma.6280
    [13] S. Huang, Q. Tian, J. Wang, et al. Stability for noncoercive elliptic equations, Electron. J. Differential Equations, 242 (2016), 1-11.
    [14] M. Ri, S. Huang, C. Huang, Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data, Electron. Res. Arch., 28 (2020), 165-182. doi: 10.3934/era.2020011
    [15] R. Souilah, Existence and regularity results for some elliptic equations with degenerate coercivity and singular quadratic lower-order terms, Mediterr. J. Math., 16 (2019), 87.
    [16] J. Xiawu, S. Huang, Y. Mi, et al. Existence of $W_{0}^{1,1}(\Omega)$ solutions to non-coercivity quasilinear elliptic problem, J. Funct. Spaces, 2020, 5017818.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3711) PDF downloads(285) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog