Citation: Jung-Chao Ban, Chih-Hung Chang. Entropy dimension of shifts of finite type on free groups[J]. AIMS Mathematics, 2020, 5(5): 5121-5139. doi: 10.3934/math.2020329
[1] | G. A. Hedlund, M. Morse, Symbolic dynamics, Amer. J. Math., 60 (1938), 815-866. doi: 10.2307/2371264 |
[2] | R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Springer-Verlag, Berlin-New York, 1975. |
[3] | I. P. Cornfeld, Ya. G. Sinai, Basic Notions of Ergodic Theory and Examples of Dynamical Systems, 2-27. Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg, 1989. |
[4] | A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Number 54 in Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1995. |
[5] | E. Mihailescu, On some coding and mixing properties for a class of chaotic systems, Monatsh. Math., 167 (2012), 241-255. doi: 10.1007/s00605-011-0347-8 |
[6] | D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics. Addison-Wesley Publishing Co., Reading, Mass., 1978. |
[7] | D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. |
[8] | D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Syst., 4 (1984): 283-300. |
[9] | R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc., 66, 1966. |
[10] | M. Boyle, R. Pavlov, M. Schraudner, Multidimensional sofic shifts without separation and their factors, Trans. Am. Math. Soc., 362 (2010), 4617-4653. doi: 10.1090/S0002-9947-10-05003-8 |
[11] | M. Hochman, On dynamics and recursive properties of multidimensional symbolic dynamics, Invent. Math., 176 (2009), 131-167. doi: 10.1007/s00222-008-0161-7 |
[12] | B. Marcus, R. Pavlov, Approximating entropy for a class of $\mathbb{Z}^2$ Markov random fields and pressure for a class of functions on $\mathbb{Z}^2$ shifts of finite type, Ergodic Theory Dynam. Syst., 33 (2013), 186- 220. |
[13] | R. Pavlov, M. Schraudner, Classification of sofic projective subdynamics of multidimensional shifts of finite type, Trans. Am. Math. Soc., 367 (2015), 3371-3421. |
[14] | R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math., 12 (1971), 177-209. doi: 10.1007/BF01418780 |
[15] | J. Kari, A small aperiodic set of Wang tiles, Discrete Math., 160 (1996), 259-264. doi: 10.1016/0012-365X(95)00120-L |
[16] | M. Hochman, T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Ann. of Math., 171 (2010), 2011-2038. doi: 10.4007/annals.2010.171.2011 |
[17] | N. Aubrun, M. P. Béal, Tree-shifts of finite type, Theor. Comput. Sci., 459 (2012), 16-25. doi: 10.1016/j.tcs.2012.07.020 |
[18] | N. Aubrun, M. P. Béal, Sofic tree-shifts, Theory Comput. Syst., 53 (2013), 621-644. doi: 10.1007/s00224-013-9456-1 |
[19] | J. C. Ban, C. H. Chang, Tree-shifts: Irreducibility, mixing, and chaos of tree-shifts, Trans. Am. Math. Soc., 369 (2017), 8389-8407. doi: 10.1090/tran/6906 |
[20] | J. C. Ban, C. H. Chang, Tree-shifts: The entropy of tree-shifts of finite type, Nonlinearity, 30 (2017), 2785-2804. doi: 10.1088/1361-6544/aa72c0 |
[21] | J. C. Ban, C. H. Chang, Mixing properties of tree-shifts, J. Math. Phys., 58 (2017), 112702. |
[22] | A. Berge, S. Siegmund, Y. Yi, On almost automorphic dynamics in symbolic lattices, Ergod. Theory Dyn. Syst., 24 (2004), 677-696. doi: 10.1017/S0143385703000609 |
[23] | D. Carroll, A. Penland, Periodic points on shifts of finite type and commensurability invariants of groups, New York J. Math., 21 (2015), 811-822. |
[24] | F. Krieger, M. Coornaert, Mean topological dimension for actions of discrete amenable groups, Discrete Contin. Dyn. Syst., 13 (2005), 779-793. doi: 10.3934/dcds.2005.13.779 |
[25] | S. T. Piantadosi, Symbolic dynamics on free groups, Discrete Contin. Dyn. Syst., 20 (2008), 725- 738. |
[26] | K. Petersen, I. Salama, Tree shift topological entropy, Theoret. Comput. Sci., 743 (2018), 64-71. doi: 10.1016/j.tcs.2018.05.034 |
[27] | N. Chandgotia, B. Marcus, Mixing properties for hom-shifts and the distance between walks on associated graphs, Pacific J. Math., 294 (2018), 41-69. doi: 10.2140/pjm.2018.294.41 |
[28] | A. Ballier, M. Stein, The domino problem on groups of polynomial growth, 2013. arXiv:1311.4222. |
[29] | D. B. Cohen, The large scale geometry of strongly aperiodic subshifts of finite type, Adv. Math., 308 (2017), 599-626. doi: 10.1016/j.aim.2016.12.016 |
[30] | J. Frisch, O. Tamuz, Symbolic dynamics on amenable groups: The entropy of generic shifts, 2015. arXiv:1503.06251. |
[31] | E. Jeandel, Aperiodic subshifts of finite type on groups, 2015. arXiv:1501.06831. |
[32] | M. Łacka, M. Pietrzyk, Quasi-uniformconvergenceindynamical systems generated by an amenable group action, 2016, arXiv:1610.09675. |
[33] | M. Carvalho, Entropy dimension of dynamical systems, Port. Math., 54 (1997), 19-40. |
[34] | W. C. Cheng, B. Li, Zero entropy systems, J. Stat. Phys., 140 (2010), 1006-1021. doi: 10.1007/s10955-010-0019-4 |
[35] | D. Dou, W. Huang, K. K. Park, Entropy dimension of topological dynamical systems, Trans. Am. Math. Soc., 363 (2011), 659-680. doi: 10.1090/S0002-9947-2010-04906-2 |
[36] | D. Dou, W. Huang, K. K. Park, Entropy dimension of measure preserving systems, 2018, arXiv:1312.7225. |
[37] | E. Mihailescu, M. Urbański, Measure-theoretic degrees and topological pressure for nonexpanding transformations, J. Funct. Anal., 267 (2014), 2823-2845. doi: 10.1016/j.jfa.2014.07.026 |
[38] | A. Katok, J. P. Thouvenot, Slow entropy type invariants and smooth realization of commutingmeasure-preserving transformations, Ann. Inst. H. Poincare Probab. Statist., 33 (1997), 323-338. doi: 10.1016/S0246-0203(97)80094-5 |
[39] | L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc., 23 (2010), 217-245. |
[40] | T. Ceccherini-Silberstein, M. Coornaert, Cellular Automata and Groups, Springer-Verlag Berlin Heidelberg, 2010. |
[41] | D. S. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141. doi: 10.1007/BF02790325 |
[42] | D. Kerr, H. Li, Entropy and the variational principle foractions of sofic groups, Invent. Math., 186 (2011), 501-558. doi: 10.1007/s00222-011-0324-9 |
[43] | J. C. Ban, C. H. Chang, Characterization for entropy of shifts of finite type on Cayley trees, J. Stat. Mech. Theory Exp., 2020. to appear, arXiv:1705.03138. |